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SUPPLEMENTARY MATERIAL: DOES INDUSTRIAL
COMPOSITION MATTER FOR WAGES?

Paul Beaudry, David Green and Benjamin Sand1

In this appendix, we outline the details of our data construction (section S.1) and
the implementation of the selection correction procedure described in the main text
(section S.2). In addition, we examine the robustness of our results in a number
of dimensions and provide some derivations of key equations in the main paper. In
particular, we examine the implications of allowing bargaining strength, mobility
and job destruction parameters to vary by industry and of allowing parameters to
vary by education level and over time in section S.3. In section S.4, we provide a
brief discussion and investigation of the implications of allowing on the job search.
In section S.5, we present a Monte Carlo exercise aimed at investigating whether
our linearization could be leading to biased results. Section S.6 contains a detailed
derivation of the main linear approximation in the paper, and section S.7 contains
an extensive presentation of the model when house prices are included. Section S.8
contains results from specifications in which we do not correct for self-selection of
workers across cities, section S.9 presents our first stage regression results, and, finally,
section S.10 contains estimates of equation (10) from the main text.

APPENDIX S.1: DATA CONSTRUCTION

The Census data was obtained with extractions done using the IPUMS system (see Ruggles,
Sobek, Alexander, Fitch, Goeken, Hall, King, and Ronnander (2004). The files were the 1980
5% State (A Sample), 1990 State, 2000 5% Census PUMS, and the 2007 American Community
Survey. For 1970, Forms 1 and 2 were used for the Metro sample. The initial extraction includes
all individuals aged 20 - 65 not living in group quarters. All calculations are made using the
sample weights provided. For the 1970 data, we adjust the weights for the fact that we combine
two samples. We focus on the log of weekly wages, calculated by dividing wage and salary
income by annual weeks worked. We impute incomes for top coded values by multiplying the
top code value in each year by 1.5. Since top codes vary by State in 1990 and 2000, we impose
common top-code values of 140, 000 in 1990 and 175, 000 in 2000.

A consistent measure of education is not available for these Census years. We use indicators
based on the IPUMS recoded variable EDUCREC that computes comparable categories from the
1980 Census data on years of school completed and later Census years that report categorical
schooling only. To calculate potential experience (age minus years of education minus six), we
assign group mean years of education from Table 5 in Park 1994 to the categorical education
values reported in the 1990 and 2000 Censuses.

Census definitions of metropolitan areas are not comparable over time since, in general, the
geographic areas covered by them increase over time and their definitions are updated to reflect
this expansion. The definition of cities we use attempts to maximize geographic comparability
over time and roughly correspond to 1990 definitions of MSAs provided by the U.S. Office of
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Management and Budget.1 To create geographically consistent MSAs, we follow a procedure
based largely on Deaton and Lubotsky (2001) which uses the geographical equivalency files
for each year to assign individuals to MSAs or PMSAs based on FIPs state and PUMA codes
(in the case of 1990 and 2000) and county group codes (for 1970 and 1980). Each MSA label
we use is essentially defined by the PUMAs it spans in 1990. Once we have this information,
the equivalency files dictate what counties to include in each city for the other years. Since
the 1970 county group definitions are much courser than those in later years, the number of
consistent cities we can create is dictated by the 1970 data. This process results in our having
152 MSAs that are consistent across all our sample years. Code for this exercise was generously
provided by Ethan G. Lewis. Our definitions differ slightly from those in Deaton and Lubotsky
(2001) in order to improve the 1970-1980-1990-2000 match.

We use an industry coding that is consistent across Censuses and is based on the IPUMS
recoded variable IND1950, which recodes census industry codes to the 1950 definitions. This
generates 144 consistent industries.2 We have also replicated our results using data only for the
period 1980 to 2000, where we can use 1980 industry definitions to generate a larger number
of consistent industry categories.3 We are also able to define more (231) consistent cities for
that period.

Our measure of housing prices follows Moretti (2010). In particular, we use the IPUMs
variable “gross monthly rent” called RENTGRS. This measure includes the contract rent plus
utility costs, and IPUMs suggests that it is more comparable across individuals than “contract
monthly rent”. However, we find very similar results using either measure. As in Moretti (2010),
we limit the sample to rental units with 2 or 3 bedrooms, and we correct for top coding by
multiplying top-coded values by 1.3.

S.1.1. Enclave Instrument

The construction of the enclave instrument is similar to that of Doms and Lewis (2006) and
uses their origin country groupings. The country of origin groups are (1) Mexico, (2) Central
America, (3) South America, (4) Central Europe and Russia, (4) Caribbean, (5) China, (6)
South East Asia, (7) India, (8) Canada, U.K., and Australia, (10) Africa, (11) Korea and
Japan, (12) Pacific Islands, (13) Israel and NW Europe, (14) Middle East, (15) Central Asia,
(16) Cuba, and (17) Souther Europe and can be identified from the IPUMS variable bpl

"Birthplace [general version]" . To identify the inflows of immigrants, we use the IPUMS
variable yrimmig "Year of immigration". We predict the inflow of immigrants from sending
country h to city c in year t by Ĥct =

∑
h λch ·Hth where λch denotes the historical settlement

of immigrants from h to c (we use the 1970 distribution of immigrants to estimate this), and
Hth is the national inflow of immigrants from sending country h over the decade ending at t.
We then form IV 5 by

IV 5 =
Ĥct − Pct−1

Pct−1
,

where Pct−1 denotes the population of city c at time t− 1.

1See http://www.census.gov/population/estimates/pastmetro.html for details.
2See http://usa.ipums.org/usa-action/variableDescription.do?mnemonic=IND1950 for de-

tails.
3 The program used to convert 1990 codes to 1980 comparable codes is available at

http://www.trinity.edu/bhirsch/unionstats. That site is maintained by Barry Hirsch, Trin-
ity University and David Macpherson, Florida State University. Code to convert 2000
industry codes into 1990 codes was provided by Chris Wheeler and can be found at
http://research.stlouisfed.org/publications/review/past/2006. See also a complete table of
2000-1990 industry crosswalks at http://www.census.gov/hhes/www/ioindex/indcswk2k.pdf
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S.1.2. Climate Instrument

The city-level climate variables were extracted from ”Sperling’s Best Places to Live”
(http://www.bestplaces.net/docs/DataSource.aspx). Their data is compiled from the National
Oceanic and Atmospheric Administration. The variables we use in this paper are the average
daily high temperatures for July and January in degrees Fahrenheit, Annual inches of Rainfall,
and the number of sunny days. We have also compiled climate data from an alternative source
to use as a robustness check. These data come from ”CityRating.com’s” historical weather
data, and include variables on average annual temperature, number of extreme temperature
days per year, humidity, and annual precipitation. Data from this source could only be collected
for 106 cities, and, therefore, not included in this analysis.

S.1.3. I-O Linkages Data

We use the I-O table “The Use of Commodities by Industries before Redefinition” for detailed
industries in the 1997 benchmark year to create the distance measure dij . Creating this measure
required several steps. First, we had to convert NIAC 1997 codes into SIC industrial classi-
fication using the concordances provided by http://www.macalester.edu/research/economics/
page/haveman/trade.resources/tradeconcordances.html# FromNAICS. We then convert the
SIC codes to Census 1980 industrial codes using concordances available from the same web-
page. The 1980 Census codes are then aggregated into our industrial classification described
above. Once this is done, we sum the value of inputs used by industry i and create dij as value
of industry j’s inputs used as a fraction of all input used by i.

S.1.4. Net Export Data

We obtain data on net exports from:
http : //www.som.yale.edu/faculty/pks4/sub international.htm
and use data file xm sic87 72 105 20100504.dta from that page. These data are described by
Peter K. Schott in
http : //www.som.yale.edu/faculty/pks4/files/research/data/sic naics trade20100504.pdf .
We convert the industry codes in SIC format to Census 1980 format using the concordances
described above. These are again aggregated into our industrial classification. We use the
variables cif and x to create our net export variable.

APPENDIX S.2: IMPLEMENTING THE SELECTION ESTIMATOR

As described in the paper, our main approach to addressing the issue of selection on un-
observables of workers across cities follows Dahl (2002). To understand the nature of Dahl’s
approach, consider a model in which each worker has a (latent) wage value that he would earn
if he lived in each possible city and chooses to live in the city in which his wage net of moving
costs is highest. If we explicitly introduce individual heterogeneity, this implies that we should
write the regression corresponding to observed wages as

E(logwkict|dkct = 1) = α0t + β1txkct + α1ERct(S1)

+ α2Rct + νi + νc + E(ekct|dkct = 1),

where k indexes individuals and dkct is a dummy variable equaling one if worker k is observed
in city c at time t. The last, error mean, term is non-zero if worker city selection is not
independent of the unobserved component of wages. If one were to estimate equation (16) not
taking account of this error mean term then the estimated regression coefficients will suffer
from well-known consistency problems.

Dahl argues that the error mean term in equation (S1) for person j can be expressed as a
function of the full set of probabilities that a person born in j’s state of birth would choose to
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live in each possible city in the Census year. Further, he presents a sufficiency assumption under
which the error mean term is a function only of the probability of the choice actually made
by j. That sufficiency condition essentially says that two people with the same probability of
choosing to live in a given city have the same error mean term in their regression: knowing
the differences in their probabilities of choosing other options is not relevant for the size of
the selection effect in the process determining the wage where they actually live. Dahl, in fact,
presents evidence that this assumption is overly restrictive and settles on a specification in
which the error mean term is written as a function of the probability of making the migration
choice actually observed and the probability that the person stayed in their birth state.

Implementing Dahl’s selection correction approach requires two further decisions: how to
estimate the relevant migration probabilities and what function of those probabilities to use
as the error mean term. For the first, Dahl proposes a non-parametric estimator in which
he divides individuals up into cells defined by discrete categories for education, age, gender,
race and family status. He then uses the proportion of people within the cell that is relevant
for person j who actually made the move from j’s birth state to his destination and the
proportion who stayed in his birth state as the estimates of the two relevant probabilities. This
is a flexible estimator which does not impose any assumptions about the distribution of the
errors in the processes determining the migration choice. For the second decision, Dahl uses a
series estimator to provide a non- parametric estimate of the error mean term as a function of
these probabilities.

We essentially implement Dahl’s approach in the same manner apart from several small
changes. First, we are examining the set of people who live in cities in the various Census years
but we only know the state, not the city of birth. We form probabilities of choosing each city
for people from each state of birth. People who live in a city in their state of birth are classified
as ”stayers” and those observed in a city not in their state of birth are classified as ”mover”.4

We estimate the error mean term as a function of the probability that a person born in j’s
state of birth moved to j’s city of residence and the probability that a person born in j’s state
of birth still resided in that same state. Stayers have an error mean term which is a function
only of the probability that the person stayed in their state of birth (since the probability of
their actual choice and the probability of staying are one and the same).

As in Dahl (2002), we estimate the relevant probabilities using the proportion of people
within cells defined by observable characteristics who made the same move or who stayed in
their birth state. Similar to Dahl (2002), we define the cells using 4 education categories, 8 age
categories, gender and a black race dummy. For stayers, we also use extra dimensions based on
family status.5 This is possible because of the larger number of stayers than movers. The full
interaction of these various characteristics defines 80 possible person types for the movers and
240 for stayers. For the movers in a particular city (i.e., for the set of people born outside the
city in which that city is situated), the probabilities will also differ based on where the person
was born. Thus, identification of the error mean term comes from the assumption that where
a person was born does not affect the determination of their wage, apart from through the
error mean term. Intuitively, a person born in Pennsylvania has a lower probability of being
observed in Seattle than a person born in Oregon. If both are observed living in Seattle then we
are assuming that the person from Pennsylvania must have a larger Seattle specific ”ability”
(a stronger earnings related reason for being there) and this is what is being captured by the
sample correction. Identification in this approach is based on the exclusion of state of birth
by current city of residence interactions from the wage regression. That is, we assume that
being born in a state close to your city of residence (or, more generally, a state with a high
associated probability of moving to that city) does not directly determine the wage a worker
receives.6 For stayers, we do not have this form of variation and, hence, identification arises

4For cities that span more than one state, we call a person who is observed in a city that is
at least partly in their birth state a stayer.

5Specifically, we use single, married without children, and married with at least one child
under age 5.

6Note that this is different from assuming that state of birth does not affect current wages
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from the restriction that family status affects the decision to stay in one’s state of birth but
not (directly) the wage.

Our main difference relative to Dahl (2002) is that while he drops immigrants, we keep
them in our sample. We essentially treat them as if they are born in a different state from
the city of residence except that we do not include a probability of their remaining in their
place of birth. We divide the rest of the world into 11 regions (or ”states” of birth). As with
other movers, we divide them into cells based on the same education, age, gender and race
variables and assign them a probability of choosing their city of residence. Contrary to other
movers, however, we do not assign them the probability that immigrants from their region of
birth are observed in their own city in the current Census year. Instead, we assign them the
probability that a person with their same education was observed in their city in the previous
Census. This follows the type of ethnic enclave assumption used in several recent papers on
immigration, i.e., essentially using variation based on the observation that immigrants from a
particular region tend to migrate to cities where there are already communities of people with
their background.

Having obtained the estimated probabilities of following observed migration paths and of
staying in state of birth, we need to introduce flexible functions of them into our regressions.
We introduce these functions in our first estimation stage. The specific functions we use are
quadratics in the estimated probabilities. For movers born in the U.S., we introduce a quadratic
in the probability of moving to the actual city from the state of birth and a quadratic in the
probability of remaining in the state of birth. For stayers, we introduce a quadratic in the
probability of remaining in the state in general. For immigrants, we introduce a quadratic
in the probability that people from the same region and with the same education chose the
observed city. This represents a restriction on Dahl (2002), who allowed for separate functions
for each destination state. We, instead, assume the parameters in the functions representing the
error mean term are the same across all cities. Thus, we estimate individual level regressions of
log wages on the same complete set of education and experience variables, indicators for race,
immigrant status, and gender, as well as a full set of city-by-industry dummies but now also
add our proxies for the error mean term. We again retain the coefficients on the city-industry
dummy variables and then proceed with the second stage regressions as before. The coefficients
on the error mean proxy variables are jointly highly significant in the first stage regressions,
implying that there are significant sample selection issues being addressed with this estimator.

Finally, in order to provide perspective on the effects of the selection correction, we replicate
Table I from the paper but without the selection corrections. This table is available from our
online Web-Appendix. A comparison of the two tables makes it evident that the selection
corrections change our estimates to only a minor degree. For example, the coefficient on ∆Rct
is 2.45 when estimated by OLS and 2.85 when use use instrument set IV 1, IV 2 and IV 3,
compared to 2.47 and 2.91, respectively, in Table I.

APPENDIX S.3: RELAXING HOMOGENEITY ASSUMPTIONS

The model presented in the paper assumes a large degree of between-industry homogeneity,
which allows for a cleaner presentation. In this section, we examine robustness to relaxing some
of these assumptions.

S.3.1. Allowing µ or κ to vary by Industry

The model presented in the paper assumes that industry retention, parameterized by µ,
and worker bargaining power, parameterized by κ, are the same across all industries. These
are obviously simplifying assumptions that we wish to relax here. As can be verified, allowing
either of these parameters to vary by industry will cause the coefficients in estimating equation

since, even if we include a set of state of birth dummy variables in our first stage estimation,
our approach remains identified off interactions between city-of-employment and state-of-birth.
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(25) to also vary by industry. Accordingly, Figure 1 displays the coefficient on Rct estimated
by running equation (25) separately by industry. This gives 143 estimates of α2i, where the i
subscript now denotes the fact that α2 varies by industry.

As can be seen from the figure, the estimates of α2i are concentrated around our estimate
of α2 reported in the paper. α2i has a median of 2.50 and an interquartile range from 2.97 to
1.92. Letting ηi represent the industry share at the national level, from years 1970 to 2007, we
calculate the average by

∑
i ηi · α2i = 2.48. This is quite close to the estimate obtained in the

paper with the homogeneity assumptions imposed. Finally, Figure 2 shows industry-level IV
results using instrument set IV1-IV2-IV3, which have a mean of 2.97.

An alternative to allowing coefficients to vary by a 3-digit industrial classification is to ag-
gregate industries and allow the coefficients to vary only between the aggregated groups. This
relaxes some of the homogeneity assumptions while still allowing for a relatively concise pre-
sentation of the results. Table I reports results from estimates of equation (25) by 16 industry
aggregates. Column 1 reports OLS estimates and columns 2-4 report IV estimates using instru-
ment sets IV1-IV3, IV2-IV3, and IV1-IV2-IV3, respectively. As can be seen from columns 1-4,
estimates of α2i are economically and statistically significant for nearly all industrial groups.
In the last column of the table we report average aggregated industry employment shares and
we use these to calculate the average

∑16
i=1 ηi · α2i over the 16 aggregate industry groups. As

can be seen from these rows, these averages are quite close to those reported in Table 1 of the
paper with the homogeneity assumptions imposed.

S.3.2. Allowing δ to vary by Industry

The model presented in the paper assumes that the rate of job destruction, parameterized
by δ, is the same across industries. When this assumption holds, the shares of vacant jobs
across industries will be proportional to the share of employment across industries. When
this assumption does not hold, workers are more likely to meet industries with higher job
destruction rates (i.e., greater turnover).

Denote δi as the job destruction rate for industry i. When the model is modified in this way,
it can be shown that the relevant outside options for workers, captured by our rent variable,
Rct, have to recalculated to account for the fact that workers will now meet industries at
different rates compared to the case where δi does not vary by industry. This new rent variable

becomes R̃ct =
∑
i ηict·δi·νit∑
i ηict·δi

, and is derived using the same steps used to derive our estimating

equation in the paper.

In order to explore the relevance to this extension, we require estimates of the job destruc-
tion rate by industry, δi. To obtain these, we use data from the Current Population Survey’s
February 1998 Job Tenure supplement. We calculate δi = 1

Ti
, where Ti is the average tenure

in industry i.7 Due to sample size considerations, we use 16 aggregated industry groups and
calculate R̃ct as described above.

Since differences in δi across industries implies that the coefficients in (25) will again depend
on industry, Table II displays results from estimates of equation (25) using the new measure
R̃ct for the 16 aggregated industry groups. Similar to tables reported in the paper, Table II
column 1 shows OLS estimates, while columns 2-4 use the IV sets IV1-IV3, IV2-IV3, IV1-IV2-
IV3. Column 5 shows the estimated δi from the CPS data. Finally, the last column shows the
share of employment in the aggregate industry group at the national level. As can be seen in
columns 1-4 of this table, estimates of the effect of R̃ct on within-industry wage changes remain
important and are similar to those reported in our basic specification and to those reported in
Table I of this appendix. In the bottom rows of the table, we report average estimates of α2i

using the shares reported in column 6 of the table, which are again similar in magnitude to α2

reported in Table 1 of the main paper.

7We use the BLS recode variable prst1tn, which identifies “tenure with current employer”.
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S.3.3. Allowing the Returns to Education to vary by Industry

In our first-stage regression to purge industry-city wages of individual characteristics, such
as education and potential experience, we do not allow the returns to these attributes to vary
across industries. If the the return to education varies across industries it will bias our estimates
of city-industry wages and this may ultimately bias our results.

We address this issue in two ways. First, toward the end of the paper in Table 6, we report
our estimate of our main equation separately by experience/education groups. In doing so,
we estimate our first-stage equation separately by each group and, accordingly, the returns to
various observable characteristics are allowed to vary by experience/education groups. These
first-stage regressions include a full set of city-industry dummies, effectively allow the return
to education to vary across industry.

Second, as an additional robustness check, we re-estimate our baseline empirical model on
the pooled data but allow the return to education to vary across 16 aggregated industry groups.
The results from this exercise are reported in Table III, which replicates Table 1 from the paper.
As can be seen, the results are very similar whether or not this restriction is imposed.

S.3.4. Allowing Parameters to vary Over Time

In the paper, we make the simplifying assumption that the parameters do not vary over time.
Allowing, for example, workers’ bargaining power given by κ to vary by year will imply that the
estimated coefficients α2 and α3 in estimating equation (25) will also vary by year. In order to
evaluate the importance of this restriction, we re-estimate our basic equation (25) for different
time periods. The results are contained in Table VI. We estimate the basic specification for
the years 1970-1990 (columns (1) and (2)), 1980-2000 (columns (3) and (4)), and 1990-2007
(columns (5) and (6)). For each set of years, the first column corresponds to the OLS estimates
and the second to the IV results, where we use the instrument set IV1-IV2-IV3. For both
the OLS and IV results, the estimated coefficient α2t on ∆Rct are reasonably stable. We also
estimated equation (25) separately by decade in Table VII. When we do this, the results are
again quite stable with the exception of the IV estimate for the 1990s which is very imprecise
and of the wrong sign. This imprecision comes from the fact that the first-stage regression for
the 1990s is very poor.

APPENDIX S.4: ON-THE-JOB SEARCH

Extending the model presented in the paper to include on-the-job search is not straight
forward. One difficulty is that there are many models of on-the-job search with different im-
plications for how outside options map into the wage determination process. With on-the-job
search, the bargaining process is extremely important. While getting into these details is out-
side the scope of the current paper, we wish to examine an implication of on-the-job search
that is generally found in most set-ups. That is, most on-the-job search models imply that the
expected wage for workers would not simply depend on the first moment of the distribution of
outside offers – as is the case with our simple model with no on-the-job search. Instead, the
expected wage in an industry will depend on several higher moments of the outside options.
Given that this implication is common among several on-the-job search frameworks, as a first-
pass we examine its relevance here by including higher order moments of the distribution of
rents. In particular, instead of including only the first moment of the distribution, which is
given by

∑
i ηict · νit, we also include the terms

∑
i ηict · (νit)

j , where j is the order of the
moment. Table IV reports results from this exercise for different moments from 2 to 4. The
instruments we use to mitigate the endogeneity of these moments parallel our building of IV1.
We have examined results for centered and un-centered moments. The results in the table are
for centered moments; un-centered moments provide a similar picture. As can be seen in the
table, there is not much evidence in our data that moments other than the first matter signif-
icantly for wage determination at the city level. This does not imply that on-the-job search is
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not present or important, but it does imply that it effects are likely much more subtle than
the effects emphasized in this paper. While this simple approach represents only a first-pass at
the issue, we leave for future work more detailed explorations of particular on-the-job search
models.

APPENDIX S.5: EVALUATING LINEAR APPROXIMATION BY SIMULATION

As discussed in the paper, one potential concern with our approach is that higher order
terms left in the error term after our linearizations are correlated with our regressors and/or our
instruments. To investigate this concern, we implemented a Monte Carlo exercise in which we
constructed data on wages using our non-linear model and then estimated our main regressions
using that data. We describe this exercise in this appendix.

It is possible to generate data for an entire Monte Carlo economy using our model and initial
values for the a’s, ε’s and Ω’s. However, we are less interested in this than in generating data
that both reflects the non-linearities in the model and has levels and variation that match with
the actual data we use in our estimation. For that reason, we use our actual data on city-level
employment rates (ERc), city-by-industry-level employment shares (ηic), and national-level
wage premia (νi) to generate wage data. More specifically, we generate a wage observation for
each industry-city cell in a given Census year using equation (15). Since we are using actual
values for the νi’s and ηic’s, we can use our actual measure for Rc,8 but everything else on the
right hand side of (15) needs to be generated. We do that in the following steps:

1. Assume values for the job destruction rate, δ, and the elasticity parameter in the match-
ing function, σ, and use these together with data on ERc in equations (9) to generate
city-specific values for the probability an unemployed worker meets a job (ψc) and
the probability a vacancy meets a worker (φc). In our actual implementation, we fol-
low Cahuc and Zylberberg (2004) and introduce a parameter, θ which multiplies that
matching function and corresponds to the efficiency of matching (regardless of the level
of tightness of the market).

2. Assume values for the discount rate, ρ, and the bargaining parameter, κ, and use them
together with the values for ψc and φc generated in step (1) to generate values for γc0,
γc1 and γc2 (see the formulas below equation (12) in the paper).

3. The industry specific intercepts in equation (15) depend on the national industry-level
prices. To get values for these that are consistent with the rest of our data, we average
equation (12) across cities for a given industry and then rearrange to obtain the pi’s.
More specifically, we make use of the γc0, γc1 and γc2 values generated in step 2),
national-level average industry wages for the year, and average city wages. The epsilon’s
average to zero across cities within an industry and so can be ignored in this step.
Throughout this exercise, we drop nine industries where a majority of industry-city
cells are smaller than 20 observations. We also drop other cells where the number of
observations are small than 20 observations in either year for a decade (e.g., for either
1980 or 1990 when we simulate data for that decade). We are left with 10,915 usable
city-industry cells. We normalize the industry prices (in thousands of dollars) so that
the price of good 1 is 100.

4. Finally, we obtain values for the cost shocks, (εic)’s, as independent draws from a stan-
dard normal which we then adjust in two ways. First, we adjust them to average to
zero across cities within an industry. Second, we multiply them by a standard deviation
parameter chosen so that the final generated wages are close to actual wages in terms
of their means and standard deviations.

Given all of these generated and actual values, we can generate values for the city-industry
cell average wages for each Census year. These wages reflect the non-linearities, especially with

8The wages are actually created in levels and so we use a version of Rc using level differences
in wages by industry rather than proportion differences at this stage.
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respect to ERc, that are inherent in the model. Because the ε’s are independent draws, there
is no reason for our identification conditions to be violated and both OLS and IV estimates of
our main regressions should provide consistent estimates.

Having generated the industry-city cell mean wages, we use them as the dependent variable
in an OLS estimation of the linearized regression equation from the paper. Because we used
actual values for ERc, ηic and νc in our construction, the values for ERc and Rc are the same
in our constructed world as they are in the actual data and so we use the actual values for
these variables as our regressors. We are interested in whether the coefficient on Rc in our
regression is close to the correct value as implied by the model and whether its accuracy varies
with the model parameter values.

To understand the standard of comparison for the estimated Rc coefficient, recall that we
perform our linearization around a point such that the employment rate is the same across all
cities. The parameter of interest is then equal to γ2/(1 - γ2), where γ2 is constructed using the
common employment rate. To reflect this, for each city we obtain a value for γ2 as described in
step 2 in our simulation exercise and calcuate γ2/(1 - γ2). We then obtain the average value of
γ2/(1 - γ2) across cities and use it as our target. This value will vary with the key parameters
in the model.

In Table V, we present the proportionate difference between the estimated regression coef-
ficient and the target value for γ2/(1 - γ2) for each of a set of different values for the model
paramters.9 We start by using the values for key parameters recommended in Cahuc and Zyl-
berberg (2004): δ = .15, σ = .5, and ρ = .05. We also set κ = 1 to represent equal bargaining
power between workers and firms. Finally, we chose the value for θ, the matching efficiency
parameter, to provide a close fit between our estimated coefficient and the target parameter
value. We did this because we do not have a clear way to map from our data to a value for θ.
The fact that we get close agreement between our coefficient and the target value is, therefore,
potentially not surprising in this case. It does, however, indicate that at reasonable parameter
values the wage generation function implied in the model is not so non-linear that we cannot
get agreement between these values when we estimate using a linearized version of the model.

In the ensuing rows, we vary each of the key parameter values in turn. In almost all cases, we
continue to obtain close agreement between the coefficient and target parameter values. There
are, however, a few notable exceptions. When σ, the elasticity coefficient in the matching
function takes either quite high or low values, we tend to get disagreement between the values.
Altering this parameter value seems to us to be likely to affect the amount of non-linearity
in the wage function and so this seem reasonable. However, in the range for this parameter
deemed reasonable by Cahuc and Zylberberg (2004) in their discussion of earlier studies, the
linear approximation seems good. A very low value for the job destruction rate also implies
a 30% difference between the estimated and target values but quite high values do not imply
large differences. Finally, if the efficiency parameter takes values near 1, we observe substantial
differences but for values above about 10 (and including quite high values) the differences
are small. As mentioned earlier, we do not have a means at present of determining what is a
reasonable value of θ (we believe it would be related to the average amount of time a vacancy
goes unfilled) so we do not know which specific values to trust. However, we find it encouraging
that we see small differences between the estimated and target values over a very large range
of values for θ. Overall, we conclude that the wage generation process in this model is not so
inherently non-linear that our linearization approach causes problems given what we see as
reasonable ranges for parameter values.

9The values of the estimated coefficient vary to a small extent between samples, likely
because of the way the generated ε’s appear in interacted terms with the key coefficients in
the wage equation. Because of this, we actually run our wage regression 50 times for each
set of parameter values. We then use the average of the estimated coefficients from these 50
replications in constructing the proportionate difference reported here.
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APPENDIX S.6: DERIVATION OF MAIN LINEAR APPROXIMATION

In this section, we present the derivation of our main linear approximation for completeness.
Recall, wage equation (24) from the text:

wic = Dic + Γc2
γc1

γ1
Rc + γc1εic + γc1Γc2

∑
j

ηjcεjc,

where Γc2 =
(

γc2
1−γc2

)
.

Since the coefficients in the wage equation are non-linear functions of the employment rates,
ERc, we take a linear approximation. Let the vector e =

[
p1, pi, Rc, ERc, εic, εjc

]
denote the

variables affecting wages in this equation and with respect to which we take the approximation.
Writing out the wage equation to make the this relationship explicit:

wic(e) = Dic(e) + Γc2(e)
γc1(e)

γ1
Rc + γc1(e)εic + γc1(e)Γc2(e)

∑
j

ηjc(e)εjc

We expand around a point where the employment rate does not vary across cities, which will
occur if cities have a common industrial structure. This occurs at the point e0 = (p1, p1, 0, ER, 0,0).
This approximation is:

wic(e) ≈ wic(e0) +∇wic(e0) · (e− e0)(S2)

S.6.1. wic(e0)

Dealing first with the first term on the right hand side:

wic(e0) = Dic(e0) + Γc2(e0)
γc1(e0)

γ1
· 0 + γc1(e0) · 0 + γc1(e0)Γc2(e0)

∑
j

ηjc(e0) · 0

= Dic(e0)

= γ0 · (1 + Γ2) + γ1Γ2p1 + γ1p1(S3)

= β0

where β0 is a constant that does not vary by city or industry.

S.6.2. ∇wic(e0) · (e− e0)

Now dealing with the second term on the right hand side of equation S2:

∇wic(e0) · (e− e0) =

γc1Γc2
γc1
Γc2

∂Dic
∂ERc

+
∂γc1/γ1Γc2Rc

∂ERc
·+ ∂γc1

∂ERc
· εic +

∑
i
∂(γc1Γc2ηic)

∂ERc
· εic

γc1 + γc1Γc2ηic
γc1Γc2ηjc



′

∣∣∣∣
(e0)

· (e− e0)

=



γ1Γ2

γ1

Γ2

γ3

γ1 + γ1Γ2
1
I

γ1Γ2
1
I



′

·


p1 − p1

pi − p1

Rc − 0
ERc − ER
εic − 0
εjc − 0


= γ1 · (pi − p1) + Γ2 ·Rc + γ3(ERc − ER) + γ1 · εic + γ1Γ2

∑
j

1

I
εjc.(S4)
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S.6.3. Arriving at Equation (16)

Adding (S3) and (S4), and differencing:

∆wic = ∆di + Γ2 · ∆Rc + γ3∆ERc + γ1 · ∆εic + γ1Γ2

∑
j

1

I
∆εjc(S5)

where ∆di = γ1Γ2∆p1 + γ1∆pi.

S.6.4. Equation for ηic

Using equation (6), the following expression for ηic is obtained:

ηic =

(
(Υi+Ωic)

[
pi−dic+(1−γc1)εic+

(
γc2

1−γc2

)
γc1(

∑
j ηjc(pj−p1)−

∑
j ηjcεjc)

]) 1
q

∑
i

(
(Υi+Ωic)

[
pi−dic+(1−γc1)εic+

(
γc2

1−γc2

)
γc1(

∑
j ηjc(pj−p1)−

∑
j ηjcεjc)

]) 1
q
.(S6)

APPENDIX S.7: DERIVING THE HOUSING PRICE SPECIFICATION

This section outlines the derivation of equation (29) in the main text and
proves the claim that the direct and indirect effects of industrial composition
changes are not separately identified under the assumption of perfect mobility.
To begin, we add to Worker’s Bellman Equations the option to move and the
cost of housing (as in the paper):

ρUuc = b+ τc − s · phc + ψc ·

(∑
i

ηic · Ueic − Uuc

)
+ µ1 · (Uumax − Uuc )(S7)

and

ρUeic = wic + τc − s · phc − δ · (Uuc − Ueic) .(S8)

Taking the difference between (S8) and (S7):

(ρ+ δ) · (Ueic − Uuc ) = wic − b− ψc ·

(∑
i

ηicU
e
ic − Uuc

)
− µ1 · (Uumax − Uuc ) .(S9)

Next, we solve for (
∑
i ηicU

e
ic − Uuc ) and substitute back into (S9).

(ρ+ δ) · (Ueic − Uuc ) = wic − b (1 − Π1) − µ1 (1 − Π1) · (Uumax − Uuc ) − Π1

(∑
i

ηicwic

)
,(S10)

where Π1 = ψc
ρ+δ+ψc

. Using (
∑
i ηicU

e
ic − Uuc ), we can solve for Uuc in Equation

(S7):

(ρ+ Π2) · Uuc = b (1 − Π1) + τc − s · phc + Π1 ·

(∑
i

ηicwic

)
+ Π2 · Uumax,(S11)
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where Π2 = µ1 (1 − Π1). Substituting this into (S10):

(ρ+ δ) · (Ueic − Uuc ) = wic − b (1 − Π1) · Π3 − Π2 · Π3 · Uumax − Π1 · Π3

(∑
i

ηicwic

)
(S12)

+
Π2

(ρ+ Π2)

(
τc − s · phc

)
where Π3 = ρ

ρ+Π2
. Note that if µ1 = 0 (the case with no mobility), then this

reduces to Π3 = 1 and Π2 = 0.

(ρ+ δ) · (Ueic − Uuc ) = wic − b (1 − Π1) − Π1

(∑
i

ηicwic

)
,

which is what we get in equation 10 in the paper if µ = 0.

S.7.1. Wage Equation

From the Nash condition:

κ

ρ+ δ

[
wic − b (1 − Π1) · Π3 − Π2 · Π3 · Uumax − Π1 · Π3

(∑
i

ηicwic

)
+

Π2

(ρ+ Π2)

(
τc − s · phc

)]
=
pi − wic + εic
ρ+ δ + φc

Rearranging:

wic = γc0 + γc1 · pi + γc2
∑
i

ηicwic + γc3 · sphc − γc3 · τc + γc1εic,(S13)

where

γc0 =

[
κ (ρ+ δ + φc)

κ (ρ+ δ + φc) + (ρ+ δ)

]
· [(1 − Π1) Π3 · b+ Π2 · Π3U

u
max]

γc1 =

[
ρ+ δ

κ (ρ+ δ + φc) + (ρ+ δ)

]
γc2 =

[
κ (ρ+ δ + φc)

κ (ρ+ δ + φc) + (ρ+ δ)

]
· Π1 · Π3

γc3 =

[
κ (ρ+ δ + φc)

κ (ρ+ δ + φc) + (ρ+ δ)

]
· Π2

(ρ+ Π2)
.

Note that plugging in µ = 0 into equation (12) of the paper and comparing
that result to (S13) with µ1 = 0 shows that they are equivalent. Also, the claim
that the effect of

∑
i ηictwict is less in the case where we control for housing costs
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can be seen easily, since the coefficient is Π3 times the coefficient in the paper,
and Π3 < 1. Their difference is increasing in µ1.

Using the same procedure as outlined in the text of the main paper, we can
derive the following wage equation:

wic = dit +

(
γc2

1 − γc2

γc1
γ1

)
·
∑
i

ηictνit + sγc3

(
1 +

γc2
1 − γc2

)
phct + ζict,(S14)

where

dit =

[
γc0 +

γc2γc0
1 − γc2

+ γc1 · pit −
γc2γc1
1 − γc2

· p1t

]
ζict = −γc3

(
1 +

γc2
1 − γc2

)
· τct +

(
γc2

1 − γc2
γc1

)
·
∑
i

ηictεict + γc1εict

Again, taking a linear approximation under the same conditions outlined in the
main text gives:

∆wic = α̃it + α̃2 · ∆Rct + α̃3∆ERct + α̃4∆phct + ∆ξ̃ict,(S15)

where

α̃it =

[
γ1 · ∆pit −

γ2γ1

1 − γ2
· ∆p1t

]
α̃2 =

(
γc2

1 − γc2

)
α̃4 = sγ3

(
1 +

γ2

1 − γ2

)
ξ̃ict = −γ3

(
1 +

γ2

1 − γ2

)
· ∆τct +

(
γ2

1 − γ2
γ1

)
· ∆
∑
i

1

I
εict + γ1∆εict

S.7.2. Equation for housing prices

Letting Uumax = Uuc , we can write the unemployment Bellman as

ρUumax = b+ τc − s · phc + ψc ·

(∑
i

ηic · Ueic − Uuc

)
,(S16)

and substituting in for (
∑
i ηicU

e
ic − Uuc ) gives:

s · phc = b (1 − Π1) + τc + Π1 ·
∑
i

ηicwic − ρUumax.(S17)

Housing costs increase in τc, ψc and average wages.
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We can sub this directly into the wage equation obtained above (S13):

wic =γc0 + γc1 · pi + γc2
∑
i

ηicwic

+ γc3 ·

(
b (1 − Π1) + τc + Π1 ·

∑
i

ηicwic − ρUumax

)
− γc3 · τc + γc1εic

This gives back the exact same wage equation from the paper (equation 12). For
example, collecting the terms for the average wages gives the coefficient

γc2 + γc3Π1 = Λ · Π1Π3 + Λ · Π1
Π2

ρ+ Π2

= Λ · Π1

(
ρ

ρ+ Π2
+

Π2

ρ+ Π2

)
= Λ · Π1 (1)

where Λ =
[

κ(ρ+δ+φc)
κ(ρ+δ+φc)+(ρ+δ)

]
. This result shows that under perfect mobility (i.e.

Uumax = Uuc ), the direct and indirect mechanisms cannot be separately identified.

APPENDIX S.8: SELF-SELECTION INTO CITIES

As discussed in section S.2 of this appendix, worker self-selection across cities is
potential concern for our identification strategy if changes in ∆Rct are correlated
with unobserved characteristics of workers. We deal with this issue in the main
paper by implementing a selection correction procedure along the lines of Dahl
(2002). This procedure requires the inclusion of variables in our first-stage that
capture the probability of a worker with a given set of characteristics chooses to
live in his/her observed city. These terms turn out to be statistically significant
in our first-stage, which is a necessary condition for removal of any possible self-
selection bias. However, this correction does not turn out to greatly impact the
estimate of the coefficient on ∆Rct. In Table VIII we replicate Table 1 of the
main text without correcting for self-selection. As can be seen, the results are
very similar with or without the self-selection correction.

APPENDIX S.9: FIRST-STAGE REGRESSIONS

In table IX, we present the results of the first-stage of the IV estimates in
columns 4-6 from Table 1 of the main paper. The estimates indicate that both
IV1 and IV2 are strongly statistically significant predictors of ∆Rct but IV3
is not. The latter occurs because ∆Rct is constructed as a pure composition
measure. In the ∆ERct equation, IV3 serves as a strong positive predictor (as
expected) while IV1 and IV2 enter with significant and negative coefficients. The
latter outcome fits with the bargaining model since increases in wages generated
by increases in R will imply declining job creation. We explore the implications
of the model for job creation in another paper.
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APPENDIX S.10: THE REFLECTION SPECIFICATION

We note in section 2.1 that wage determination takes the form of a classic
reflection or social interaction problem. In particular, equation (10) of the main
text makes it clear that wages in one sector of a city depend upon average wages
in that city across all sectors. As emphasized in the main text, Equation (10)
implies that a change in industrial composition that initially increases average
wages in a city by 1 percent, would lead to a cumulative increase in average
wages by a factor of ( 1

1−γ2 ) percent due to the strategic complementarity of

wages. Given that α2 in Equation (16) of the paper relates to γ2 according to
α2 = γ2

1−γ2 , our estimates of α2 that are around 2.9 in Table I of the main text

suggest that γ2 should be in the range of 0.74 = ( 2.9
3.9 ). This implication of the

model can also be examined directly by estimating Equation (10) by instrumental
variables. Since the coefficients in Equation (10) depend on the employment rate,
we again take a linear approximation of (10) around the point where the εs and
Ωs are zero and then taking first differences, to get a linear equation of the form

∆ lnwict = ψ1dit + ψ2∆
∑
j

ηjct lnwjct + ψ3i∆ERct + Ũict.(S18)

where ψ2 corresponds to the γ2 in the model, and the error term corresponds
to γ1∆εict. In the case of Equation (S18), estimation by OLS would definitely
be expected to give upward biased estimates of ψ2 = γ2 since the relationship
suffers from the reflection problem. However, it can be verified that instrumen-
tal variable estimation of Equation (S18) using our previous set of instruments
should give consistent estimates under the same assumption as before; that is,
under the assumption that the common component of the εs (a city’s absolute
advantage) is independent of the past. It is worth emphasizing that the difference
between Equation (16) and (S18) pertains only to the main variable of interest.
In (S18) this variable is the average city wage, while in (25) it is a city-level
average of national wage premia.

Estimates of Equation (S18) are present in Table X. The first thing to note
in table is that, as should be expected, there is now a large and significant
difference between estimates of ψ2 (denoted by ∆wct) obtained by OLS or IV.
The OLS estimate is .86, which if translated to compare with α2 would imply an
α2 = 6.14 = .852

1−.852 . However, in this case there are no conditions for which we
should expect OLS to give consistent estimates. In contrast, when we estimate by
IV, we get an estimate of ψ2 equal approximately to .72, which implies a value for
α2 = 2.57 = .72

1−.72 , which is very close to that obtained in the main text using
a different approach. In particular, recall that the estimation of (25) by OLS
provides one means to overcome the reflection problem by focusing on national-
level wage premia, while the IV estimation of (S18) provides a conceptually quite
different approach.
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TABLE I

Basic Results by Industry Aggregates

OLS IV eta

(1) (2) (3) (4) (5)

Agriculture 2.80∗ 3.13∗ 2.85∗ 2.97∗ 0.015∗

(0.60) (1.15) (1.09) (0.82) (0.0016)

Mining 2.10∗ 1.16 1.00 0.90 0.014∗

(0.53) (3.51) (2.15) (1.75) (0.0024)

Construction 2.97∗ 3.77∗ 2.82∗ 3.15∗ 0.059∗

(0.25) (0.47) (0.40) (0.35) (0.0014)

Durable Man 2.68∗ 2.50∗ 3.07∗ 2.90∗ 0.13∗

(0.21) (0.39) (0.31) (0.30) (0.00050)

Non-Durable 2.61∗ 2.38∗ 2.57∗ 2.48∗ 0.079∗

(0.26) (0.54) (0.52) (0.50) (0.00056)

Transport 2.23∗ 2.44∗ 2.51∗ 2.49∗ 0.042∗

(0.27) (0.55) (0.47) (0.46) (0.00078)

Communications 1.52∗ 1.67∗ 2.47∗ 2.23∗ 0.014∗

(0.38) (0.61) (0.49) (0.45) (0.0015)

Utilities 2.15∗ 2.30∗ 2.09∗ 2.16∗ 0.015∗

(0.25) (0.40) (0.39) (0.36) (0.0011)

Wholesale 2.74∗ 2.54∗ 2.68∗ 2.63∗ 0.043∗

(0.27) (0.49) (0.46) (0.44) (0.00070)

Retail 2.90∗ 3.47∗ 3.34∗ 3.38∗ 0.15∗

(0.26) (0.47) (0.44) (0.41) (0.00047)

F.I.R.E 2.10∗ 3.35∗ 3.58∗ 3.50∗ 0.071∗

(0.28) (0.58) (0.55) (0.51) (0.00081)

Business 3.36∗ 3.22∗ 4.09∗ 3.82∗ 0.064∗

(0.35) (0.63) (0.53) (0.49) (0.00082)

Personal 3.08∗ 3.81∗ 3.48∗ 3.62∗ 0.025∗

(0.38) (0.64) (0.65) (0.56) (0.00091)

Entertainment 2.15∗ 2.47∗ 3.12∗ 2.91∗ 0.018∗

(0.46) (0.96) (0.86) (0.82) (0.0012)

Professional 1.97∗ 2.57∗ 2.42∗ 2.47∗ 0.24∗

(0.19) (0.34) (0.30) (0.27) (0.00059)

Public Admin. 1.44∗ 1.90∗ 1.96∗ 1.94∗ 0.074∗

(0.21) (0.48) (0.44) (0.42) (0.00088)

Observations 33984 33984 33984 33984 33984
R2 0.52 .
IV Set IV1,IV3 IV2,IV3 IV1,IV2,IV3
Over-id. p-val . . 0.13
1st col. ave. 2.56
2nd col. ave. 2.92
3rd col. ave. 2.99
4th col. ave. 2.97

Notes: Standard errors, in parentheses, are clustered at the city-year level. (∗)
denotes significance at the 5% level. All models estimated on a sample of 152
U.S cities using Census and ACS data for 1970-2007. The dependent variable
is the decadal change in regression adjusted city-industry wages.
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TABLE II

Allowing δ to vary by industry

OLS IV δi ηi

(1) (2) (3) (4) (5) (6)

Agriculture 3.01∗ 2.71∗ 2.75∗ 2.73∗ 0.18∗ 0.015∗

(0.58) (1.14) (1.04) (0.87) (5.3e-19) (0.0016)

Mining 1.87∗ 2.44 1.64 0.84 0.11∗ 0.014∗

(0.54) (4.28) (2.38) (1.61) (7.9e-19) (0.0024)

Construction 3.02∗ 3.46∗ 2.91∗ 3.21∗ 0.17∗ 0.059∗

(0.24) (0.39) (0.48) (0.36) (4.9e-19) (0.0014)

Durable Man 2.70∗ 2.17∗ 3.19∗ 2.71∗ 0.11∗ 0.13∗

(0.22) (0.39) (0.37) (0.34) (1.7e-19) (0.00050)

Non-Durable 2.63∗ 1.97∗ 2.33∗ 1.95∗ 0.12∗ 0.079∗

(0.26) (0.60) (0.68) (0.67) (1.9e-19) (0.00056)

Transport 2.27∗ 2.28∗ 2.58∗ 2.43∗ 0.14∗ 0.042∗

(0.28) (0.53) (0.57) (0.51) (2.6e-19) (0.00078)

Communications 1.53∗ 1.55∗ 2.69∗ 2.16∗ 0.089∗ 0.014∗

(0.36) (0.56) (0.52) (0.46) (5.2e-19) (0.0015)

Utilities 2.18∗ 2.20∗ 2.12∗ 2.16∗ 0.080∗ 0.015∗

(0.27) (0.41) (0.44) (0.40) (3.7e-19) (0.0011)

Wholesale 2.72∗ 2.33∗ 2.74∗ 2.50∗ 0.15∗ 0.043∗

(0.28) (0.48) (0.54) (0.47) (2.3e-19) (0.00070)

Retail 3.01∗ 3.30∗ 3.55∗ 3.42∗ 0.22∗ 0.15∗

(0.25) (0.42) (0.51) (0.43) (1.6e-19) (0.00047)

F.I.R.E 2.06∗ 3.15∗ 4.11∗ 3.63∗ 0.16∗ 0.071∗

(0.30) (0.60) (0.63) (0.56) (2.7e-19) (0.00081)

Business 3.51∗ 3.15∗ 4.10∗ 3.69∗ 0.24∗ 0.064∗

(0.34) (0.58) (0.58) (0.54) (2.8e-19) (0.00082)

Personal 3.13∗ 3.52∗ 3.64∗ 3.56∗ 0.23∗ 0.025∗

(0.37) (0.60) (0.78) (0.59) (3.1e-19) (0.00091)

Entertainment 2.16∗ 2.92∗ 3.00∗ 2.96∗ 0.22∗ 0.018∗

(0.48) (0.90) (1.01) (0.91) (4.0e-19) (0.0012)

Professional 2.02∗ 2.52∗ 2.55∗ 2.53∗ 0.14∗ 0.24∗

(0.18) (0.29) (0.32) (0.27) (2.0e-19) (0.00059)

Public Admin. 1.41∗ 1.87∗ 2.30∗ 2.06∗ 0.097∗ 0.074∗

(0.21) (0.47) (0.50) (0.44) (3.0e-19) (0.00088)

Observations 33984 33984 33984 33984 33984 33984
R2 0.52 . .
IV Set IV1,IV3 IV2,IV3 IV1,IV2,IV3
Over-id. p-val . . 0.017
1st col. ave. 2.60
2nd col. ave. 2.77
3rd col. ave. 3.14
4th col. ave. 2.93

Notes: Standard errors, in parentheses, are clustered at the city-year level. (∗) denotes
significance at the 5% level. All models estimated on a sample of 152 U.S cities using Census
and ACS data for 1970-2007. The dependent variable is the decadal change in regression
adjusted city-industry wages.
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TABLE III

Robustness: Allowing the Returns to Education to vary by Industry

OLS IV

(1) (2) (3) (4) (5) (6)

∆Rct 2.25∗ 2.75∗ 2.65∗ 2.68∗

(0.17) (0.35) (0.29) (0.28)∑
i νit−1(ηict − ηict−1) 1.94∗ 2.79∗

(0.19) (0.41)∑
i ηict(νit − νit−1) 2.70∗ 2.57∗

(0.37) (0.37)

∆ERct 0.38∗ 0.43∗ 0.62 0.64 0.74 0.70
(0.079) (0.078) (0.47) (0.46) (0.48) (0.45)

Year × Ind. Yes Yes Yes Yes Yes Yes

Observations 33984 33984 33984 33984 33984 33984
R2 0.52 0.52
Instrument Set IV1,IV2,IV3 IV1,IV3 IV2,IV3 IV1,IV2,IV3
F-Stats:

∆RWct 73.94
∆RBct 638.04
∆Rct 65.74 170.47 231.55
∆ERct 9.73 9.92 14.06 9.73

AP p-val:
∆RWct 0.00
∆RBct 0.00
∆Rct 0.00 0.00 0.00
∆ERct 0.00 0.00 0.00 0.00

Over-id. p-val . . . 0.70

Notes: Standard errors, in parentheses, are clustered at the city-year level. (∗) denotes significance at the 5% level. All models estimated
on a sample of 152 U.S cities using Census and ACS data for 1970-2007. The dependent variable is the decadal change in regression
adjusted city-industry wages.
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TABLE V

Proportionate Differences Between Estimated and Mean Rent Effects for Various
Parameter Values

δ σ ρ κ θ Difference

0.15 0.50 0.05 1.0 20 0.0028
0.05 0.50 0.05 1.0 20 0.32
0.25 0.50 0.05 1.0 20 0.020
0.15 0.25 0.05 1.0 20 0.30
0.15 0.75 0.05 1.0 20 -1.15
0.15 0.50 0.03 1.0 20 0.017
0.15 0.50 0.07 1.0 20 0.0039
0.15 0.50 0.05 0.5 20 -0.019
0.15 0.50 0.05 1.5 20 0.0090
0.15 0.50 0.05 1.0 1 -0.93
0.15 0.50 0.05 1.0 10 -0.033
0.15 0.50 0.05 1.0 40 0.020
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TABLE VI

Basic Results by Time Period

1970-1990 1980-2000 1990-2007

(1) (2) (3) (4) (5) (6)

∆Rct 2.67∗ 3.26∗ 2.63∗ 2.94∗ 2.73∗ 2.98∗

(0.23) (0.39) (0.20) (0.41) (0.24) (0.43)

∆ERct 0.46∗ 1.08 0.41∗ 0.73 0.34∗ -2.19
(0.15) (0.58) (0.096) (0.55) (0.088) (1.87)

Observations 17110 17110 28109 28109 27763 27763
R2 0.35 0.57 0.46
Instrument Set IV1,IV2,IV3 IV1,IV2,IV3 IV1,IV2,IV3
F-Stats:

∆Rct 192.3 213.0 235.8
∆ERct 10.7 14.2 1.19

AP p-val:
∆Rct 0 0 0
∆ERct 0 0 0.17

Over-id. p-val 0.33 0.74 0.071

Notes: Standard errors, in parentheses, are clustered at the city-year level. (∗) denotes significance at the
5% level. All models estimated on a sample of 152 U.S cities using Census and ACS data by indicated time
period. The dependent variable is the decadal change in regression adjusted city-industry wages.

TABLE VII

Basic Results by Decade: 1970-2007

1970-1980 1980-1990 1990-2000 2000-2007

(1) (2) (3) (4) (5) (6) (7) (8)

∆Rct 2.03∗ 2.81∗ 3.26∗ 3.17∗ 2.33∗ -1.37 1.38∗ 2.26∗

(0.25) (0.39) (0.37) (0.71) (0.40) (2.31) (0.41) (0.92)

∆ERct 0.63∗ 1.55∗ 0.18 -4.31 0.35∗ -0.058 0.53∗ 0.52
(0.15) (0.34) (0.25) (6.61) (0.11) (0.82) (0.15) (0.61)

Observations 6221 6221 10889 10889 10999 10999 5875 5875
R2 0.34 0.29 0.16 0.21
Instrument Set IV1,IV2,IV3 IV1,IV2,IV3 IV1,IV2,IV3 IV1,IV2,IV3
F-Stats:

∆Rct 87.9 196.5 10.3 64.8
∆ERct 15.8 0.40 9.31 9.35

AP p-val:
∆Rct 0 0 0.012 0
∆ERct 0 0.69 0.044 0.0079

Over-id. p-val 0.80 0.072 0.079 0.014

Notes: Standard errors are in parentheses. (∗) denotes significance at the 5% level. All models estimated on a sample of 152 U.S cities
using Census and ACS data by decade. The dependent variable is the decadal change in regression adjusted city-industry wages.
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TABLE VIII

Basic Results: Without Selection Correction

OLS IV

(1) (2) (3) (4) (5) (6)

∆Rct 2.45∗ 2.80∗ 2.87∗ 2.85∗

(0.18) (0.34) (0.30) (0.29)

∆RWct 2.10∗ 2.77∗

(0.20) (0.40)

∆RBct 2.94∗ 2.93∗

(0.40) (0.42)

∆ERct 0.43∗ 0.48∗ 0.70 0.68 0.61 0.64
(0.076) (0.075) (0.44) (0.42) (0.45) (0.42)

Year × Ind. Yes Yes Yes Yes Yes Yes

Observations 34375 34375 34375 34375 34375 34375
R2 0.49 0.49
Instrument Set IV1,IV2,IV3 IV1,IV3 IV2,IV3 IV1,IV2,IV3
F-Stats:

∆RWct 82.63
∆RBct 588.97
∆Rct 70.56 160.74 224.38
∆ERct 11.22 10.70 16.12 11.22

AP p-val:
∆RWct 0.00
∆RBct 0.00
∆Rct 0.00 0.00 0.00
∆ERct 0.00 0.00 0.00 0.00

Over-id. p-val . . . 0.79

Notes: Standard errors, in parentheses, are clustered at the city-year level. (∗) denotes significance at the
5% level. All models estimated on a sample of 152 U.S cities using Census and ACS data for 1970-2007. The
dependent variable is the decadal change in regression adjusted city-industry wages.

TABLE IX

Basic Results: First Stage

Col4 Col5 Col6

(1) (2) (3) (4) (5) (6)
∆Rct ∆ERct ∆Rct ∆ERct ∆Rct ∆ERct

IV 1 1.376∗ -0.678∗ 1.042∗ -0.528∗

(0.118) (0.238) (0.0946) (0.237)

IV 2 1.137∗ -0.516∗ 0.998∗ -0.445∗

(0.0721) (0.161) (0.0685) (0.164)

IV 3 -0.0332 0.160∗ 0.0810∗ 0.103∗ -0.0114 0.150∗

(0.0196) (0.0350) (0.01000) (0.0233) (0.0115) (0.0336)

Observations 33984 33984 33984 33984 33984 33984
R2

Standard errors in parentheses
Table for First Stage
∗ p < 0.05
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TABLE X

Reflection Specificaton

OLS IV

(1) (2) (3) (4)

∆wct 0.86∗ 0.69∗ 0.74∗ 0.72∗

(0.013) (0.033) (0.030) (0.028)

∆ERct 0.069∗ 0.11 -0.11 -0.022
(0.029) (0.16) (0.20) (0.16)

Year × Ind. Yes Yes Yes Yes

Observations 33984 33984 33984 33984
R2 0.58
Instrument Set
F-Stats:

∆wct 45.18 74.63 69.42
∆ERct 10.41 15.78 10.99

AP p-val:
∆Wct 0.00 0.00 0.00
∆ERct 0.00 0.00 0.00

Over-id. p-val . . 0.10

Notes: Standard errors, in parentheses, are clustered at the city-year level.
(∗) denotes significance at the 5% level. All models estimated on a sample
of 152 U.S cities using Census and ACS data for 1970-2007. The dependent
variable is the decadal change in regression adjusted city-industry wages.
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