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Abstract. We construct a model in which conflict between two agents prevents them

from aggregating any of their private information if they must make a collective decision

without delay. If the two agents vote repeatedly until they agree, in equilibrium they are

increasingly more willing to vote their private information after each disagreement, and

information is perfectly aggregated within a finite number of rounds. As delay becomes

less costly, the two agents are less willing to vote their private information, and information

aggregation takes longer. Even when the cost of delay becomes arbitrarily small, the ex

ante welfare of the two agents is higher than when the decision is made without delay for

moderate degrees of conflict.
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1. Introduction

Individuals may disagree with one another on a joint decision because they have conflicting

preferences or because they have different private information. Often it is difficult to

distinguish between these two types of disagreement because divergent preferences provide

incentives for individuals to distort their information. Even though they may share a

common interest in some states had the individuals known each other’s private information,

the strategic distortion of information can still cause disagreement in these states. When

disagreements lead to delay in making decisions, it may seem that any decision is better

than no decision and costly delay. We argue in this paper, however, that institutionalized

delay in the decision making process can serve a useful purpose. In the context of a

stylized model of repeated voting, the prospect of costly delay induces the parties to be

more forthcoming with their private information. This enhances information aggregation

and potentially improves the welfare of the agents relative to the case when the decision

has to be made immediately. Even when the delay cost is arbitrarily small, there can be

a significant welfare gain.

The constructive role of delay in strategic information aggregation is illustrated in

the simplest environment that captures the distinction between preference-driven and

information-driven disagreements. Although highly stylized, its only essential feature is

that there exist states of nature in which agents would disagree when deciding on the basis

on their own private information, but would agree if all information were public. Indeed,

absent such states, either the agents continue to disagree after sharing their information,

in which case there is no room for mutually beneficial information aggregation and delay

can only be harmful, or the agents already agree based on their private information, in

which case there is no reason to expect delay to occur at all. The particular configura-

tion of preferences and information structures that captures the essential feature can be

illustrated with the following example. Imagine that two managers of a corporation, of

marketing and R&D divisions, must jointly decide how to enter an emerging market. The

marketing division’s strategy focuses on pushing existing products through an advertising

campaign, and the R&D division’s strategy mainly involves developing a new product that

targets the emerging market. For some types of the market, one strategy is definitely
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more effective than the other, in which case the two managers both prefer the more ef-

fective strategy, but there are also other types of the market for which the two strategies

are equally effective, in which case each manager prefers the strategy of his own division.

Suppose that the marketing manager can distinguish the states for which the advertising

strategy is more effective from the other states, and similarly the R&D manager can tell

the states for which the product development strategy is more effective from the other

states. In this environment, a marketing manager who knows that advertising is the more

effective strategy has the incentive to convey this information to the R&D manager, who

would benefit from such information. The problem is that a marketing manager with the

opposite information also has the incentive to mislead the R&D manager into believing

otherwise, provided his information indicates that it is sufficiently likely that two strate-

gies are equally effective. When the product development strategy is in fact more effective,

we have a situation in which the marketing manager disagrees with the R&D manager

based on his own information but would agree with the latter if perfectly informed. This

is the kind of environment we study, in which delay can potentially enhance information

aggregation and improve welfare. In the above story, if instead the marketing manager can

distinguish the states in which the rival strategy is more effective from the other states,

and vice versa for the R&D manager, then either the managers immediately agree or they

would never do. In either case, there is no information aggregation role for delay.

A similar configuration of preferences and private information arises naturally in other

situations. In standard adoption games where competing firms are biased toward their

own proprietary standard but would prefer a technologically superior competing standard,

there is the same information aggregation difficulty if each firm knows the quality of its

own standard but not that of the competitor’s. In a recruiting committee, members are

often better informed about the quality of the candidates in their own field of expertise and

biased toward the same candidates, but they may still want to hire the the most promising

one across the field.

In Section 2 we introduce a highly stylized framework of collective decision-making

to analyze delay in information aggregation. There is a single conflict state in which the

two agents prefer different alternatives, and two equally likely common interest states,
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one for each alternative, when their preferences coincide. Ex ante, each agent favors a

different alternative, and the degree of conflict between the two agents is captured by

the prior probability of the conflict state. In each common interest state, the agent who

ex ante favors the mutually preferred alternative is perfectly informed, while the other

agent is uninformed and knows only that the state is not the other common interest state.

In the conflict state, both agents are uninformed and each knows only that his ex ante

favorite alternative is not mutually preferred. The information structure and preferences

are such that there is no incentive compatible outcome that Pareto dominates a coin flip

between the two alternatives when the degree of conflict is high. Intuitively, to make

the efficient decision, the informed agent must be given the incentive to persist with his

favorite alternative while the uninformed must be discouraged from doing the same. This

would be straightforward to accomplish if the two agents could commit to making side

transfers between themselves; under the standard quasi-linear assumption on the total

payoffs, it would suffice to choose an appropriate transfer from the agent that persists with

his favorite alternative to the other agent. In many situations, however, transfer schemes

are unrealistic, and it is in these situations that institutionalized delay in making the

decision is a natural mechanism to mitigate the incentive problem in strategic information

aggregation.

In Section 3 we introduce a game of repeated voting until the two sides agree, with

each round of disagreement imposing an additive delay cost on both players. In the unique

symmetric equilibrium of the repeated voting game, the informed type votes his ex ante

favorite alternative in every round, while the uninformed type may randomize between the

two alternatives. Even though the two players can in principle disagree indefinitely, we

find that the information of the two sides is perfectly aggregated within a finite number of

rounds. Further, uninformed types make increasingly large “concessions” by voting their

ex ante favorite with a smaller probability after each round of disagreement, until either an

agreement on the mutually preferred alternative is reached, or the negotiation breaks down

because the state is revealed to be the conflict state. A decrease in the per-round delay

cost causes the uninformed types to be less willing to make concessions, but increases their

equilibrium payoff. By taking the limit as the delay cost goes to zero, we show that the
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ex ante equilibrium payoff of each agent in the repeated voting game is greater than what

they would expect from an immediate coin flip when the degree of conflict is moderate.

The repeated voting game assumes that the agents cannot commit to a deadline

for making the decision at the ex ante stage before they learn their types. If they can,

an interesting “deadline play” by the uninformed emerges: when there are sufficiently

few rounds remaining, the uninformed will stop concessions altogether, and persist with

probability one until the last round when they compromise by switching to their opponent’s

favorite alternative. This deadline play has interesting implications. We show that welfare

gains for moderate degrees of conflict relative to an immediate coin flip are robust with

respect to the presence of a deadline. However, for a fixed deadline, this welfare gain

disappears as the per-round delay cost vanishes, because the total possible payoff loss from

delay goes to zero under a fixed deadline. If we instead interpret a finite deadline as the two

agents committing to a fixed total of payoff loss from delay, so that the number of rounds

becomes arbitrary large as the per-round delay cost decreases, then for moderate degrees of

conflict an appropriate deadline not only leads to a strict improvement of the ex ante payoff

over an immediate coin flip, but also does better than the repeated voting game without a

deadline, even when the per-round delay cost goes to zero. The constructive role played by

delay in improving the quality of information aggregation and welfare is discussed further

in Section 4, where we also comment on how to extend the current framework to analyze

the design of negotiation deadlines, and to study environments with more than two agents

such as voting in elections.

The repeated voting game in this paper introduces the novel feature of gradual infor-

mation aggregation to models of repeated bargaining and negotiation. In a pure bargaining

model (Stahl 1972; Rubinstein 1982), the trade off between getting a bigger share of the

pie but at a later date helps pin down a unique solution to the bargaining problem which

is plagued by multiple equilibria in a one-shot model, even though delay does not occur

in equilibrium. There are numerous extensions to the Stahl-Rubinstein model that can

generate delay as part of the equilibrium outcome.1 One strand of this literature relies

1 See, for example, Admati and Perry (1987), Chatterjee and Samuelson (1987), Cho (1990), Cramton
(1992), and Kennan and Wilson (1993). There are also bargaining models that generate equilibrium delay
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on asymmetric information about the size of the pie that is being divided. In a model of

strikes, for example, a firm knows its own profitability but the firm’s unionized workforce

does not. Strike or delay is a signaling device in the sense that the willingness to endure a

longer work stoppage can credibly signal the firm’s low profitability and help it to arrive

at a more favorable wage bargain. These bargaining models are private-value problems, as

each agent’s gains from trade at a given price depend only on his own private information.

We instead have a common-value problem: disagreement over the alternatives is not a

pure bargaining issue, because agents in our model would sometimes agree on which is the

best alternative had they known the true state. Put differently, voting outcomes in our

setup determine the size as well as the division of the pie. We show that delay can play a

constructive role in overcoming disagreements that arise from strategic considerations and

improving the ex ante welfare of all agents. Avery and Zemsky (1994) argue that if players

are allowed to wait for new information before accepting or rejecting offers, then there is

an option value to delay. In our model, no new exogenous information arrives during the

voting process. However, the way agents vote provides endogenous information that allows

them to update their beliefs and reach better decisions.

Our paper is also related to the literature on debates (Austen-Smith 1990; Austen-

Smith and Feddersen 2006; Ottaviani and Sorensen 2001) and voting (Li, Rosen and Suen

2001) in committees. Models of debate typically analyze repeated information transmission

as cheap talk, while we emphasize the role of delay cost in multiple rounds of voting.2 Our

setup is the closest to Li, Rosen and Suen (2001). The focus there is on the impossibility

of efficient information aggregation. Here, we skirt issues such as quality of private signals

through commitment to not accepting offers poorer than past rejected ones (Freshtman and Seidmann
1993; Li 2007), simultaneous offers (Sakovics 1993), multi-lateral negotiations (Cai 2000), and excessive
optimism (Yildiz 2004). More closely related to the present paper are recent models of bargaining with
interdependent values. See Deneckere and Liang (2006), and Fuchs and Skrzypacz (2010).

2 Coughlan (2000) investigates conditions under which jurors vote their signals and aggregate their
information efficiently in a model where a mistrial leads to a retrial by a new independent jury. He does
not consider the issues of delay that are the focus of the present paper. Farrell (1987) introduces a model
in which repeated cheap talk helps players coordinate to arrive at a correlated equilibrium of a battle-of-
the-sexes game. There is no issue of efficient information aggregation in that model. More recently, in a
dynamic cheap talk model with multiple senders and a receiver who may choose to wait, Eso and Fong
(2007) show that when the senders are perfectly informed there is an equilibrium with full revelation with
no delay. When the senders are imperfectly informed, Eso and Fong establish conditions under which there
exist equilibria converging to full revelation with no delay as the noises in the senders’ signals disappear.
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and the trade-off between making the two different types of errors, and focus instead on

how costly delay can help improve the quality of decisions and increase welfare.

2. The Model

Two players, called Left and Right, have to make a joint choice between two alter-

natives, l and r. There are three possible states of the world: L, M , and R. We assume

that the prior probability of state L and state R is the same, given by π < 1/2. The

relevant payoffs for the two players are summarized in the following table:

L M R

l (1, 1) (1, 1− 2λ) (1− 2λ, 1− 2λ)

r (1− 2λ, 1− 2λ) (1− 2λ, 1) (1, 1)

In each cell of this table, the first entry is the payoff to Left and the second is the payoff

to Right. We normalize the payoff from making the preferred decision to 1 and let the

payoff from making the less preferred decision be 1− 2λ. The parameter λ > 0 is the loss

from making the wrong decision relative to a coin toss. In state L both players prefer l to

r, and in state R both prefer r to l. The two players’ preferences are different when the

state is M : Left prefers l while Right prefers r. In this model there are elements of both

common interest and conflict between these two players. Note that Left ex ante favors l,

while Right’s ex ante favorite alternative is r.

The information structure is such that Left is able to distinguish whether the state is

L or not, while Right is able to distinguish whether the state is R or not. Such information

is private and unverifiable. When Left knows that the state is L, or when Right knows

that the state is R, we say they are “informed;” otherwise, we say they are “uninformed.”3

3 It is not essential for our paper that the informed types are perfectly sure that the state is a common-
interest state. The logic of our model remains the same as long as an informed and an uninformed type
favor different alternatives on the basis on their private information only, but would recognize a mutually
preferred alternative when information is shared. For example, suppose that each player observes a binary
signal for or against his ex ante favorite alternative, and prefers his ex ante favorite if and only if there
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Without information aggregation, the preference between l and r of an uninformed Left

depends on the relative likelihood of state M versus state R. Let γ denote his belief that

the state is M , given by

γ =
1− 2π

1− π
.

We note that γ can be interpreted as the ex ante degree of conflict. When γ is high,

an uninformed player perceives that his opponent is likely to have different preferences

regarding the correct decision to be chosen.

2.1. An impossibility result

As a useful welfare benchmark, let us consider a single round of simultaneous voting game.

Imagine that each player votes l or r, with the agreed alternative implemented immediately

and any disagreement leading to an immediate fair coin toss between l and r and a payoff of

1−λ to each player. It is a dominant strategy for an informed player to vote for his ex ante

favorite alternative. For uninformed Left or Right, the optimal strategy depends on the

degree of conflict. If γ < 1/2, then the dominant strategy for the uninformed players is to

vote against their favorite decisions. In states L and R, such equilibrium voting strategies

lead to the mutually preferred alternative being chosen, while in state M , the decision is

determined by flipping a coin, which is again Pareto efficient. In contrast, if γ > 1/2, then

it is a dominant strategy for each uninformed player to vote for his ex ante favorite. The

equilibrium outcome is that the two players disagree in every state, and the decision is

always determined by flipping a coin, with a payoff of 1− λ.

For future references, denote the uninformed player’s probability of voting for his ex

ante favorite alternative in the symmetric equilibrium of the benchmark game by x0(γ),

which is given by

x0(γ)





= 0 if γ ∈ [0, 1/2),

∈ [0, 1] if γ = 1/2,

= 1 if γ ∈ (1/2, 1]

(1)

is at least one signal for it. Then, a player who receives a private signal for his ex ante favorite would be
similar to an informed type in our setup, while a player who receives a signal against his ex ante favorite
would be an uninformed type.
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where γ is the belief of the uninformed. Note that when γ = 1/2, there is a continuum of

equilibria, a feature that highlights the discontinuity at γ = 1/2 in information aggregation

in one-round voting.4 Let U0(γ) be the equilibrium payoff to the uninformed types, given

by

U0(γ) =





1− λγ if γ ∈ [0, 1/2),

∈ [1− λ, 1− λ/2] if γ = 1/2,

1− λ if γ ∈ (1/2, 1].

(2)

Let V 0(γ) be the equilibrium payoff to the informed types, which depends on the belief γ

of the uninformed and is given by

V 0(γ) =





1 if γ ∈ [0, 1/2),

∈ [1− λ, 1] if γ = 1/2,

1− λ if γ ∈ (1/2, 1].

Note that U0(1) = V 0(1) and U0(γ) ≤ V 0(γ) for all γ.

The result that information aggregation is impossible for γ > 1/2 is a robust feature

of our configuration of information structure and preferences. Indeed, this configuration

is intentionally chosen to yield a stronger result that there is no incentive compatible out-

come that Pareto dominates a coin toss when γ > 1/2. To see this, we apply the revelation

principle and consider any direct mechanism that satisfies the incentive compatibility con-

straints for truthful reporting of private information. Since in a truth-telling equilibrium

the true state can be recovered from the reports submitted by the two players, we can write

qR, qM , and qL as the probabilities of implementing alternative r when the true states are

R, M , and L, respectively. Finally, let q̃ be the probability of implementing r when the

reports are inconsistent, that is, when both report that they are informed. The incentive

constraints for, respectively, the informed Right and the informed Left can be written

as:
qR + (1− qR)(1− 2λ) ≥ qM + (1− qM )(1− 2λ),

qL(1− 2λ) + (1− qL) ≥ qM (1− 2λ) + (1− qM ).

4 If each player pays an additional penalty when the game ends in a disagreement, the continuum of
equilibria at 1/2 is replaced by an interval of beliefs of the uninformed with each belief corresponding to a
unique equilibrium probability of persisting by the uninformed. Our results in this paper can be extended
to this case without any qualitative change.

8



Those for the uninformed Right and the uninformed Left are similarly given by:

γ(qM + (1− qM )(1− 2λ)) + (1− γ)(qL(1− 2λ) + (1− qL))

≥ γ(qR + (1− qR)(1− 2λ)) + (1− γ)(q̃(1− 2λ) + (1− q̃)),

γ(qM (1− 2λ) + (1− qM )) + (1− γ)(qR + (1− qR)(1− 2λ))

≥ γ(qL(1− 2λ) + (1− qL)) + (1− γ)(q̃ + (1− q̃)(1− 2λ)).

The first two incentive constraints imply that qR ≥ qM and qM ≥ qL; the last two imply

that (1− γ)(q̃ − qL) ≥ γ(qR − qM ) and (1− γ)(qR − q̃) ≥ γ(qM − qL), and thus

(1− γ)(qR − qL) ≥ γ(qR − qL).

The above is inconsistent with γ > 1/2 unless qR − qL = 0. It follows that qR = qM = qL

when γ > 1/2 in any incentive compatible outcome.5 Since the two players are ex ante

symmetric, it is natural to focus on the outcome of qR = qM = qL = 1/2, which is

equivalent to a fair coin toss. The equilibrium payoff of 1−λ in the one-round voting game

is a natural welfare benchmark for comparison with the games that allow delay in Section

3 when γ > 1/2.

2.2. Delay mechanisms

The impossibility of information aggregation when γ > 1/2 assumes that there are no

side transfers between the two players. It is straightforward to show that this incentive

problem in strategic information aggregation can be overcome if the two players can commit

to making side transfers between themselves. Suppose that each player’s final payoff is

simply the sum of the payoff from the decision and the transfer he receives. Consider a

symmetric mechanism where each player chooses between his favorite alternative and the

opponent’s favorite, and if he chooses the former, he makes a fixed payment of τ to his

opponent. If the two players agree then the agreed decision is implemented; otherwise the

5 This result does not depend on the symmetry assumption that the probabilities of the two agreement
states are the same. No information aggregation is possible if both probabilities are less than the prior
probability of state M . In the present model of strategic information aggregation, the signal structure of
each player is partitional and binary. This feature is responsible for the result that information aggregation
is either ex post efficient, or impossible. In a more general model, ex post inefficiency does not necessarily
take the form of impossibility of information aggregation. See Li, Rosen and Suen (2001).
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decision is made by a coin flip. For this mechanism to implement the efficient decision, we

need τ to be large enough such that the uninformed Left weakly prefers to concede to his

opponent’s favorite alternative:

γ(1− λ) + (1− γ)(1 + τ) ≥ γ(1− τ) + (1− γ)(1− λ).

At the same time, we need τ to be small enough such that the informed Left weakly

prefers to persist with his favorite alternative:

1− τ ≥ 1− λ.

It is easy to see that any τ between (2γ − 1)λ and λ will do.

In situations where side transfers are unrealistic, costly delay is a natural mechanism

that plays a similar role of providing the incentive for the informed players to persist with

their favorite alternative and at the same time discouraging the uninformed from doing

the same. This is one of the main points of the present paper, made through analyzing the

specific game of repeated voting until an agreement. To motivate this game, we note that

another implicit assumption behind the impossibility of information aggregation is that the

choice between the two alternative must be made without delay. It is not difficult to see

that efficient information aggregation can be achieved regardless of γ if a sufficiently large

payoff loss can be imposed on both players when their reports are inconsistent. Consider a

symmetric mechanism where each player chooses between his favorite alternative and the

opponent’s favorite. If the two players agree then the agreed decision is implemented; if

both players concede to their opponent’s favorite alternative then the decision is made by a

coin flip; and finally, if both players persist with their own favorite then again the decision

is made by a coin flip but only after each makes a payment of ∆ to a third party. One can

alternatively interpret the payment ∆ to the third party as representing the payoff loss

due to a delay in flipping the coin. This payment should be sufficiently large to make the

uninformed Left weakly prefer to concede than to persist:

γ(1− λ) + (1− γ) ≥ γ + (1− γ)(1− λ−∆).

Since the informed Left has no incentive to concede regardless of ∆, any value of ∆

satisfying the above inequality ensures that the efficient decision is made. Furthermore, in
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equilibrium the payoff loss ∆ is never incurred by the players, so the first best outcome is

attained.

One unrealistic feature of the above delay mechanism is that it treats two kinds of

disagreement differently: the delay penalty is imposed only after a “regular” disagreement

when both players persist with their favorite alternative, but not after a “reverse” dis-

agreement when both players concede to their opponent’s favorite. In the situations we

are interested in, it is more natural that any disagreement between the two players, regard-

less of whether it is regular or reverse, leads to delay and payoff loss. We are then led to

consider an anonymous, symmetric delay mechanism, which differs from the one just ana-

lyzed in that a reverse disagreement also leads to a penalty of ∆ on both players and then

a coin flip. We claim that ∆ can be chosen appropriately so that there is an equilibrium

under this anonymous mechanism in which the uninformed players randomize between

persisting with their own favorite alternative and conceding to their opponent’s alterna-

tive, and further, the first best outcome can be approximated when γ is just above 1/2.

Let x ∈ (0, 1) be the probability that uninformed Right persists with r. For uninformed

Left to be indifferent between persisting with l and conceding to r, we need

γ(x(1−λ−∆)+(1−x))+(1−γ)(1−λ−∆) = γ(x(1−2λ)+(1−x)(1−λ−∆))+(1−γ).

It is easy to see that for any γ > 1/2, if ∆ > (2γ − 1)λ, the indifference condition implies

a unique value for x ∈ (0, 1), given by

x =
(2γ − 1)(λ + ∆)

2γ∆
.

Note this indifference condition implies that informed Left strictly prefers persisting to

conceding:

x(1− λ−∆) + (1− x) > x(1− 2λ) + (1− x)(1− λ−∆).

This verifies that for any ∆ > (2γ − 1)λ, it is an equilibrium for the informed players to

persist with favorite alternative and for the uninformed players to persist with probability

x determined by the indifference condition and concede with probability 1 − x. Further,
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since the lower bound on ∆ and the value of x both go to 0 as γ goes to 1/2, the equilibrium

outcome approaches the first best.6

Although the above delay mechanisms perform quite well in overcoming or mitigating

the incentive problem in information aggregation, they rely on the critical assumption that

the players can commit to paying the delay penalty ∆ in whole. In the applications we

are interested in, the cost of delay reflects the time and expenses of setting up another

round of meeting and negotiations, and as such, is at least to some extent divisible. Then,

the assumption that in the event of a disagreement the players can commit to paying

the delay penalty in whole amounts to the commitment to not renegotiating with each

other before the coin flip. In our view, it is unrealistic to assume that players can have

this much commitment power. More importantly, by moving away from such assumption,

we are able to study the role of delay in strategic information aggregation in a natural

dynamic environment. In the next section, we first consider the game of repeated voting

until agreement, with each player incurring an additive cost of delay δ > 0 between two

adjacent rounds of voting.7 In the equilibrium analysis we hold δ as fixed; thus, even though

the two players cannot commit to not voting again in the next round, they are prevented

from starting the renegotiation immediately after casting each round of votes. In the

comparative statics analysis, we consider the effects of δ becoming arbitrarily small. This

has the interpretation of assuming that the two players cannot commit to not renegotiating

very frequently. Finally, we introduce a game of repeated voting with a deadline. The

interpretation is that the players can commit to ending the process with a coin flip within

a maximum number of rounds, even though they cannot commit to not renegotiating in

the next round after a disagreement before the deadline.

6 For any γ > 1/2, we can solve for the value of ∆ that maximizes the ex ante payoff of each player
(before he knows his type). This corresponds to the “optimal” anonymous mechanism in our model. The

solution is ∆∗ = λ
√

(2γ − 1)/(1− 2(1− γ)2) for γ ∈ (1/2, (9 − √17)/8), and ∆∗ = 0 otherwise. Note

that the latter case corresponds to making the decision with a coin flip without delay.

7 An alternative way to model delay cost is to apply a multiplicative discount factor to the payoffs if
the decision is implemented in the next round. In this case, delaying a preferred decision is more costly
than delaying an inferior decision. Consequently the analysis of the discounting case is slightly more
cumbersome than the fixed cost case. However, the basic insights of this paper do not depend on which
of these two assumptions is used.
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3. Repeated Voting

We refer to Left voting his ex ante favorite alternative l, and Right voting r, as “persist-

ing,” and refer to the opposite as “conceding.” In each voting round, disagreement can be

either regular or reverse. When delay cost is large, the inferior alternative can be better

than the preferred alternative with delay. In that case, even an informed Right would

prefer to vote l if he knows that Left will vote l. The strategic situation is analogous to a

“battle-of-the-sexes” game and the main economic issue is that of coordination to one of

the two asymmetric outcomes (all voting for l or all voting for r) to avoid the large delay

cost. Clearly these two outcomes cannot be Pareto ranked. Since our main concern in this

paper is to study whether and how delay can improve the payoff of both players by making

information aggregation more efficient, we focus on equilibria in which the strategies of

Right and Left, for both informed and uninformed types, are symmetric to each other,

and the informed types always persist in each round. The notion of equilibrium we use in

the ensuing analysis is perfect Bayesian equilibrium.

3.1. Equilibrium construction and characterization

Since the game is symmetric and since the uninformed types vote for their ex ante favorites

with the same probability on the equilibrium path, they have the same belief about the

state being the conflict state after any observed sequence of disagreeing votes. For the equi-

librium constructed below, it is sufficient to consider equilibrium play when the uninformed

types hold the same beliefs. For each such common belief γ ∈ [0, 1] that the uninformed

types hold regarding the conflict state M , we denote by x(γ) ∈ [0, 1] the equilibrium prob-

ability that the uninformed types persist. Let U(γ) and V (γ) be the equilibrium expected

payoffs of the uninformed and informed types respectively.8

To construct an equilibrium, first we identify an equilibrium play when the uninformed

players believe that the state is M with probability 1, in which they persist with probability

8 We have implicitly restricted to stationary strategies that depend only on the belief. There are no
non-stationary symmetric equilibria in which the informed types always persist. In particular, it cannot
be an equilibrium in which the uninformed types coordinate to persist in some given time period, followed
by randomizing between persisting and conceding. This follows because each uninformed type would have
unilateral incentive to concede in the time period when both uninformed types are supposed to persist.

13



x(1). It follows from the indifference condition for the uninformed types that

U(1) = x(1)(−δ + U(1)) + (1− x(1)) = x(1)(1− 2λ) + (1− x(1))(−δ + U(1)).

Solving these two equations gives a unique pair of equilibrium values

U(1) = 1− λ−
√

δ2 + λ2; x(1) =
−δ + λ +

√
δ2 + λ2

2λ
. (3)

We note that x(1) ∈ (1/2, 1) and U(1) < 1− 2λ.

Next, we identify an equilibrium play when γ = 0. Since the uninformed Right

believes that the state is L and his opponent (who is informed) votes l, voting l to obtain

the preferred decision is strictly better than voting r. Thus, we have x(0) = 0 and U(0) = 1.

Given this, we claim that it is an equilibrium when γ is positive but sufficiently small for

the uninformed types to concede with probability 1. To see this, note that x(γ) = 0 implies

that the updated belief upon a regular disagreement is γ′ = 0. Therefore, the payoff to

the uninformed Right from voting r is γ +(1− γ)(−δ +U(0)), and his payoff from voting

l is γ(−δ + U(1)) + (1− γ). Conceding is strictly preferred to persisting if and only if

γ <
δ

(1 + δ − U(1)) + δ
≡ G1. (4)

The corresponding equilibrium payoff of the uninformed types takes the linear form of

U(γ) = 1− (1 + δ − U(1))γ. (5)

We refer to the interval [0, G1] as the “conceding region.”

For γ just above G1, we construct an equilibrium in which x(γ) is such that the one-

step updated belief γ′ falls into the conceding region. We will then try to identify a one-step

interval [G1, G2], and so on. That is, there exists an infinite sequence, G0 < G1 < G2 < . . .,

with G0 = 0 and limk→∞Gk = 1, such that if γ ∈ (Gk, Gk+1] for k = 1, 2, . . ., then

x(γ) ∈ (0, 1) is such that the updated belief after a regular disagreement satisfies

γ′ =
γx(γ)

γx(γ) + 1− γ
∈ (Gk−1, Gk].

Furthermore, the payoff function for the uninformed is piecewise linear of the form

U(γ) = ak − bkγ (6)

14



for γ ∈ (Gk, Gk+1], with a0 = 1 and b0 = 1 + δ − U(1) from equation (5). We construct

the sequences of {Gk} and {(ak, bk)} recursively, starting from G1 and (a0, b0).

Fix any γ ∈ (Gk, Gk+1] for k ≥ 1. Assuming that the continuation payoff is given by

equation (6), the expected payoff to the uninformed from persisting is

(γx+1−γ)(−δ +ak−1− bk−1γ
′)+γ(1−x) = (γx+1−γ)(−δ +ak−1)−γxbk−1 +γ(1−x).

The payoff from conceding is

γ(x(1− 2λ) + (1− x)(−δ + U(1))) + (1− γ).

The uninformed is indifferent between persisting and conceding when x is given by

x(γ) =
γb0 − (1− γ)(1 + δ − ak−1)

γ(b0 + 1 + δ − ak−1 + bk−1 − 2λ)
. (7)

Using Bayes’ rule
Gk+1x(Gk+1)

Gk+1x(Gk+1) + 1−Gk+1
= Gk,

with x(Gk+1) given in equation (7), we can define Gk+1 as follows:

Gk+1 =
1 + δ − ak−1 + Gk(b0 + bk−1 − 2λ)
b0 + 1 + δ − ak−1 + Gk(bk−1 − 2λ)

. (8)

Note that x(γ) is increasing in γ from equation (7), implying that the updated belief γ′

after a regular disagreement falls in the interval (Gk−1, Gk]. Finally, substituting equation

(7) into the expression for the payoff from voting r, we can verify that U(γ) is indeed

piece-wise linear of the form given in equation (6), where

ak = 1− (1 + δ − ak−1)(b0 − 2λ)
b0 + 1 + δ − ak−1 + bk−1 − 2λ

; bk = 2λ +
(b0 − 2λ)(bk−1 − 2λ)

b0 + 1 + δ − ak−1 + bk−1 − 2λ
. (9)

The above is a pair of difference equations for the sequence {(ak, bk)}. We have the

following preliminary results regarding the sequences {Gk} and {(ak, bk)}. The proof is in

the appendix.

Lemma 1. (i) ak ≤ 1 and bk > 2λ for all k; (ii) both ak and bk are decreasing in k; (iii)

limk→∞ ak exists and is given by a∞ = 1 + λ − √δ2 + λ2, and limk→∞ bk exists and is

b∞ = 2λ; (iv) 0 < Gk < Gk+1 < 1 for all k ≥ 1; and (v) limk→∞Gk = 1.
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The above piece-wise construction of x(γ) and U(γ) ensures that the strategy of the

uninformed types is consistent with equilibrium. It remains to verify that the informed

types have no incentive to deviate by voting against their ex ante favorite alternatives.

This is established below by showing that given the equilibrium strategy of the uninformed

types, the informed types have stronger incentives than the uninformed types to vote for

their ex ante favorite alternative.

Proposition 1. There exists an equilibrium of the repeated voting game in which the

strategy of the uninformed types is given by x(γ) and their payoff is given by U(γ).

Proof. First, for γ = 1, since his opponent is persisting with probability x(1), the

informed type is indifferent between persisting and conceding, and his equilibrium payoff

is V (1) = U(1).

Next, for γ ∈ [G0, G1], since his opponent is conceding with probability 1, the payoff

for the informed type from persisting is 1, while his payoff from conceding is −δ+V (1) < 1,

implying V (γ) = 1 ≥ U(γ), with equality only if γ = 0.

Finally, for γ ∈ (G1, 1), we first establish by induction that V (γ) > U(γ) for all γ < 1,

as follows. Consider any γ ∈ [Gk, Gk+1] and k ≥ 1, with γ′ = γx(γ)/(γx(γ) + 1 − γ) ∈
(Gk−1, Gk]. We obtain

V (γ) > (γx(γ) + 1− γ)(−δ + V (γ′)) + γ(1− x(γ))

> (γx(γ) + 1− γ)(−δ + U(γ′)) + γ(1− x(γ)) = U(γ),

where the first inequality follows from the fact that x(γ) < γx(γ) + 1 − γ, the second

inequality follows from the induction hypothesis, and the last equality follows because the

uninformed types are indifferent between persisting and conceding for γ ∈ [Gk, Gk+1] for

k ≥ 1. Moreover, from the indifferent condition of the uninformed types we obtain

γ [x(γ)(−δ + U(γ′)− 1 + 2λ) + (1− x(γ))(1 + δ − U(1))] + (1− γ)(−δ + U(γ′)− 1) = 0.

Note that the last term is strictly negative, and so the expression in the square bracket is

strictly positive. Since V (1) = U(1), and V (γ′) > U(γ′), this implies that

x(γ)(−δ + V (γ′)) + 1− x(γ) > x(γ)(1− 2λ) + (1− x(γ))(−δ + V (1)).
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The left-hand-side of the above inequality is the equilibrium payoff for the informed type

from persisting. The right-hand-side is the deviation payoff from conceding, because after

a reverse disagreement the uninformed types are convinced that the state is M . Thus, the

informed type strictly prefers persisting to conceding. Q.E.D.

The equilibrium represented by equations (7) and (6) is continuous and monotone with

respect to the degree of conflict γ. Note that the continuity of x(γ) in γ is not required for

the construction to be an equilibrium. Nor it is automatic from the construction, because

the equilibrium strategy to the left and inclusive of γ = Gk is constructed in the interval

(Gk−1, Gk] while x(γ) just to the right of Gk is separately constructed in the next step

of [Gk, Gk+1). The continuity and monotonicity of x(γ) is indirectly established below by

showing that the payoff function U is continuous. See the appendix.

Proposition 2. The equilibrium strategy x(γ) in the repeated voting game is continuous

and increasing for all γ ∈ [0, 1].

The monotonicity result of Proposition 2 provides an intuitive description of the equi-

librium behavior. In each round of voting, there are four possible outcomes: an immediate

agreement on r, an immediate agreement on l, a regular disagreement, or a reverse dis-

agreement. We interpret a reverse disagreement as a breakdown of the negotiation process.

Once a reverse disagreement occurs, it is revealed that what is a good decision for one player

is necessarily an inferior decision for the other player. The continuation game is a version

of a war of attrition game, where each uninformed player chooses the stationary strategy

represented by x(1) until they reach a decision.9 Upon a regular disagreement, on the

other hand, the uninformed player becomes more convinced that he is playing against an

informed type. The informed type continues to vote for his favorite alternative, but the

uninformed player will “soften” his position as x(γ′) < x(γ). In a sense, the negotiation

between the two players is making progress, because the probability of choosing the mu-

tually preferred alternative rises if the state is L or R. Moreover, for any γ not arbitrarily

9 In our version of the war of attrition game, “stopping” corresponds to voting against one’s ex ante
favorite alternative. Unlike the standard war of attrition game, when both players vote against their
favorite, we have a reverse disagreement and the game continues.
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close to 1, it only takes a finite number of rounds of regular disagreement before the unin-

formed player yields to his opponent completely by switching to voting against his ex ante

favorite (i.e., x(γ) = 0), provided there is no breakdown of negotiation before that. Once

the game reaches this conceding region, there is either an agreement on the mutually pre-

ferred alternative, or the negotiation breaks down and the two uninformed players engage

in a war of attrition by adopting the strategy of voting for his ex ante favorite alternative

with probability x(1).

The equilibrium in Proposition 1 is unique. That is, if there is a function y(γ) defined

on γ ∈ [0, 1] such that it is an equilibrium for the uninformed types with belief γ to persist

with probability y(γ), then y(γ) = x(γ) for all γ ∈ [0, 1]. To see this, first note that the

argument leading to (3) establishes that y(1) = x(1) in any equilibrium. Second, we argue

that in any equilibrium y(γ) = 0 for any γ ∈ [0, G1]. This follows because regardless of the

continuation plays, when γ is sufficiently small, the payoff to the uninformed from voting to

persist is strictly lower than the payoff from voting to concede regardless of the strategy of

the opposing uninformed type. Third, for any γ > G1, if the equilibrium y(γ) is such that

there is a unique continuation value U(γ′) as given by Proposition 1, then y(γ) equals x(γ)

because the latter is the only value that simultaneously satisfies the equilibrium indifference

condition of the uninformed types and Bayes’ rule. Finally, because y(γ) = 1 is never part

of equilibrium strategy, in any equilibrium the uninformed types are indifferent between

conceding and persisting whenever their belief is strictly higher than G1. It follows that

in any equilibrium y(γ) is bounded away from 1. Then the second claim and third claim

above imply that y(γ) = x(γ) for all γ.

3.2. Equilibrium welfare and comparative statics

To analyze the welfare properties of the equilibrium constructed in the repeated voting

game, we first derive the payoff function of the informed types. Recall that for any belief

γ of the uninformed, V (γ) is the equilibrium expected payoff of the informed types. Given

the equilibrium strategy x(γ) of the uninformed, V (γ) satisfies the following recursive

formula:

V (γ) = x(γ)(V (γ′)− δ) + 1− x(γ), (10)
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where γ′ = γx(γ)/(γx(γ) + 1− γ) is the updated belief of the uninformed after a regular

disagreement. Using the characterization of x(γ) in Proposition 1, we have the following

result about V .

Lemma 2. There exists a sequence {(ck, dk)}, with ck ≤ 1 decreasing in k and limk→∞ ck =

U(1), and dk ≥ 0 increasing in k and limk→∞ dk(1−Gk)/Gk = 0, such that

V (γ) = ck + dk
1− γ

γ
(11)

for any γ ∈ (Gk, Gk+1], k ≥ 1.

The proof of the lemma is in the appendix, where we establish the following system

of difference equations for {(ck, dk)}:

ck = 1− b0(1 + δ − ck−1)
b0 + 1 + δ − ak−1 + bk−1 − 2λ

; dk = dk−1+
(1 + δ − ak−1)(1 + δ − ck−1)
b0 + 1 + δ − ak−1 + bk−1 − 2λ

. (12)

By the proof of Proposition 2, the payoff function V (γ) is continuous for all γ ∈ [0, 1], as is

U(γ). However, while U(γ) is decreasing and piece-wise linear in γ, and is convex because

bk decreases with k, the payoff function V (γ) is piece-wise convex but since dk is increasing

in k, at each kink Gk, the left derivative is smaller than the right derivative. Further, from

the proof of Proposition 1 we know that the two payoff functions satisfy V (γ) ≥ U(γ) for

all γ ∈ [0, 1], with equality only at γ = 0 and γ = 1.10

The equilibrium welfare of the informed and uninformed types depend on the delay

cost δ. In the following proposition, we establish that as δ decreases, the conceding region

becomes smaller; further, the equilibrium voting strategy by the uninformed types becomes

tougher for any degree of conflict. Correspondingly, for any initial degree of conflict, as

δ decreases, it takes a greater number of regular disagreements to reach the conceding

region. However, in spite of the tougher positions taken by the uninformed types, their

equilibrium expected payoffs increase unambiguously because the direct impact of a lower

cost of delay per-round dominates. The proof is in the appendix.

10 While the limit of dk as k goes to infinity does not exist, the product dk(1 − γ)/γ converges to 0
because γ goes to 1 as k grows arbitrarily large, which is why V (1) = U(1).
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Figure 1

Proposition 3. In the symmetric equilibrium of the repeated voting game, as δ decreases,

Gk strictly decreases for each k ≥ 1, x(γ) strictly increases for all γ ∈ (G1, 1], and U(γ)

strictly increases for all γ ∈ (0, 1].

For the informed types, the effect of a decrease in the delay cost δ turns out to be

generally ambiguous. The uninformed types toughen their positions, which means longer

delays before the mutually preferred alternative is chosen, but each round of disagreement

is less costly. The difference equations (9) and (12) allow an explicit calculation of the

payoff functions of the informed and the uninformed. In Figure 1, we plot these functions

for δ = 0.2, δ = 0.1, and δ = 0.01 (holding λ fixed at 0.2). Consistent with Proposition 3,

we see that U(γ) is decreasing in δ for any γ. However, V (γ) is not monotone in δ.

We now compare the equilibrium payoffs of the uninformed and informed types with

their corresponding benchmarks when there is no possibility of delay. For the uninformed,

it is immediate that there is no possibility of welfare gain relative to the benchmark of

one-round voting regardless of the degree of conflict γ or the delay cost δ. This follows
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from (2), and because U(γ) is a decreasing function, with a slope bk that is strictly larger

than 2λ in absolute value by Lemma 1, implying that

U(γ) ≤ 1− 2λγ ≤ U0(γ).

On the other hand, Figure 1 shows that welfare gains are possible for the informed types.

In this figure, V (1/2) is greater than 1− λ = 0.8 for the various values of δ indicated.

The ex ante payoff function before the realization of informed or uninformed types is

given by

W (γ) =
1

2− γ
U(γ) +

1− γ

2− γ
V (γ).

A simple characterization of the condition for W (γ) to exceed the benchmark welfare

W 0(γ) in one-round voting is not easy because the payoff functions U(γ) and V (γ) have

infinitely many kink points at G1, G2, . . .. However, Figure 1 suggests that U and V

approach smoothly differentiable functions as δ becomes small. We therefore undertake

to study the welfare comparison through the limiting case of arbitrarily small delay cost.

The limit functions limδ→0 U(γ) and limδ→0 V (γ) are well-defined because the equilibrium

given in Proposition 1 is continuous in δ.

Proposition 4. There exists a threshold value γ ∈ (1/2, 1) such that for any initial belief

γ ∈ (1/2, γ), W (γ) > W 0(γ) when the delay cost δ is sufficiently small.

Proof. From equation (3), we obtain limδ→0 U(1) = 1− 2λ, implying that limδ→0 b0 =

2λ. It follows from the difference equations (9) that limδ→0 ak = 1 and limδ→0 bk = 2λ for

any k. It is then straightforward to show from (4) that limδ→0 G1 = 0, and from (8) by

induction that, for any k ≥ 1,

lim
δ→0

(Gk+1 −Gk) = 0.

For any δ > 0 and γ ∈ (0, 1), let κ(δ; γ) represent the smallest integer k such that

Gk ≥ γ. Since the U function is decreasing, the value of U(γ) is bounded above by aκ(δ;γ)−
bκ(δ;γ)Gκ(δ;γ)−1, and is bounded below by aκ(δ;γ) − bκ(δ;γ)Gκ(δ;γ). Since limδ→0 aκ(δ;γ) = 1

and limδ→0 bκ(δ;γ) = 2λ, and since limδ→0 Gκ(δ;γ) = limδ→0 Gκ(δ;γ)−1 = γ, the upper

bound and the lower bound converge to the same limiting value of

lim
δ→0

U(γ) = 1− 2λγ.
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For the informed types, we note from the difference equation (12) for {ck} and the

limit values of ak and bk that limδ→0 ck = 1− 2λ for any k. To calculate the limit value of

dκ(δ;γ), we write

dκ(δ;γ) = d1 +
κ(δ;γ)∑

k=2

dk − kk−1

Gk −Gk−1
(Gk −Gk−1).

Letting vk = 1 + δ− ak and sk = bk − 2λ, and using the difference equations (12) and (8),

this can be expresses as:

dκ(δ;γ) = d1 +
κ(δ;γ)∑

k=2

1 + δ − ck−1

1−Gk−1

b0 + vk−2 + Gk−1sk−2

b0 + vk−1 + sk−1

vk−1

vk−2 + Gk−1sk−2
(Gk −Gk−1).

As δ goes to 0, the first term in the summand goes to 2λ/(1−Gk−1), the second term goes

to 1, and the third term goes to 1 (for any k ≥ 2, the limit of vk−2/vk−1 is 1 and the limit

of sk−2/vk−1 is 0 as δ goes to 0). Moreover, d1 goes to 0 as δ goes to 0. Therefore

lim
δ→0

dκ(δ;γ) = lim
δ→0

κ(δ;γ)∑

k=2

2λ

1−Gk−1
(Gk −Gk−1) =

∫ γ

0

2λ

1−G
dG = −2λ ln(1− γ),

where the second equality uses the definition of the Riemann integral. Since V (γ) is

bounded above by V (Gκ(δ;γ)−1) and is bounded below by V (Gκ(δ;γ)), and these two bounds

converge to the same limiting value as δ goes to 0, we have

lim
δ→0

V (γ) = 1− 2λ− 2λ
1− γ

γ
ln(1− γ).

It follows immediately from the limiting payoff functions that

lim
δ→0

W (1/2) =
2
3
(1− λ) +

1
3

(1− 2λ(1− ln 2)) > 1− λ.

Moreover, the limit of limδ→0 W (γ) as γ goes to 1 is 1 − 2λ, which is strictly less than

1− λ. Since the limit function limδ→0 W (γ) is decreasing in γ, there exists a γ ∈ (1/2, 1)

such that limδ→0 W (γ) > W 0(γ) if and only if γ ∈ (1/2, γ). The proposition follows by

continuity of the ex ante welfare function in the delay cost δ. Q.E.D.

Proposition 3 establishes that U(γ) increases as δ decreases. When δ goes to 0,

U(1/2) approaches a limiting value of 1 − λ, implying that the uninformed types get the
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same payoff in equilibrium as the benchmark payoff when γ = 1/2. We have shown in

the proof of Proposition 1 that the payoff to the informed is strictly higher than the

payoff to the uninformed for any γ ∈ (0, 1). This already suggests that the informed

types will be better off in the repeated voting game than in the benchmark one-round

voting game when γ = 1/2 and δ is small. Proposition 4 makes this precise by deriving

an explicit characterization of the limit functions limδ→0 U(γ) and limδ→0 V (γ), ensuring

that V (γ)− U(γ) does not go to 0 as δ goes to 0.

In this repeated voting game, as in the case of the two-round voting game, ex ante

welfare gains relative to the benchmark one-round voting game exist only for values of

γ close enough to and greater than 1/2. If the degree of conflict γ is too large, since

V (1) = U(1) < 1−λ, the continuity of V implies that V (γ) is smaller than the benchmark

expected payoff of the informed types for γ close to 1. Also, as in the case of the two-round

voting game, the delay cost δ cannot be too great for ex ante welfare gains to exist. From

equations (4) and (8) we can verify that for δ sufficiently great, G1 < 1/2 < G2, and then

from (7) we can verify that x(1/2) is bounded away from 0 for sufficiently great δ, implying

that V (1/2) falls below the benchmark payoff of 1− λ if δ is sufficiently great.

3.3. Finite deadlines

We have motivated the game of repeated voting until agreement by assuming that the two

players cannot commit to not renegotiating after any disagreement. There are in fact two

aspects of this assumption: first, after each disagreement and after the two players each

incur the payoff loss δ, the two players cannot commit to not voting again in the next round;

and second, at the ex ante stage before the two players learn their types and start playing

the game, they cannot commit to ending the negotiation within a fixed number of rounds.

We now discuss the implications of relaxing just the second aspect of the no-commitment

assumption, by studying a repeated voting game with a finite deadline. We model a

deadline as a maximum number, T , of voting rounds and assume that after T rounds of

disagreement the game ends with the decision determined by a coin toss. Formally, any

history of T rounds of disagreement is now a terminal history with the payoff to the two

players being 1− λ− δT , and all other terminal histories are unchanged.11

11 The benchmark single-round voting game corresponds to T = 1.

23



A full characterization of the equilibrium for any deadline T , any delay cost δ and

any initial belief γ of the uninformed is beyond the scope of the present paper. The main

difficulty arises from the non-stationary nature of the equilibrium play of the uninformed

types. Unlike the game of repeated voting until agreement, the equilibrium play of the

uninformed depends both on his belief that the state is M and on the number of rounds

remaining until the deadline.12 Our modest goal in this subsection is to provide a partial

equilibrium characterization and use it to further illustrate the constructive role of costly

delay in strategic information aggregation.

We construct an equilibrium of the finite deadline game when the initial belief of

the uninformed is just above 1/2. As in the game without deadline, the informed types

persist in each round of voting. The uninformed types randomize between persisting and

conceding in the first and the last round of voting and, unlike the case with no deadline,

persist with probability 1 for each round in between. The main departure from the game

without deadline is that, when there are sufficiently few rounds remaining, it is optimal

for the uninformed to stop concessions altogether until the last round. This equilibrium

construction requires that the deadline line is not too long and the belief of the uninformed

types is sufficiently close to 1/2. Before presenting this equilibrium characterization result,

we establish in the following lemma that when the initial belief of the uninformed is exactly

1/2, and the deadline is sufficiently short, there is an equilibrium in which the uninformed

persist with probability 1 until the last round. Let T∗ be the largest integer smaller than

or equal to λ/(2δ).

Lemma 3. Suppose that δ ∈ (0, λ/2). In the repeated voting game with any deadline

T satisfying 2 ≤ T ≤ T∗ and initial belief γ = 1/2 of the uninformed types, there is an

equilibrium in which the uninformed types persist with probability 1 for T − 1 rounds and

persist with probability smaller than or equal to 1− 2(T − 1)δ/λ in the last round.

Proof. First recall from equation (1) that with the belief γ equal to 1/2 the uninformed

types are indifferent between persisting and conceding in the final round. Next, when

12 This is because the continuation equilibrium after a reverse disagreement depends on the number of
the rounds remaining. Such issue does not arise in a continuous-time model because reverse disagreements
are irrelevant. See Damiano, Li and Suen (2009) for further detail.
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there are T ′ ≤ T rounds remaining, the expected payoff of the uninformed types under the

proposed equilibrium is

−(T ′ − 1)δ + γ(x0(1− λ) + (1− x0)) + (1− γ)(1− λ),

where x0 is the probability of the uninformed persisting in the last round, satisfying x0 ≤
1− 2(T − 1)δ/λ. By construction, with γ = 1/2, the above reaches the minimum value of

1−λ when T ′ = T and x0 = 1− 2(T − 1)δ/λ. Since γ = 1/2 and the opposing uninformed

type persists with probability 1, the deviation payoff from conceding when there are T ′

rounds remaining is 1−λ. This verifies the equilibrium condition for the uninformed types.

For the informed, the equilibrium payoff when there are T ′ rounds left is

−(T ′ − 1)δ + x0(1− λ) + (1− x0),

which is always strictly greater than the equilibrium payoff of the uninformed types. We

have just shown that the latter is at least 1−λ, which is greater than the deviation payoff

of 1− 2λ from conceding for the informed. Q.E.D.

The intuition behind the deadline play by the uninformed types is that when there

are few rounds left, the deadline payoff from playing an equilibrium of the benchmark one-

round voting game becomes too attractive for the unformed to contemplate conceding.13

The deadline play has the same role as the conceding region of [0, G1] in the repeated

voting game without deadline, and can be now used to construct an equilibrium for initial

belief γ just above 1/2. In this equilibrium, the uniformed types concede with a positive

probability in the first around so that the updated belief is 1/2. The equilibrium play

then continues as described in Lemma 3, with a selection of the uninformed conceding

probability x0 in the final round to make them indifferent in the first round. Define

γ∗ =
(T∗ + 1)δ + λ

2(T∗δ + λ)
,

13 Although the equilibrium constructed in Lemma 3 is not unique, it can be shown that in any
equilibrium the uninformed types must persist for the initial T − 1 rounds. Furthermore, the equilibrium
constructed in Proposition 5 below is unique subject to the informed types always persisting. See Damiano,
Li and Suen (2009) for details.
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which is strictly between 1/2 and 1. We establish the following result in the Appendix.

Proposition 5. Suppose that δ ∈ (0, λ/2). In the repeated voting game with any deadline

T satisfying 2 ≤ T ≤ T∗ and any initial belief γ ∈ [1/2, γ∗], there is an equilibrium in which

the uninformed types persist with probability x = (1− γ)/γ in the first round.

The first observation we can make from Proposition 5 is that welfare gains for moderate

degrees of conflict are possible also in the presence of a deadline. To see this, fix some

δ < λ/2, a deadline T ≤ T∗ and an initial belief of the uninformed arbitrarily close to

1/2. The equilibrium payoff of the uninformed types, given by the expected payoff from

conceding14

2(1− γ)(1− λ) + (2γ − 1)(−(T − 1)δ + (1− λ)), (13)

is arbitrarily close to 1− λ, which is the equilibrium payoff U0(γ) in the benchmark one-

round voting game for any γ > 1/2. As γ becomes close to 1/2, the probability x of

the uninformed persisting in the first round approaches 1, while the probability x0 of the

uninformed persisting in the last round approaches 1−2(T −1)δ/λ. Thus, the equilibrium

payoff of the informed types converges to

−(T − 1)δ + (1− x0) + x0(1− λ) = 1− λ + (T − 1)δ, (14)

which is strictly greater than the informed equilibrium payoff V 0(γ) = 1−λ in the bench-

mark one-round voting game for any γ > 1/2.

A second observation is that the welfare gain illustrated above disappears as the per-

round delay cost δ vanishes. More precisely, as δ goes to 0, the upper-bound γ∗ on the

initial belief of the uninformed in our equilibrium construction converges to 1/2. For any

fixed deadline T ≤ T∗, by (13), the equilibrium payoff of the uninformed types converges to

1−λ as δ goes to 0. As γ approaches 1/2, the equilibrium payoff of the informed converges

to the expression in (14), which also goes to 1 − λ as δ goes to 0. Thus, the equilibrium

payoffs of both the uninformed and informed types converge to their equilibrium payoff in

the benchmark one-round game. The disappearance of the welfare gain when δ goes to 0

14 In the proof of Proposition 5 we establish that after a reverse disagreement the uninformed types
update their belief to 1 and persist with probability 1 in all rounds including the last.

26



for a fixed deadline confirms our impossibility result in Section 2. One interpretation is

that costless straw polls or other forms of cheap talk cannot bring about any improvement

in information aggregation or welfare, which is simply another illustration that in the

environment of the present model information aggregation is impossible in any incentive

compatible outcome without costly delay.

The welfare gain under a finite deadline reappears if we allow the number of voting

rounds T to go to infinity as δ goes to 0. We already know, from Proposition 4 that without

deadline the welfare gain persists as the delay cost vanishes. The additional observation

is that keeping constant the maximum total loss from delay — given by (T − 1)δ for a

fixed deadline T — suffices to yield welfare gain when the cost of delay vanishes. One can

think of this as a commitment to ending the game by a coin flip if the players fail to reach

an agreement after a maximum number of rounds T not exceeding ∆/δ + 1, where ∆ is

the cap on the total loss from delay. As above, the upper-bound γ∗ on the initial belief

of the uninformed in our equilibrium construction converges to 1/2 as δ goes to 0, and

since γ is arbitrarily close to 1/2, the equilibrium payoff of the informed again approaches

the expression in (14). In this case, however, since Tδ converge to a positive limit ∆ the

informed types can be made strictly better off than in the benchmark one-round game.

The logic behind the reappearance of the welfare gain under a finite deadline is in fact the

same as why there are welfare gains in our repeated voting game without deadline. Even

though in equilibrium the expected duration of disagreement is finite, the assumption of

voting until agreeing creates a strictly positive payoff loss from delay as δ goes to 0. This

payoff loss reflects the constructive role played by costly delay, even as the per-round delay

cost goes to 0.

As a final observation, considering the limit case when the per-round delay cost δ

goes to 0 but the maximum total loss from delay is fixed, we can show that a deadline can

strictly improve the ex ante payoff of each player relative to no deadline. To make this

point it suffices to set the deadline equal to T∗, so that the total loss from delay converges

to λ/2 when δ goes to 0. In our equilibrium construction, as γ goes to zero, the payoff of

the uninformed types goes to 1− λ from (13) while the equilibrium payoff of the informed

converges to 1− 3λ/2 from (14). In the proof of Proposition 4 we have established that in
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the game of repeated voting without deadline, as δ goes to 0, the limit value of U(1/2) is

1−λ, and the limit value of V (1/2) is 1−2λ(1− ln 2). The uninformed types are unaffected

with or without a deadline, but the informed types are strictly better off with the deadline.

Thus, for delay cost δ sufficiently small and initial belief γ of uninformed types sufficiently

close to 1/2, imposing the deadline T∗ strictly improves the ex ante welfare of the players.

The logic behind the improvement in the ex ante welfare through a finite deadline lies

in the deadline play mentioned earlier. The relatively attractive payoff from the single

round game in the last round motivates the uninformed types to stop conceding and wait

for the deadline to arrive when there are few rounds remaining. Under an appropriately

chosen deadline, the uninformed types are willing to compromise in the last round. Even

though the uninformed types do not benefit from such deadline play, the informed types

do because the latter care more about making the correct decision.

4. Concluding Remarks

The constructive role of costly delay is robust to the game form in the repeated voting

game. Imagine a repeated voting game with costly delay which differs from our game only

in that after a reverse disagreement the game ends with an immediate coin toss. Analysis

for this game follows in a parallel fashion as what we have done in our paper. It turns

out that in the limit of the delay cost converging to zero, this new game has the same

equilibrium outcome as our game. The same is true for any game defined by replacing the

equilibrium continuation payoff after a reverse disagreement with any feasible continuation

payoff. In a sense, the critical part of our construction has to do with the costly delay

that arises after a regular disagreement in which the uninformed types vote their ex ante

favorite alternative in hope of persuading each other to switch, rather than the costly delay

that happens after a reverse disagreement resulting from each tentatively agreeing with

the other side. The fact the continuation equilibrium after a reverse disagreement becomes

irrelevant when the delay cost goes to zero is the major analytical advantage of using a

continuous-time framework. In a follow-up paper (Damiano, Li and Suen 2009), we use

such framework to study the issue of optimal deadline. We are able to provide a complete

characterization of the equilibrium for any deadline, which allows us to establish that the
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deadline that maximizes the ex ante payoff of each player, when positive, is the shortest

time ensuring efficient information aggregation.

The constructive role of costly delay is illustrated in the present paper with a model

most suitable for small committees and bilateral negotiations. In an on-going project

(Damiano, Li and Suen 2010), we extend the idea of using costly delay to aggregate

information to large elections. We consider two-candidate elections, allowing any number

of privately informed voters, and any election rule that requiring a super majority to elect

a candidate in the first round and a simple majority in the second and final round after a

costly delay. In this extension, there are two states of the world, corresponding to which

of the two candidates is the “right” one for all voters, and voters receive binary signals

that are independent conditional on the state. We specify preferences and information

structures of the voters in such a way that a voter that receives a signal supporting his

preference bias votes according to his bias in each round, while a voter that receives the

opposite signal chooses his vote by considering pivotal events. In addition to the standard

kind of pivotal events in which the vote changes the outcome in the first round of voting

(see, e.g., Austen-Smith and Banks 1996; Feddersen and Pesendorfer 1996), there is another

kind of pivotal events: the vote causes delay and re-voting without affecting the eventual

outcome, or avoids delay. As in the present paper, costly delay and re-voting can have

a positive impact on the voters’ ex ante welfare by improving information aggregation.

This is accomplished through careful choices of the super majority rule in the first round

and the delay cost, so that all informed voters cast their votes sincerely according to their

signals. We can thus arbitrarily closely approximate efficient information aggregation in an

environment where aggregation uncertainty about the size of uninformed partisan voters

makes information aggregation impossible under the standard plurality voting.

29



Appendix

Proof of Lemma 1

(i) For k = 0, we have a0 = 1 and b0 = δ + λ +
√

δ2 + λ2 > 2λ. Next, if ak−1 ≤ 1 and

bk−1 > 2λ, the two fractions that appear in the difference equation (9) are both positive.

Hence ak ≤ 1 and bk > 2λ by induction

(ii) For the monotonicity of bk, we can subtract bk−1 from both sides of the second equation

in (9) to get:

bk − bk−1 = − 1 + δ − ak−1 + bk−1

b0 + 1 + δ − ak + bk − 2λ
(bk−1 − 2λ) < 0.

To establish the monotonicity of ak, we use induction. First, it is easy to see that

a1 < a0 = 1. Next, assume that ak−1 < ak−2. We can write:

ak − ak−1 =
(1 + δ − ak−2)(b0 − 2λ)

b0 + 1 + δ − ak−2 + bk−2 − 2λ
− (1 + δ − ak−1)(b0 − 2λ)

b0 + 1 + δ − ak−1 + bk−1 − 2λ

<
(1 + δ − ak−2)(b0 − 2λ)

b0 + 1 + δ − ak−2 + bk−2 − 2λ
− (1 + δ − ak−1)(b0 − 2λ)

b0 + 1 + δ − ak−1 + bk−2 − 2λ

<
(1 + δ − ak−2)(b0 − 2λ)

b0 + 1 + δ − ak−2 + bk−1 − 2λ
− (1 + δ − ak−2)(b0 − 2λ)

b0 + 1 + δ − ak−2 + bk−2 − 2λ
= 0,

where the first inequality follows from bk−1 < bk−2, and the second inequality follows from

the induction hypothesis and the fact that the second term is decreasing in ak−1.

(iii) Solving for the steady state version of the difference equation (9), we obtain the steady

state values a∞ = 1+λ−√δ2 + λ2 and b∞ = 2λ. By the monotonicity of ak and bk, these

steady state values are also the limit values of the sequence {(ak, bk)}.
(iv) By definition, we have G1 ∈ (0, 1). Since ak−1 ≤ 1 and bk−1 > 2λ, an induction

argument establishes that Gk ∈ (0, 1) for all k ≥ 1. Next, subtracting Gk from both sides

of (8), we obtain

Gk+1 −Gk =
1 + δ − ak−1 + Gk(bk−1 − 2λ)

b0 + 1 + δ − ak−1 + Gk(bk−1 − 2λ)
(1−Gk) > 0.
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(v) Since Gk is an increasing and bounded sequence, it has a limit value. By part (iii)

established above, the limit is 1. Q.E.D.

Proof of Proposition 2

We first establish the continuity of U(γ) for all γ < 1. For each k ≥ 0, the function U(γ) is

trivially continuous at any γ ∈ (Gk, Gk+1). We show by induction that U(γ) is continuous

at each Gk+1, that is,

ak+1 − bk+1Gk+1 = ak − bkGk+1.

For k = 0, we have

a1 − a0 = − δ(b0 − 2λ)
b0 + δ + b0 − 2λ

; b1 − b0 = − (b0 + δ)(b0 − 2λ)
b0 + δ + b0 − 2λ

.

Therefore,
a1 − a0

b1 − b0
=

δ

b0 + δ
= G1.

Next, denote wk = 1 + δ − ak + bk − 2λ. We have

ak+1 − ak =
b0 − 2λ

wkwk−1
((ak − ak−1)(b0 + bk−1 − 2λ) + (1 + δ − ak−1)(bk − bk−1));

bk+1 − bk =
b0 − 2λ

wkwk−1
((ak − ak−1)(bk−1 − 2λ) + (b0 + 1 + δ − ak−1)(bk − bk−1).

Therefore,
ak+1 − ak

bk+1 − bk
=

1 + δ − ak−1 + Gk(b0 + bk−1 − 2λ)
b0 + 1 + δ − ak−1 + Gk(bk−1 − 2λ)

= Gk+1,

where the first equality follows from the induction hypothesis and the second equality

follows from the law of motion of the sequence {Gk} (equation 8). To show that U(γ) is

continuous at γ = 1, we note that limk→∞Gk = 1 and a∞ − b∞ = U(1). The continuity

and monotonicity of x(γ) follows immediately. Q.E.D.

Proof of Lemma 2

¿From the proof of Proposition 1, V (γ) = 1 for γ ∈ [0, G1]. Let c0 = 1 and d0 = 0. We

derive difference equations for ck and dk by induction. For any γ ∈ (Gk, Gk+1], k ≥ 1, we

can write

V (γ) = x(γ)
(
−δ + ck−1 + dk−1

1− γ

γ

1
x(γ)

)
+ 1− x(γ).
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Using the formula (7) for x(γ), we can verify the functional form of V and obtain a pair

of difference equations in (ck, dk):

ck = 1− b0(1 + δ − ck−1)
b0 + 1 + δ − ak−1 + bk−1 − 2λ

; dk = dk−1 +
(1 + δ − ak−1)(1 + δ − ck−1)
b0 + 1 + δ − ak−1 + bk−1 − 2λ

.

It is straightforward to show by induction that ck ≤ 1 and dk ≥ 0 for all k. This implies

that {dk} is an increasing sequence. Let wk = 1+δ−ak +bk−2λ; that {ck} is a decreasing

sequence follows immediately by induction if we establish that wk is decreasing in k. To

prove the latter claim, combine equations (9) to obtain

wk = δ +
(b0 − 2λ)wk−1

b0 + wk−1
. (A.1)

The derivative of the right-hand-side with respect to wk−1 is positive. So wk−1 < wk−2

implies wk < wk−1. Now,

w1 − w0 = δ − (1 + δ − a0 + b0)w0

b0 + w0
= − b0(b0 − 2λ)

2b0 + δ − 2λ
< 0.

An induction argument then establishes the claim.

The limit value of ck as k goes to infinity can be verified by using the difference

equation for ck and the limit values of ak and bk given in Lemma 1. To verify that the

limit value of dk(1 −Gk)/Gk, we multiply both sides of the difference equation for dk by

(1−Gk)/Gk, and then use Bayes’ rule for Gk and limk→∞Gk = 1. Q.E.D.

Proof of Proposition 3

We first establish a lemma.

Lemma A. As δ decreases, for any k: (i) (1+δ−ak+bk−2λ)/b0 decreases; (ii) ak increases;

(iii) bk decreases; (iv) (1+δ−ak)/b0 decreases; and (v) (1+δ−ak)/(b0+1+δ−ak+bk−2λ)

decreases.

Proof. (i) Let vk = 1 + δ − ak, wk = vk + bk − 2λ, and uk = b0 + wk. Recall that

b0 = 1+ δ−U(1), and therefore db0/dδ = 1+ δ/
√

δ2 + λ2. Also, from the proof of Lemma

2 we know that wk is decreasing in k.
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First, we show that wk is increasing in δ for each k. Take derivative of equation (A.1)

to get

∂wk

∂δ
= 1 +

wk−1(wk−1 + 2λ)
(b0 + wk−1)2

db0

dδ
> 0;

∂wk

∂wk−1
=

b0(b0 − 2λ)
(b0 + wk−1)2

> 0.

Now, we have
dwk

dδ
=

∂wk

∂δ
+

∂wk

∂wk−1

dwk−1

dδ
.

An induction argument establishes that dwk/dδ > 0 if we can show that dw0/dδ > 0,

which is true because w0 = δ + b0 − 2λ is increasing in δ.

To establish part (i) of the lemma, we write fk = wk/(b0 + wk). Use equation (A.1)

for wk to write:

fk =
δ + fk−1(b0 − 2λ)

b0 + δ + fk−1(b0 − 2λ)
.

The partial derivative ∂fk/∂δ has the same sign as

b0 + (2fk−1λ− δ)
db0

dδ
.

Since wk is decreasing in k, we have that fk is decreasing in k. Therefore, this expression

is greater than

b0 + (2f∞λ− δ)
db0

dδ
,

which is positive, where f∞ = 1/2(1−λ/(1−λ+δ−U(1))) is the limit value of fk as k goes

to infinity. It is also easy to see that fk is increasing in fk−1. The claim then follows if we

show df0/dδ > 0, which we can verify by using the definition of f0 and taking derivatives

with respect to δ.

(ii) We claim that (b0− 2λ)/uk is increasing in δ for each k. To prove it, let tk = wk + 2λ.

Write the difference equation for wk in the form:

tk
b0 − 2λ + tk

=
(δ + 2λ)uk−1 + (b0 − 2λ)(tk−1 − 2λ)
(b0 + δ)uk−1 + (b0 − 2λ)(tk−1 − 2λ)

.

Let gk = (b0 − 2λ)/uk = 1− tk/uk. Then the above equation can be transformed into:

gk =
b0 − 2λ

δ + 2b0 − 2λ− b0gk−1
.
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It is clear that ∂gk/∂gk−1 > 0. Moreover, ∂gk/∂δ has the same sign as:

−(b0 − 2λ) + (δ + 2λ− 2λgk−1)
db0

dδ
.

Since gk is increasing in k, the above expression is greater than

−(b0 − 2λ) + (δ + 2λ− 2λg∞)
db0

dδ
> 0,

where g∞ = 1/2(1−λ/(1−λ+δ−U(1))) is the limit value of gk as k goes to infinity. So an

induction argument will establish the monotonicity of gk with respect to δ if we establish

that dg0/dδ > 0, which we can verify by using the definition of g0 and taking derivatives

with respect to δ.

To establish part (ii) of the lemma, we write the difference equation for ak as:

ak = 1− gk−1(1 + δ − ak−1).

Thus,
dak

dδ
= −gk−1 − (1 + δ − ak−1)

dgk−1

dδ
+ gk−1

dak−1

dδ
.

Since da0/dδ = 0, an induction argument establishes that dak/dδ ≤ 0 for each k.

(iii) We write the difference equation for bk as:

bk = 2λ + gk−1(bk−1 − 2λ),

implying that
dbk

dδ
= (bk−1 − 2λ)

dgk−1

dδ
+ gk−1

dbk−1

dδ
.

We have already shown that dgk−1/dδ > 0. Moreover, db0/dδ > 0. So an induction

argument shows that dbk/dδ > 0 for each k.

(iv) From part (ii) we have vk is increasing in δ for each k. Write the difference equation

for ak as:
vk

b0
=

δ

b0
+ gk−1

vk−1

b0
.

Note that v0/b0 = δ/b0 is increasing in δ. Also, gk−1 is increasing in δ. So an induction

argument establishes the claim.
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(v) First, we claim that vk/(b0 − λ) is increasing in δ for each k. To prove it, write the

difference equation for ak as:

vk

b0 − λ
=

δ

b0 − λ
+ gk−1

vk−1

b0 − λ
.

Note that v0/(b0−λ) = δ/(b0−λ) is increasing in δ. So an induction argument establishes

the claim.

Next, we show that (bk − λ)/(b0 − λ) is decreasing in δ for each k. We can write the

difference equation for bk as:

bk − λ

b0 − λ
=

λ

b0 − λ
+

(b0 − 2λ)((bk−1 − λ)− λ)
(b0 − λ) + (1 + δ − ak−1) + (bk−1 − λ)

.

Define pk = (bk − λ)/(b0 − λ) and qk = (1 + δ − ak)/(b0 − λ). Then we can write

pk = (1− gk−1) +
b0 − 2λ

b0 − λ

pk−1

1 + qk−1 + pk−1
.

Note that
∂pk

∂pk−1
=

b0 − 2λ

b0 − λ

1 + qk−1

(1 + qk−1 + pk−1)2
> 0,

∂pk

∂qk−1
= −b0 − 2λ

b0 − λ

pk−1

(1 + qk−1 + pk−1)2
< 0,

∂pk

∂gk−1
= − λ

b0 − λ
< 0,

∂pk

∂b0
= − λ

(b0 − λ)2
1 + δ − ak−1 + λ

uk−1
< 0.

Now,
dpk

dδ
=

∂pk

∂b0

db0

dδ
+

∂pk

∂gk−1

dgk−1

dδ
+

∂pk

∂qk−1

dqk−1

dδ
+

∂pk

∂pk−1

dpk−1

dδ
.

Since db0/dδ > 0, dgk−1/dδ > 0, dqk−1/dδ > 0 and dp0/dδ = 0, an induction argument

establishes that dpk/dδ < 0 for each k.

To establish the last part of the lemma, we divide both the denominator and numerator

of vk/uk by b0 − λ to get:
vk

uk
=

qk

1 + qk + pk
.

Since qk is increasing in δ and pk is decreasing in δ, the result follows. Q.E.D.
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We are now ready to prove the proposition. Fix any k ≥ 1. Let wk = 1+δ−ak+bk−2λ.

For the effects on Gk, rewrite the difference equation for Gk as:

Gk+1

1−Gk+1
=

1 + δ − ak−1

b0
+

b0 + wk−1

b0

Gk

1−Gk
.

From part (i) and part (iv) of Lemma A, both wk/b0 and (1 + δ − ak)/b0 are increasing

in δ. It is also clear that Gk+1 is increasing in Gk. Finally, note that G1 = δ/(b0 + δ) is

increasing in δ. An induction argument then establishes that Gk is strictly increasing in δ

for each k ≥ 1.

Next, for the effects on x(γ), fix any γ and let

xk(γ) =
b0

b0 + wk−1
− 1− γ

γ

1 + δ − ak−1

b0 + wk−1
.

Since xk(Gk+1) = xk+1(Gk+1), and since

∂xk(γ)
∂γ

=
1
γ2

1 + δ − ak−1

b0 + wk−1
<

1
γ2

1 + δ − ak

b0 + wk
=

∂xk+1(γ)
∂γ

by part (v) of Lemma A, we obtain xk(γ) ≥ xk+1(γ) for all γ ≤ Gk+1. Iterating the

argument establishes that xk(γ) ≥ xk̃(γ) for all γ ≤ Gk+1 and all k̃ ≥ k. The same

argument also proves that xk(γ) ≥ xk̃(γ) for all γ ≥ Gk and all k̃ ≤ k. Combining these

two results, we have xk(γ) ≥ xk̃(γ) for all k̃ if γ ∈ (Gk, Gk+1]. Now, for any δ̃ > δ, denote

the corresponding equilibrium strategy as x̃(γ), and define x̃k(γ) analogously. Then, for

any γ ∈ (Gk, Gk+1],

x(γ) = xk(γ) ≥ xk̃(γ) > x̃k̃(γ) = x̃(γ),

where the first inequality follows because γ ∈ (Gk, Gk+1], and the second inequality comes

from part (i) and part (v) of Lemma A. Thus, x(γ) is decreasing in δ for all γ.

Finally, for the effects on U(γ), let d̃ > d. Denote the sequence of threshold values of

γ corresponding to d̃ as {G̃k}, and denote the corresponding sequence of coefficients of the

payoff function U as {(ãk, b̃k)}. Suppose that γ ∈ (Gk, Gk+1] while γ ∈ (G̃k̃, G̃k̃+1]. Then

ãk̃ − b̃k̃γ < ak̃ − bk̃γ ≤ ak − bkγ,

where the first inequality follows from part (ii) and part (iii) of Lemma A, and the second

inequality follows from the convexity of U(γ). Thus, U(γ) is decreasing in δ. Q.E.D.
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Proof of Proposition 5

We first verify that by using the deadline play constructed in Lemma 3 as the continuation

equilibrium, we can make the uninformed indifferent between persisting and conceding in

the first round. Under the proposed equilibrium, in the first round the expected payoff to

the uninformed from persisting is

γ(x(−δ + UT−1(1/2)) + (1− x)) + (1− γ)(−δ + UT−1(1/2)),

where x = (1−γ)/γ is the equilibrium probability of persisting by the opposing uninformed

type, and

UT−1(1/2) = −(T − 2)δ + 1− (1 + x0)λ/2

with x0 ≤ 1− 2(T − 2)δ/λ, is the continuation equilibrium payoff after a regular disagree-

ment due to Lemma 3. The expected payoff from conceding in the initial round is

γ(x(1− 2λ) + (1− x)(−δ + UT−1(1))) + (1− γ),

where UT−1(1) is the continuation payoff to the uninformed after a reverse disagreement,

given by

UT−1(1) = −(T − 2)δ + (1− λ).

The above follows because T ≤ T∗ implies that after the uninformed type updates the

belief to 1 upon a reverse disagreement, it is an equilibrium to persist for the rest of the

game. Using x = (1− γ)/γ we can write the indifference condition as

2(1− γ)(1− λ + δ − UT−1(1/2)) = (2γ − 1)(1 + δ − UT−1(1)).

By Lemma 3, the minimum value of UT−1(1/2) is 1−λ, achieved when x0 = 1−2(T−2)δ/λ.

If x0 = 0, then

UT−1(1/2) = −(T − 2)δ + 1− λ/2 ≥ −(T∗ − 2)δ + 1− λ/2 ≥ 1− λ + 2δ.

It follows that for any initial belief γ ∈ [1/2, γT ], with γT given by

γT =
1
2

+
δ

2(δ + (1 + δ − UT−1(1)))
,
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there is a unique value of x0 ≤ 1− 2(T − 2)δ/λ such that the above indifference condition

is satisfied. Note that γT is decreasing in T , and is equal to γ∗ when T = T∗. Thus, for

any deadline T satisfying 2 ≤ T ≤ T∗ and any initial belief γ ∈ [1/2, γ∗], the equilibrium

condition of the uninformed types is satisfied if they persist with probability x = (1−γ)/γ

in the first round.

It remains to argue that given the prescribed strategy of the uninformed, the informed

types never want to concede. From Lemma 3 we already know that the informed types

have no incentive to concede after the first round. In the first round, the expected payoff

in the proposed equilibrium is

(1− x) + x(−δ − (T − 2)δ + (1− x0) + x0(1− λ)),

where x = (1− γ)/γ. The deviation payoff is

(1− x)(−δ − (T − 2)δ + (1− λ)) + x(1− 2λ),

because T ≤ T∗ implies that after a reverse disagreement it is optimal for the informed

types to persist for the remainder of the game. It is straightforward to verify that persisting

is optimal for the informed types in the first round. Q.E.D.
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