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Abstract

This article analyzes the identifiability of the number of components in k-variate, M -

component finite mixture models in which each component distribution has independent

marginals, including models in latent class analysis. Without making parametric assump-

tions on the component distributions, we investigate how one can identify the number of

components from the distribution function of the observed data. When k ≥ 2, a lower

bound on the number of components (M) is nonparametrically identifiable from the rank

of a matrix constructed from the distribution function of the observed variables. Building

on this identification condition, we develop a procedure to consistently estimate a lower

bound on the number of components.

Keywords: finite mixture; latent class analysis; nonnegative rank; rank estimation

1 Introduction

Finite mixture models provide flexible ways to model unobserved population heterogeneity.

Because of their flexibility, finite mixtures have been used in numerous applications in diverse

fields such as biological, physical, and social sciences. Comprehensive theoretical accounts

and examples of applications can be found in Everitt and Hand (1981), Titterington et al.

(1985), McLachlan and Basford (1988), Lindsay (1995), and McLachlan and Peel (2000).

A finite mixture model is characterized by three main determinants: the number of

components, the component distributions, and the mixing proportions. As emphasized in

Hettmansperger and Thomas (2000), there is often little theoretical guidance for selecting

∗Address for correspondence: Katsumi Shimotsu, Faculty of Economics, University of Tokyo, 7-3-1, Hongo,
Bunkyo-ku, Tokyo 113-0033, Japan.

1



the number of components and/or the form of the component distributions despite their key

role in the specification of mixtures. Furthermore, it has been known that the estimates of

the number of components are sensitive to the choice of the component distributions (see, for

example, Schork et al. (1990) and Roeder (1994)), and that imposing incorrect parametric

restrictions on the component distributions may lead to erroneous inference on the number

of components (Cruz-Medina et al. 2004).

This article analyzes the nonparametric identifiability of the number of components in

k-variate, M̃ -component finite mixture models of W = (W1, . . . ,Wk)
′ under the assumption

that the Wj ’s are independently (but not necessarily identically) distributed within each

component:

F (w) = F (w1, . . . , wk) =
M̃∑
m=1

πmFm1 (w1)Fm2 (w2) · · ·Fmk (wk), πm > 0,
M̃∑
m=1

πm = 1. (1)

Here, F (w) is the distribution function of W , πm is the mixture proportion of the m-th

subpopulation, and Fmj (wj) is the distribution function of Wj conditional on being from the

m-th subpopulation, respectively. The number of components in F (w), M , is defined as the

smallest positive integer M̃ for which a finite mixture representation (1) can be found.

We analyze how one can recover the number of componentsM from the exact knowledge of

the distribution function of observed variables F (w1, . . . , wk) when no parametric assumptions

are imposed on the component distributions. Nonparametric identifiability and estimation

of finite mixtures has recently attracted increasing attention. Hall and Zhou (2003), Hall

et al. (2005), and Allman et al. (2009) analyze nonparametric identifiability of component

distributions and mixing proportions in model (1) under known M .1 In particular, Allman

et al. (2009) show that if k ≥ 3, model (1) is nonparametrically identifiable for any M

if the Fmj (wj)’s are linearly independent. Hettmansperger and Thomas (2000) and Cruz-

Medina et al. (2004) analyze the nonparametric identification and estimation of model (1)

with iid marginals by partitioning the support of Wj into bins and transforming the data

to multinomial vectors. Benaglia et al. (2009) and Levine et al. (2011) develop algorithms

for estimating model (1) nonparametrically using kernels. However, no theoretical results

on the identification of the number of components in model (1) are provided in the existing

literature.

We show that a lower bound on the number of components M is identified without

imposing any parametric assumptions if k ≥ 2. Interestingly, this result holds despite the

fact that the component distributions are not identifiable when k = 2 (see Clogg 1981; Hall

and Zhou 2003). The lower bound is stated in terms of the rank of a matrix constructed from

the (multinomial) distribution function of the observed data, where for continuous variables,

1Kasahara and Shimotsu (2009) study nonparametric identification of finite mixture dynamic discrete
choice models widely used in econometrics.
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we transform each element of W to a discrete random variable by partitioning its support

as in Elmore et al. (2004). We also illustrate the cases in which the bound is tight except

possibly for a set of mixture models with zero Lebesgue measure, and therefore, the bound

is tight generically in the sense of Allman et al. (2009, p. 3106). By estimating the rank of

its empirical analogue, we develop a procedure to consistently estimate a lower bound on the

number of components. Simulations illustrate that our procedure performs well.

The mixture model (1) assumes that the marginal distributions are independent condi-

tional on belonging to a subpopulation. The conditional independence assumption may be

viewed as a version of a standard repeated measures random effects model, in which multi-

variate observations on an individual are often assumed to be independent conditional on the

identity of the individual. The model (1) has important applications as demonstrated in some

recent works on nonparametric mixture models as well as those on multinomial mixtures (e.g.,

Zhou et al. 2005; Dunson and Xing 2011; Bhattacharya and Dunson 2011), and encompasses

models in latent class analysis that has been widely used in many fields including sociol-

ogy, psychology, and biostatistics (Lazarsfeld and Henry 1968; Clogg 1995; Hagenaars and

McCutcheon 2002; Magidson and Vermunt 2004; Skrondal and Rabe-Hesketh 2004). Once

an estimate of a lower bound of M is obtained, one can use algorithms such as Benaglia et

al. (2009) and Levine et al. (2011) to nonparametrically estimate the mixture model (1),

provided that the mixing proportions and the component distributions are identifiable.

Numerous methods to select the number of components have been proposed in a paramet-

ric setting (see, for example, Henna 1985; Leroux 1992; Lindsay and Roeder 1992; Windham

and Cutler 1992; Roeder 1994; Chen and Kalbfleisch 1996; Dacunha-Castelle and Gassiat

1999; Keribin 2000; James et al. 2001; Woo and Sriram 2006). Our proposed procedure

requires the conditional independence assumption but makes no distributional assumptions

on the components. Furthermore, our selection procedure is based on a statistic whose

asymptotic distribution is chi-squared or can be easily simulated, and it does not require the

estimation of a mixture model with a different number of components.

The remainder of the article is organized as follows. Section 2 discusses the nonparamet-

ric identifiability of a lower bound on the number of components under k ≥ 2. Section 3

introduces a procedure to test a lower bound on the number of mixture components. Sec-

tion 4 reports simulation results, and empirical examples are provided in section 5. The

supplementary appendix contains the proofs, mathematical details, and detailed results from

simulations and empirical examples.
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2 Nonparametric identification of a lower bound on the num-

ber of components

2.1 Two-variable case

We first analyze the nonparametric identification of a lower bound on the number of compo-

nents for the mixture model (1) with k = 2. For notational clarity, we use X and Y in place

of W1 and W2. Specifically, consider the following finite mixture models of variable (X,Y ):

F (x, y) =

M̃∑
m=1

πmFmx (x)Fmy (y), πm > 0,
M̃∑
m=1

πm = 1, (2)

where Fmx (x) and Fmy (y) are the distribution functions of X and Y conditional on being

from the m-th subpopulation. No assumptions are imposed on Fmx (x)’s and Fmy (y)’s except

that they are distribution functions. Define the number of components in F (x, y), M , as the

smallest positive integer M̃ for which a finite mixture representation (2) can be found.

We proceed to construct a partition, ∆, of the support of (X,Y ), and form a matrix that

represents the distribution of (X,Y ) over ∆. Let X and Y denote the support of X and Y .

Partition X and Y into |∆x| and |∆y| mutually exclusive and exhaustive subsets, respectively,

as ∆x = {δx1 , . . . , δx|∆x|} and ∆y = {δy1 , . . . , δ
y
|∆y |}, where |S| denotes the number of elements

in a set S. Define ∆ = ∆x ×∆y. Given a partition ∆, collect the distributions of X and Y

conditional on being from the m-th subpopulation into a vector as

pmx = (Pr(X ∈ δx1 |m), . . . ,Pr(X ∈ δx|∆x||m))′ and pmy = (Pr(Y ∈ δy1 |m), . . . ,Pr(Y ∈ δy|∆y ||m))′,

(3)

respectively. The vectors pmx and pmy implicitly depend on ∆x and ∆y.

Arrange Pr(X ∈ δxa , Y ∈ δyb ) for partition level (a, b) = (1, 1), . . . , (|∆x|, |∆y|) into a

|∆x| × |∆y| bivariate probability matrix as

P∆ =


Pr(X ∈ δx1 , Y ∈ δ

y
1) · · · Pr(X ∈ δx1 , Y ∈ δ

y
|∆y |)

...
. . .

...

Pr(X ∈ δx|∆x|, Y ∈ δ
y
1) · · · Pr(X ∈ δx|∆x|, Y ∈ δ

y
|∆y |)

 . (4)

Then, P∆ represents the distribution of (X,Y ) on the partition ∆ and can be expressed in

terms of πm’s, pmx ’s, and pmy ’s as

P∆ =
M̃∑
m=1

πmpmx (pmy )′, πm > 0,
M̃∑
m=1

πm = 1. (5)

Equation (5) is a finite mixture model (2) that is restricted to the partition ∆.
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For a partition ∆, define the number of components in P∆ as the smallest integer M̃ such

that the finite mixture representation (5) is possible. The number of components in P∆ is

closely related to the concept of nonnegative rank developed by Cohen and Rothblum (1993).

For a nonnegative matrix A, its nonnegative rank is denoted by rank+(A) and defined as the

smallest number of nonnegative rank-one matrices such that A equals their sum. Because

P∆ is a nonnegative matrix and the right-hand side of equation (5) is the sum of nonnegative

rank-one matrices, by definition, the number of components in P∆ is the nonnegative rank

of P∆.

The following proposition, originally from Cohen and Rothblum (1993), states the prop-

erties of the nonnegative rank of P∆ and its relation to the rank of P∆. Proposition 1(a),(b),

and (c) correspond to Lemma 2.3, Theorem 4.1, and Corollary 4.2 of Cohen and Rothblum

(1993), respectively.

Proposition 1 (Cohen and Rothblum, 1993) (a) rank(P∆) ≤ rank+(P∆) ≤ min{|∆x|, |∆y|}.
(b) If rank(P∆) ≤ 2, then rank(P∆) = rank+(P∆). (c) If |∆x| ≤ 3 or |∆y| ≤ 3, then

rank+(P∆) = rank(P∆).

From Proposition 1(a), rank(P∆) gives a lower bound on the number of components in P∆

whereas the number of support points of X and Y gives an upper bound on the number of

identifiable components since |∆x| ≤ |X | and |∆y| ≤ |Y|. It follows from Proposition 1 that

rank+(P∆) = rank(P∆) if rank+(P∆) ≤ 3.

The number of components in P∆ is identified with the nonnegative rank of P∆. Deter-

mining the nonnegative rank of a matrix is computationally difficult2, however, and is still

a subject of ongoing research (see, for example, Dong, Lin, and Chu 2009). Therefore, it is

useful to characterize a lower bound on the number of components in P∆ in terms of the rank

of P∆.

An obvious limitation of the lower bound based on the rank of P∆ is a possible dis-

crepancy between the lower bound and the actual number of components. This is because

the latter requires that the components πm’s, pmx ’s, and pmy ’s in (5) to be nonnegative

while the former does not.3 We investigate the size of a set of mixture models wherein

rank+(P∆) > rank(P∆). Given a positive integer M0, define the space of M0-component

mixture models θ = {pmx , pmy , πm}
M0
m=1 by Θ ⊂ (S|∆x|−1)M0 × (S|∆y |−1)M0 × SM0−1 as in

Allman et al. (2009, p. 3107), where Sk denotes the standard k-simplex. The following

proposition shows that if we randomly draw a mixture model θ from Θ and construct a ma-

trix P (θ) =
∑M0

m=1 π
mpmx (pmy )′, then we have rank(P (θ)) = M0 with probability one. This

2Vavasis (2009) shows that determining the nonnegative rank of a matrix is NP-hard.
3For example, suppose that |∆x| = |∆y| = 4 and P∆ =

∑4
m=1 π

mpmx (pmy )′, where πm > 0 and pmx s are
linearly independent but p1

y + p2
y − p3

y − p4
y = 0, so that rank(P∆) is at most 3. Writing one pmy in terms

of the other pmy s and substituting into P∆ will give a three-term mixture representation of P∆. However, if
−π1p1

x + π2p2
x and −π3p3

x + π4p4
x have both positive and negative elements, then the resulting three-term

mixture representation necessarily contains negative components, and rank+(P∆) is strictly larger than 3.
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result holds because, when rank(P (θ)) < M0, either the vectors {pmx }
M0
m=1 or {pmy }

M0
m=1 are

linearly dependent, but the set of linearly dependent {pmx }
M0
m=1’s (or {pmy }

M0
m=1’s) has Lebesgue

measure zero in R∆x×M0 (or R∆y×M0).

Proposition 2 If M0 ≤ min{|∆x|, |∆y|}, then M0 = rank+(P (θ)) = rank(P (θ)) holds for

all the points in Θ except possibly for a set of Lebesgue measure zero.

When X and Y are discrete, taking the support of (X,Y ) as ∆ and applying Proposition

2 gives that rank(P∆) = rank+(P∆) = M with probability one if we draw an M -component

bivariate mixture model with conditionally independent marginals. Hence, the bound is tight

with probability one. When X and Y are continuous, there is no obvious choice of a single

partition ∆. The nonnegative rank of P∆ could be strictly smaller than M when a single

partition ∆ does not fully reveal the information for identifying the number of components

in F (x, y). A tighter lower bound of M may be obtained by taking the maximum value of

the rank of P∆s across different partitions.

Proposition 3 Suppose that in model (2), the distribution of (X,Y ) is continuous. (a) If

{Fmx (·)}Mm=1 are linearly independent and {Fmy (·)}Mm=1 are linearly independent, then there

exists a partition ∆ with |∆x| = |∆y| = M such that rank(P∆) = M . (b) For any fixed ∆,

the probability that rank+(P∆) = rank(P∆) is one when a mixture model is drawn randomly.

Proposition 3(a) gives a sufficient condition under which the rank of P∆ is equal to M for

some choice of ∆; in this case, M is identified with the maximum value of rank(P∆)’s over

all possible partitions of X ×Y. Proposition 3(b) implies that whether rank(P∆) = M holds

depends on whether rank+(P∆) = M holds.

2.2 General k-variable case

We now illustrate how our approach in Section 2.1 can be applied to the mixture model

(1) with k ≥ 3 to obtain a lower bound on M . Consider a hyperrectangle partition ∆ =

∆1 × · · · ×∆k of W. Let P∆ denote F (w) on ∆. Note that P∆ is a k-dimensional array. P∆

is written as a weighted average of k-dimensional tensors as follows:

P∆ =

rank+(P∆)∑
m=1

πmPm, Pm = ⊗kj=1p
m
j , πm > 0,

rank+(P∆)∑
m=1

πm = 1, (6)

where ⊗ denotes a tensor product and pmj is a |∆j | × 1 vector. Here, rank+(P∆) is defined as

the smallest positive integer for which a representation (6) holds and called the nonnegative

(tensor) rank of P∆ (see, for example, Lim and Common 2009). As in the two-variable case,

rank+(P∆) provides a lower bound on M .
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We construct a matrix from P∆ by grouping the variables in W = (W1, . . . ,Wk)
′ into two

groups. We index the groupings by α. For the grouping α, let Xα and Y α be the grouped

variables. Let ∆xα = {δxα1 , . . . , δx
α

|∆xα |} =
∏
j∈Sx(α) ∆j be the partition of the support of Xα,

where Sx(α) is the set of indices such that Wj ∈ Xα, and define ∆yα similarly. Then, we

construct a |∆xα | × |∆yα | bivariate probability matrix Pα∆ by arranging Pr(Xα ∈ δxαa , Y α ∈
δy
α

b ) for partition level (a, b) = (1, 1), . . . , (|∆xα |, |∆yα |) as in (4).

A lower bound on M can be obtained in terms of rank+(P∆), rank+(Pα∆), and rank(Pα∆)

as M ≥ rank+(P∆) ≥ rank+(Pα∆) ≥ rank(Pα∆). Taking the maximum value of rank+(P∆),

rank+(Pα∆), and rank(Pα∆) across different partitions, ∆’s, and different groupings, α’s, gives

tighter lower bounds. Such bounds may still be, however, strictly smaller than M .

We investigate when rank+(P∆) = rank(Pα∆) holds. With a slight abuse of notation, given

a positive integerM0, define the space ofM0-component mixture models θ = {pm1 , . . . , pmk , πm}
M0
m=1

as Θ ⊂ (S|∆1|−1)M0 × · · ·× (S|∆k|−1)M0 ×SM0−1. Given an element θ of Θ, group W into Xα

and Y α and construct a bivariate probability matrix Pα(θ) =
∑M0

m=1 π
mpmxα(pmyα)′, where pmxα

is |∆xα |×1 and pmyα is |∆yα |×1. The following proposition shows that if the grouped variables

have sufficiently large state spaces relative to M0, an analogous result to Proposition 2 holds

for a k-variable model.

Proposition 4 If M0 ≤ min{|∆xα |, |∆yα |}, then M0 = rank(Pα(θ)) holds for all the points

in Θ except possibly for a set of Lebesgue measure zero.

In the continuous variable case, we have a simple corollary of Proposition 3(a).

Corollary 1 Suppose that in model (1), the distribution of W is continuous. If there exists a

grouping α such that the two families {Fmxα(·)}Mm=1 and {Fmyα(·)}Mm=1 are respectively composed

of linearly independent vectors, then rank(Pα∆) = M .

2.3 Relation to latent class analysis

Consider a special case in which an observation vector W = (W1, . . . ,Wk)
′ consists of k

dichotomous or polytomous responses, which are typically answers to questions or results of

diagnoses. In this case, our model (1) becomes identical to the model used in latent class

analysis. For recent surveys and applications of latent class analysis, see the references in the

introduction.

The latent class analysis with k = 2 (two-way contingency table) is also known as latent

budget analysis (Goodman 1974; Clogg 1981; de Leeuw and van der Heijden 1988). Testing

the number of components in a latent budget model is particularly difficult because the

parameters of the model are not identified unless some restrictions are imposed. Using our

result, it is possible to identify a lower bound on M without imposing restrictions on the

parameters, even though identifying a lower bound of M does not solve the problem of

parameter non-identification.
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3 Estimating a lower bound on the number of components

Proposition 1 in Section 2 shows that the rank of a matrix P∆ in (5) gives a lower bound on

the number of mixture components. In this section, we develop procedures to estimate the

rank of P∆ for a given partition ∆ and extend these procedures to the case when there are

more than two variables.

3.1 Statistic by Kleibergen and Paap (2006)

Kleibergen and Paap (2006) develop a procedure to test the null hypothesis that the rank of

P∆ is equal to r as described below. For notational brevity, let s = |∆x| and t = |∆y|, and

write the singular value decomposition of an s× t matrix P∆ as

P∆ = USV ′ =

(
U11 U12

U21 U22

)(
S1 0

0 S2

)(
V ′11 V ′12

V ′21 V ′22

)
,

where U is an s×s orthogonal matrix, V is a t× t orthogonal matrix, and S is an s× t matrix

that contains the singular values of P∆ in decreasing order on its main diagonal and is equal

to zero elsewhere. In the partition of U , S, and V on the right-hand side, U11, S1, and V11

are r × r, and the dimensions of the other submatrices are defined conformably. Then, the

null hypothesis H0 : rank(P∆) = r is equivalent to H0 : S2 = 0 because the rank of a matrix

is equal to the number of non-zero singular values.

The statistic by Kleibergen and Paap is based on an orthogonal transformation of S2 given

by Λr = A′r,⊥P∆B
′
r,⊥, whereA′r,⊥ = (U22U

′
22)1/2(U ′22)−1[U ′12 U

′
22] andBr,⊥ = (V22V

′
22)1/2(V ′22)−1[V ′12 V

′
22].

Unlike S2, Λr is not restricted to be non-negative. Then, the null hypothesis H0 : rank(P∆) =

r is equivalent to H0 : Λr = 0. Let P̂∆ be an estimator of the matrix P∆ with sample size N .

We assume that vec(P̂∆) is asymptotically normally distributed.

Assumption 1
√
Nvec(P̂∆−P∆)→d N(0,Σ) as N →∞, where Σ is an st× st covariance

matrix.

When the distribution of W is discrete or ∆ is predetermined, vec(P̂∆) follows a multinomial

distribution, and a formula for Σ is easily available. If W has a continuous distribution

and the empirical quantiles of the Wj ’s are used to construct ∆, then vec(P̂∆) follows the

empirical multivariate quantile-partitioned (EMQP) distribution (Borkowf, 2000) described

in the supplemental appendix, and one can use bootstrap to estimate Σ.

We estimate Λr by Λ̂r = Â′r,⊥P̂∆B̂
′
r,⊥ and test H0 : Λr = 0, where Âr,⊥ and B̂r,⊥ are the

estimators of Ar,⊥ and Br,⊥ obtained from the singular value decomposition of P̂∆. Kleibergen

and Paap (2006) derive the asymptotic distribution of λ̂r = vec(Λ̂r), as summarized below.
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Proposition 5 (Kleibergen and Paap, 2006, Theorem 1) Suppose that Assumption 1 holds

and that Ωr = (Br,⊥⊗A′r,⊥)Σ(Br,⊥⊗A′r,⊥)′ is nonsingular. If rank(P∆) ≤ r, then
√
Nλ̂r →d

N(0,Ωr) as N →∞.

Kleibergen and Paap (2006, Corollary 1) propose the statistic called the rk statistic:

rk(r) = Nλ̂′rΩ̂
−1
r λ̂r, (7)

where Ω̂r is a consistent estimator for Ωr. If the assumptions of Proposition 5 hold, then rk(r)

converges in distribution to a χ2((s − r)(t − r)) random variable under H0 : rank(P∆) = r.

The nonsingularity assumption on Ωr can be relaxed by using the Moore-Penrose (M-P)

pseudoinverse as discussed in Section 3.4.

The choice of ∆ is left to the researcher. As for the number of partitions, it is desirable to

use a partition that is as fine as possible from the perspective of pure identification, but using

a finer partition increases the variance of P̂∆. In practice, we suggest setting the number

of partitions equal to one plus the maximum number of components we want to allow for

in modeling the data. As for the choice of partitions, a natural choice would be to use

equiprobable intervals as in Pearson’s chi-squared test, but there may be cases where using

a non-equiprobable partition gives a stronger power because mixture models often have fat

tails. The optimal choice of partitions remains an open question.

3.2 Sequential hypothesis testing

Denote the population rank of P∆ by r0. To estimate r0, we sequentially test H0 : rank(P∆) =

r against H1 : rank(P∆) > r starting from r = 0, and then r = 1, . . . , t∗, where t∗ = min{s, t}.
The first value for r that leads to a nonrejection of H0 gives our estimate for r0.

For r = 0, . . . , t∗, let cr1−αN denote the 100(1 − αN ) percentile of the cumulative dis-

tribution function of a χ2 ((s− r)(t− r)) random variable. Then, our estimator based on

sequential hypothesis testing (SHT, hereafter) is defined as

r̂ = min
r∈{0,...,t∗}

{r : rk(i) ≥ ci1−αN , i = 0, . . . , r − 1, rk(r) < cr1−αN }. (8)

The estimator r̂ depends on the choice of the significance level αN . As shown by Robin and

Smith (2000, Theorem 5.2), r̂ converges to r0 in probability as N →∞ if we choose αN such

that αN = o(1) and −N−1 lnαN = o(1).

3.3 Information criteria

We also consider a selection procedure by information criteria to estimate r0 consistently.

Consider the criterion function Q(r) = rk(r)−f(N)g(r), where g(r) is a (possibly stochastic)
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penalty function. Define r̃ = arg min1≤r≤t∗ Q(r). Under a standard condition on f(N) and

g(r), this gives a consistent estimate of r0:

Proposition 6 Suppose that the conditions of Proposition 5 hold, and Ω̂r converges to a

nonsingular matrix for any r ≥ r0. Suppose that f(N) → ∞, f(N)/N → 0, and Pr(g(r) −
g(r0) < 0)→ 1 for all r > r0 as N →∞. Then, r̃ →p r0.

For the choice of f(N) and g(r), we consider the penalty terms in the Akaike (AIC),

Bayesian (BIC), and Hannan-Quinn (HQ) information criteria. We choose g(r) = (s−r)(t−r)
with f(N) = 2 for AIC, f(N) = log(N) for BIC, and f(N) = 2 log(log(N)) for HQ. The BIC

and HQ model selection procedures provide a consistent estimate of r0 since their choice of

f(N) and g(r) satisfies the conditions in Proposition 6. In contrast, AIC is not necessarily

consistent and tends to overestimate r0 with a large sample size.

3.4 Case of multiple variables

Suppose that W = (W1, . . . ,Wk)
′ with k ≥ 3 follows the distribution function (1). As

in Section 2.2, we group the variables in W into two groups Xα and Y α, with the grouping

index α, and let Pα∆ denote a |∆xα |×|∆yα | bivariate probability matrix derived from the joint

distribution of Xα and Y α on a partition ∆. We test the null hypothesis that rank(Pα∆) ≤ r
for all α ∈ A0, where A0 is a set of the αs over which we construct test statistics.

We assume that all the variables in W are included in the first grouping {X1, Y 1}. Then,

for every α ∈ A0, the elements of the probability matrix Pα∆ can be expressed as a lin-

ear combination of the elements of P 1
∆, and therefore, there exists a matrix Πα such that

vec(Pα∆) = Παvec(P 1
∆).

Define Aαr,⊥, Bα
r,⊥, and λαr analogously to Ar,⊥, Br,⊥, and λr in Section 4.1 using Pα∆ in

place of P∆. Define λ̂αr = vec((Âαr,⊥)′P̂α∆(B̂α
r,⊥)′) = (B̂α

r,⊥ ⊗ (Âαr,⊥)′)Παvec(P̂ 1
∆) using the esti-

mators of P 1
∆, Aαr,⊥, and Bα

r,⊥. To test the null hypothesis that rank(Pα∆) ≤ r for all α ∈ A0,

we stack λ̂αr ’s into a vector as λ̂r(A0) = ((λ̂1
r)
′, . . . , (λ̂

|A0|
r )′)′ and test the null hypothesis

λr(A0) = 0. Extending Proposition 5, the following corollary establishes the asymptotic nor-

mality of λ̂r(A0). We omit its proof to save space, because it is a straightforward consequence

of Slutsky’s theorem.

Corollary 2 Suppose that
√
Nvec(P̂ 1

∆ − P 1
∆) →d N(0,Σ1

∆) and that Ωr(A0) defined in (9)

below is nonsingular. If rank(Pα∆) ≤ r for all α ∈ A0, we have
√
Nλ̂r(A0) →d N(0,Ωr(A0))

as N →∞, where

Ωr(A0) =


Ψ1Σ1

∆(Ψ1)′ · · · Ψ1Σ1
∆(Ψ|A0|)′

...
. . .

...

Ψ|A0|Σ1
∆(Ψ1)′ · · · Ψ|A0|Σ1

∆(Ψ|A0|)′

 (9)
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and Ψα = (Bα
r,⊥ ⊗ (Aαr,⊥)′)Πα.

We can test the null hypothesis H0 : rank(Pα∆) ≤ r for all α ∈ A0 by the average rk

statistic defined as

ave-rk(r,A0) = N(λ̂r(A0))′(Ω̂r(A0))−1λ̂r(A0), (10)

where Ω̂r(A0) is a consistent estimator of Ωr(A0). Thus, ave-rk(r,A0) combines information

from λ̂αr ’s across different α’s using the inverse of their covariance matrix as the weight. Under

the assumptions in Corollary 2, ave-rk(r,A0) converges in distribution to a χ2(ν(A0)) random

variable, where ν(A0) ≡
∑

α∈A0
(|∆xα |−r)(|∆yα |−r) is the number of elements in λ̂r(A0). We

note, however, that the average rk statistic may give a slack lower bound when enumerating

sufficiently many of the groupings and partitions of the data is not computationally feasible.

When ν(A0) is larger than the rank of Σ1
∆, the covariance matrix Ωr(A0) becomes sin-

gular and the assumption of Corollary 2 is violated. In such a case, if Pr(rank(Ω̂r(A0)) =

rank(Ωr(A0)))→ 1, using the M-P pseudoinverse of Ω̂r(A0) in the ave-rk statistic (10) gives

a test statistic whose asymptotic distribution is χ2(rank(Ωr(A0))) (Andrews, 1987). How-

ever, in finite samples, if Ω̂r(A0) has a very small but nonzero eigenvalue, its pseudoinverse

may take a very large value and behave erratically. To deal with the singularity of Ωr(A0),

we follow Lütkepohl and Burda (1997) to use a suitable reduced rank estimator in place of

Ω̂r(A0). Given a small constant c, we apply a singular decomposition to Ω̂r(A0) and replace

the eigenvalues smaller than c with zero. Let Ω̂r,c(A0) denote this low-rank approximation

of Ω̂r(A0), and define the modified average rk statistic as

ave-rk+(r,A0) = N(λ̂r(A0))′(Ω̂r,c(A0))+λ̂r(A0). (11)

The asymptotic distribution of ave-rk+(r,A0) is χ2(Jc), where Jc is the number of eigenvalues

of Ωr(A0) that are no smaller than c. The behavior of ave-rk+(r,A0) could be sensitive to the

choice of c. In the simulations in Section 5, we set c equal to 0.01 times the largest eigenvalue

of Ωr(A0).4

We also consider an alternative statistic that is applicable even when ν(A0) is large.

In the alternate statistic, we first choose K subsets of A0 as {A1, . . . ,AK} so that A0 =⋃K
j=1Aj , and construct the ave-rk+(r,Aj) as in (11) but using Aj in place of A0. We then

combine the information in ave-rk+(r,Aj) for j = 1, . . . ,K into the modified max-rk statistic

defined as max-rk+(r) = maxj=1,...,K ave-rk+(r,Aj). By choosing Aj ’s so that the degree of

freedom ν(Aj) is sufficiently small, max-rk+(r) would be less sensitive to the choice of c than

ave-rk+(r,A0). We can apply the sequential hypothesis testing procedure to max-rk+(r).

Its asymptotic null distribution is not chi-squared but it can be easily simulated using the

relation
√
Nλ̂αr = Ψ̂α

√
N(vec(P̂ 1

∆)− vec(P 1
∆)).

4See Lütkepohl and Burda (1997) for other choices of c.
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4 Simulation study

We conduct simulation experiments to assess the finite sample performance of our proposed

procedures for selecting the number of components. The reported results are based on 1000

simulated samples from mixtures with M = 3 components with three different sample sizes:

N = 500, 2000, and 8000. To construct the rk statistic (7) and the ave-rk+ statistic (11)

for each sample, we estimate Ωr and Ωr(A0) consistently by nonparametric bootstrap using

1000 random samples with replacement from empirical distributions.

In the first experiment, we generate samples of (X,Y ) from a 3-component normal mix-

ture
∑3

m=1 π
mN2(µm, I2) with µ1 = (0, 0)′, µ2 = (1.0, 2.0)′, µ3 = (2.0, 1.0)′, and π1 =

π2 = π3 = 1/3. We denote the 100 × q percentile of empirical distributions of X and

Y by zxq and zyq , respectively. We consider three different partitions of the form ∆j =

{(−∞, zjq1 ], (zjq1 , z
j
q2 ], . . . , (zjqt−2 , z

j
qt−2 ], (zjqt−1 ,∞)} for j = x, y, where t is the number of par-

titions. We choose t = 4 with (q1, q2, q3) = (0.25, 0.5, 0.75) for Partition 1 and (q1, q2, q3) =

(0.1, 0.5, 0.9) for Partition 2. Thus, the support of X or Y is partitioned into 4 (asymptot-

ically) equiprobable subsets in Partition 1 while Partition 2 provides the finer partitions in

the tail part of distributions than Partition 1. Partition 3 combines Partitions 1 and 2 as

(q1, q2, q3, q4, q5) = (0.1, 0.25, 0.5, 0.75, 0.9).

Figures 1(a), (b), and (c) show the frequency that the SHT with α = 0.05, AIC, BIC, and

HQ based on the rk statistic correctly select M = 3 for Partitions 1, 2, and 3, respectively.

Across different partitions, the performance of all the procedures improves as the sample

size increases. With sample sizes 500 and 2000, the AIC outperforms other statistics, but

overestimates the number of components at N = 8000 in Partitions 1 and 2. BIC exhibits the

worst performance among all of the methods in this setup. HQ is a better choice than BIC but

is outperformed by SHT in most cases. SHT in Partition 2 performs better than in Partition

1, even though the improvement is not substantial. This is probably because the tail part of

distributions provides important information for separately identifying different components

in this experiment. SHT in Partition 2 also performs better than SHT in Partition 3; using

a larger number of partitions does not necessarily improve performance because var(P̂∆)

increases with the number of partitions.

Figures 1(d), (e), and (f) show the selection frequency across different partitions when we

generate samples from 3-component chi-squared mixtures, where πm = 1/3, Xm ∼ χ2(kmx ),

and Y m ∼ χ2(kmy ) with (k1
x, k

1
y) = (1, 1), (k2

x, k
2
y) = (3, 6), and (k3

x, k
3
y) = (6, 3). Figures 1(g),

(h), and (i) report the selection frequency for 3-component gamma mixtures with component-

specific shape parameters, where πm = 1/3, Xm ∼ Gamma(km1 , 1), and Y m ∼ Gamma(km2 , 1)

with (k1
1, k

1
2) = (1, 1), (k2

1, k
2
2) = (1.5, 3), and (k3

1, k
3
2) = (3, 1.5). In both the chi-squared and

gamma mixtures, the relative performance across SHT, AIC, BIC, and HQ and the relative

performance of SHT across different partitions are qualitatively similar to the case of the

normal mixture discussed above.
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(g) Gamma: Partition 1
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(h) Gamma: Partition 2
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Figure 1: Selection Frequencies of the Number of Components: Two Variables

Next, we consider a 4-variable, 3-component normal mixture, where W = (W1, . . . ,W4)′

follows
∑M

m=1 π
mN4(µm, I4) with µ1 = (0, 0, 0, 0)′, µ2 = (1.0, 2.0, 0.5, 1.0)′, µ3 = (2.0, 1.0, 1.0, 0.5)′,

and π1 = π2 = π3 = 1/3. Following the approach in Section 3.4, we consider three group-

ings: {X1, Y 1} = {(W1,W2), (W3,W4)}, {X2, Y 2} = {(W1,W3), (W2,W4)}, and {X3, Y 3} =

{(W1,W4), (W2,W3)}. We then estimate the probability matrix Pα∆ for each α ∈ {1, 2, 3}, and

construct the ave-rk+ statistic (11) by setting c equal to 0.01 times the largest eigenvalue of

Ωr(A0). The support of Wi is partitioned into 2 equiprobable subsets based on its empirical

median, so that the dimension of Pα∆ is 4× 4. As an alternative method, we also consider the

maximum likelihood estimator (MLE)-based parametric model selection procedure with AIC,

BIC, and HQ, where each component distribution is correctly specified as a 4-dimensional

normal distribution with unknown means and an unknown diagonal covariance matrix. Fig-

ure 2(a) reports the result. The MLE-based AIC substantially overestimates the number of

components. While the MLE-based HQ outperforms the ave-rk+-based SHT, their perfor-

mances are comparable when N ≥ 2000. This is encouraging given that our ave-rk+-based

methods do not use parametric restrictions of the normal mixture model.
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Figure 2: Selection Frequencies of the Number of Components: Four and Eight Variables

We also consider an 8-variable, 3-component normal mixture, where W = (W1, . . . ,W8)′

follows
∑3

m=1 π
mN8(µm, I8) with µ1 = (0, 0, 0, 0, 0, 0, 0, 0)′, µ2 = (1.0, 2.0, 0.5, 1.0, 0.75, 1.25, 0.25, 0.5)′,

µ3 = (2.0, 1.0, 1.0, 0.5, 1.25, 0.75, 0.5, 0.25)′, and π1 = π2 = π3 = 1/3. We first choose 4 vari-

ables out of 8, and then construct the ave-rk+ statistic using the procedure for the 4-variable

model discussed in the previous paragraph. Because
(

8
4

)
= 70, we construct 70 ave-rk+

statistics. Finally, we compute the max-rk+ statistic from these 70 ave-rk+ statistics. Fig-

ure 2(b) reports the selection frequency of SHT using the max-rk+ statistic and the mean

selection frequencies by SHT across 70 different ave-rk+ statistics. The max-rk+ statistic

performs substantially better than individual ave-rk+ statistics, suggesting that combining

information from different ave-rk+ statistics improves the performance of our procedures.

5 Examples

5.1 Intergenerational occupational mobility in Great Britain

We estimate the number of latent classes in the table of intergenerational mobility from

father’s occupation to subject’s occupation in Great Britain, originally studied by Clogg

(1981) using latent class models. Clogg estimates the 2-class and 3-class models using these

data by imposing a priori restrictions on a set of parameters. Panel (1) of Table 1 presents

the result of the SHT procedure applied to the 5× 5 table of social mobility in Great Britain

taken from Table 1.B of Clogg (1981); the null hypothesis that the number of latent classes

is no more than 4 is rejected at any significance level. The AIC, BIC, and HQ procedures

also indicate that the number of latent classes is at least 5 (not reported in the table). As
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reported in Panel (2) of Table 1, we further examine the number of latent classes in the

8 × 8 table using Table 1.C of Clogg (1981) starting from the null hypothesis of no more

than 5 classes. SHT suggests that this intergenerational occupational mobility data could be

generated from 7 latent classes while BIC, AIC, and HQ suggest 5, 8, and 6 latent classes,

respectively. Overall, the results of our procedures suggest that there are more than 5 latent

classes, rejecting the 2- and 3-class models studied by Clogg.

Table 1: Intergenerational Social Mobility in Great Britain

(1) 5×5 Table (2) 8×8 Table

Null hypothesis (H0) M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7

rk statistic 557.08 144.64 48.18 15.71 35.59 12.33 2.27
d.f. 16 9 4 1 9 4 1

p-value 0.000 0.000 0.000 0.000 0.000 0.015 0.132

Notes: The data are from Tables 1.B and 1.C of Clogg (1981).

Table 2: Type of Trade and Ethnic Group Data, Amsterdam and Rotterdam

Values of rk statistics and the degrees of freedom

Amsterdam Rotterdam

Null hypothesis (H0) M = 1 M = 2 M = 3 M = 4 M = 1 M = 2 M = 3 M = 4

rk statistic 318.09 57.87 13.48 0.23 190.23 60.82 9.20 1.88
d.f. 20 12 6 2 20 12 6 2

p-value 0.000 0.000 0.036 0.891 0.000 0.000 0.163 0.391

Notes: The data are from Table 2a of van der Heijden et al. (2002).

5.2 Types of trades started by different ethnic groups

The second example analyzes the difference across ethnic groups in the types of trades they

start in two large cities in the Netherlands, Amsterdam and Rotterdam, studied by van der

Heijden, van der Ark, and Mooijaart (2002). There are 6 types of trades and 5 ethnic groups

for each of the two cities. The members of some ethnic groups are more likely to start

certain types of trades because of such factors as the number of clients in the same ethnic

group or their level of human capital, including knowledge of the Dutch language. From this

viewpoint, each latent class could be reflecting a specific type of network and human capital.

Based on likelihood ratio statistics, van der Heijden et al. (2002) conclude that the number

of latent classes M = 3 “seems adequate” for both Amsterdam and Rotterdam. We apply

our procedures to examine if the number of latent classes is at least 3 or not. Table 2 shows

the rk statistics and the corresponding p-values from the SHT procedure. For Amsterdam,

SHT suggests 3 or 4 latent classes, whereas AIC, BIC, and HQ suggest 4, 2, and 3 latent

classes, respectively. For Rotterdam, all of our procedures suggest 3 latent classes.
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5.3 Response patterns in five-item subsets of LSAT

In our third example, we analyze the response patterns in two different five-item subsets of

LSAT, denoted by LSAT-6 and LSAT-7, originally studied by Mislevy (1984). We em-

ploy the max-rk+ statistic to these data. The response to five items is represented by

{W1,W2,W3,W4,W5} where Wi ∈ {0, 1}. We first choose 4 items out of 5 and then construct

the ave-rk+ statistic from the estimates of Pα∆s for three different groupings α = 1, 2, 3, where

we estimate the covariance matrix Ωr,c(A0) using the asymptotic formula. Because there are(
5
4

)
= 5 different ways of choosing 4 items out of 5, we construct the max-rk+ statistic from

the 5 ave-rk+ statistics. SHT based on the max-rk+ statistic suggests that M ≥ 2 in LSAT-6

at α = 0.1, 0.05, and 0.01, and that M ≥ 3 at α = 0.1 and 0.05 and M ≥ 2 at α = 0.01 in

LSAT-7.

5.4 Example 3 of Hettmansperger and Thomas (2000)

We also apply our procedure to the data that consist of 83 college-age women each with eight

replications of Witkin’s rod-and-frame task. The response variable, measured as the rod’s

error deviation in degrees from the vertical, is continuously distributed. Hettmansperger

and Thomas apply various tests of the number of components to the data transformed to a

binomial mixture: Lindsay’s (1995) gradient function method suggests M = 4, the Hellinger

and the Pearson penalized distances suggest M = 2, and the bootstrapped likelihood ratio

test suggests M = 3. Following Hettmansperger and Thomas, we use the known cut-off point

of 5 degree to define the 8 response variables {W1, . . . ,W8} with Wj = 1(|Xj | ≤ 5◦), where

Xj is the j-th error. We then calculate the max-rk+ statistic from the 70 ave-rk+ statistics

with c = 0.01, each of which is constructed from the 4 chosen variables out of the 8 response

variables using the covariance matrix Ωr(A0) estimated by the asymptotic formula. The SHT

based on the max-rk+ statistic suggests that M ≥ 3 at α = 0.1, 0.05, and 0.01, consistent

with the Hettmansperger and Thomas’s result from the bootstrapped likelihood ratio test.
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A, 62, 49-62.

Kleibergen, F. and Paap, R. (2006). “Generalized reduced rank tests using the singular value

decomposition.” Journal of Econometrics, 133, 97-126.

Lazarsfeld. P. F. and Henry, N. W. (1968). Latent Structure Analysis. Boston: Houghton

Mifflin.

18



Leroux, B. G. (1992). “Consistent estimation of a mixing distribution.” The Annals of

Statistics, 20, 1350-1360.

Levine, M., Hunter, D. R., and Chauveau, D. (2011). “Maximum smoothed likelihood for

multivariate mixtures.” Biometrika, 98, 403-416.

Lim, L.-H. and Comon, P. (2009) “Nonnegative approximations of nonnegative tensors.”

Journal of Chemometrics, 23, 432-441.

Lindsay, B. G. (1995). Mixture Models: Theory, Geometry, and Applications. Hayward:

Institute of Mathematical Statistics.

Lindsay, B. G. and Roeder, K. (1992), “Residual diagnostics for mixture models.” Journal

of the American Statistical Association, 87, 785-794.

Lütkepohl, H. and Burda, M. M. (1997). “Modified Wald tests under nonregular conditions.”

Journal of Econometrics, 78, 315-332.

Magidson, J. and Vermunt, J. K. (2004). “Latent class models.” In: Kaplan, D. (Ed.), The

Sage Handbook of Quantitative Methodology for the Social Sciences, Thousand Oakes: Sage

Publications, 175-198.

McLachlan. G. J. and Basford, K. E. (1988). Mixture Models: Inference and Applications to

Clustering. New York: Dekker.

McLachlan, G. and Peel, D. (2000). Finite Mixture Models. New York: Wiley.

Mislevy, R. J. (1984). “Estimating latent distribution.” Psychometrika, 49, 359-381.

Robin, J.-M. and Smith, R. (2000). “Tests of rank.” Econometric Theory, 16, 151-175.

Roeder, K. (1994). “A graphical technique for detecting the number of components in a

mixture of normals.” Journal of the American Statistical Association, 89, 487-495.

Schork, N. J., Weder, A. B., and Schork, A. (1990). “On the asymmetry of biological

frequency distributions.” Genetic Epidemiology, 7, 427-446.

Skrondal, A. and Rabe-Hesketh, S. (2004). Generalized Latent Variable Modeling: Multilevel,

Longitudinal, and Structural Equation Models. Boca Raton: Chapman & Hall/CRC.

Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985). Statistical Analysis of Finite

Mixture Distributions. New York: Wiley.

van der Heijden, P. G. M., van der Ark, L. A., and Mooijaart, A. (2002). “Some examples

of latent budget analysis and its extensions.” In: Hagenaars, J. A. and McCutcheon, A. L.

(Eds.), Applied Latent Class Analysis, Cambridge: Cambridge University Press, 107-136.

19



Vavasis, S. (2009). “On the complexity of nonnegative matrix factorization.” SIAM Journal

of Optimization, 20, 1364-1377.

Windham, M. P. and Cutler, A. (1992). “Information ratios for validating mixture analysis.”

Journal of the American Statistical Association, 87, 1188-1192.

Woo, M.-J. and Sriram, T. N. (2006). “Robust estimation of mixture complexity.” Journal

of the American Statistical Association, 101, 1475-1486.

Zhou, X. H., Castelluccio, P., and Zhou, C. (2005). “Nonparametric estimation of ROC

curves in the absence of a gold standard.” Biometrics, 61, 600-609.

20


	Introduction
	Nonparametric identification of a lower bound on the number of components
	Two-variable case
	General k-variable case
	Relation to latent class analysis

	Estimating a lower bound on the number of components
	Statistic by Kleibergen and Paap (2006)
	Sequential hypothesis testing
	Information criteria
	Case of multiple variables

	Simulation study
	Examples
	Intergenerational occupational mobility in Great Britain
	Types of trades started by different ethnic groups
	Response patterns in five-item subsets of LSAT
	Example 3 of Hettmansperger and Thomas (2000)


