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1 Estimation Procedures: Selection and Adjustment Costs

1.1 The issue of selection in the LP approach

In this section we outline how we control for endogeneous selection while using LP intermediate proxy

approach. The idea is essentially the same as the one used in Olley and Pakes (1996); namely, we first

identify the state variables that are relevant for endogneous exiting decisions and approximate the survival

probabilities using the polynomials in the observable variables. Then, we can control for the endogenous

exiting decision by including the polinomials in the survival probabilities when the moment conditions

are constructed.

First, the state variables that are relevant for the plant exit decision are the predetermined level of

capital kit and the past import decision di,t−1. The model in section 2 implies that a plant chooses

to continue to produce if the current realization of productivity term ωit is higher than the threshold

value ωt(kit, di,t−1). One might think that the intermediate proxy approach is not applicable to control

for the selection bias because we cannot “recover” ωit from observables given that we do not observe

the current period intermediates if the plant chooses to exit. Note, however, that ωit follows the first

order Markov process ωit = ξt + γdi,t−1 + ωi,t−1 + uit (equation (8) in the main text) and, thus, it

is possible to approximate ωit using the observable variables (di,t−1, ωi,t−1), where ωi,t−1, in turn, can

be proxied by the past value of intermediates, the past capital, and the past import decision so that

ωi,t−1 = ω∗t−1(xi,t−1, ki,t−1, di,t−1) (equation (10) in the main text).1
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Specifically, the plant chooses to stay if ωit ≥ ωt(kit, di,t−1), or using ωit = ξt + γdi,t−1 + ωi,t−1 + uit

and ωi,t−1 = ω∗t−1(xi,t−1, ki,t−1, di,t−1), the plant stays if

uit ≥ ωt(kit, di,t−1)− ξt − γdi,t−1 − ω∗t−1(xi,t−1, ki,t−1, di,t−1)

≡ ut(kit, ki,t−1, di,t−1, xi,t−1),

where ut(kit, ki,t−1, di,t−1, xi,t−1) is the threshold value of uit that induces a plant to exit at t. Since a

plant continues in operation if uit ≥ ut(kit, ki,t−1, di,t−1, xi,t−1), the survival probabilities are given by

Pr{χit = 1|ut(kit, ki,t−1, di,t−1, xi,t−1)} = 1− Fu(ut(kit, ki,t−1, di,t−1, xi,t−1))

= Pt(kit, ki,t−1, di,t−1, xi,t−1)

≡ Pit, (1)

where Fu(·) is the cumulative distribution of uit. Equation (1) corresponds to equation (10) in Olley and

Pakes (1996). We can approximately estimate (1) by probit using the polinomials in (kit, ki,t−1, di,t−1, xi,t−1)

as explanatory variables for the survival decision.

Once the survival probabilities are estimated in terms of the observables, the rest of the procedure for

controlling for the selection bias is essentially the same as that of the OP approach. By inverting (1), we

may obtain uit as a function of Pit and write this inverse function as uit = u∗(Pit). Then, the conditional

expectation of ωit given ωi,t−1, di,t−1, and χit = 1 can be expressed as

E[ωit|ωi,t−1, di,t−1, χit = 1] = ξt + γdi,t−1 + ρωi,t−1 + E[uit|uit ≥ u∗(Pit)]. (2)

Here, the term E[uit|uit ≥ u∗(Pit)] controls for the selection bias. For instance, if we know uit is normally

distributed, this term becomes the inverse Mill’s ratio.

We obtain the estimate of E[ωit|ωi,t−1, di,t−1, χit = 1] by the pooled OLS regression of ( ˆωit + ηit)(β∗) ≡
yit−β̂sl

s
it−β̂uluit−β̂eeit−β∗kkit−β∗xxit−β∗ddit on the past import status di,t−1, the estimate of the previous

period’s productivity shock ω̂i,t−1(β∗) ≡ φ̂t−1(xi,t−1, ki,t−1, di,t−1) − β∗kki,t−1 − β∗xxi,t−1 − β∗ddi,t−1, and

a third-order polynomial series of the survival probability (1) which approximates the term E[uit|uit ≥
u∗(Pit)]. Here, φ̂t(·) is the estimate of φt(·) obtained by the OLS regressions of yit − β̂sl

s
it − β̂uluit − β̂eeit

on a third-order polynomial series of (xit, kit, dit) while the survival probability is estimated by the probit

with a third-order polynomial series in (kit, ki,t−1, di,t−1, xi,t−1) as regressors. In estimating (2), we also

allow for year-specific constant terms, ξt, to control for the year-specific aggregate productivity shocks.

Establishing the procedure to estimate E[ωit|ωi,t−1, di,t−1, χit = 1], we consistently estimate βk, βx,

ht(di,t−1, ωi,t−1, uit). Even in this case, we may apply the similar logic to control for the selection bias as long as
ht(di,t−1, ωi,t−1, uit) is strictly increasing in uit.
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and βd while controlling for the selection bias as discussed in section 4.1 of the main text.

1.2 Alternative Estimators: the Within-Groups and the GMM estimators

To address the simultaneity issue, we also consider the following two alternatives: the within-groups

estimator and the system GMM estimator.

The within-groups estimator only uses the within-plant variation so that it is robust against the

simultaneity arising from the correlation between an unobserved plant-specific productivity shock and

inputs. It is not robust, however, against the simultaneity due to the correlation between a transitory

shock and inputs. Furthermore, the between-plant variation often plays an important role in identifying

the parameters; this is especially true for coefficients of capital and imported intermediates where the

within-plant variation is much less than the between-plant variation due to their slow adjustment over

time. The within-estimator may lead to imprecise estimates especially for capital and imported interme-

diates. This issue becomes more pronounced when there is idiosyncratic measurement error in inputs;

within-transformation lowers signal to noise ratio and magnifies the bias induced by measurement errors

(cf., Griliches and Hausman, 1986).

In order to control for simultaneity in panel data, Blundell and Bond (1998, 2000) propose the

system GMM estimator by extending the first-differenced GMM estimator (cf., Arellano and Bond,

1991). Consider the equation (7) in the main text with the following stochastic process of ωit:

ωit = ξt + γdi,t−1 + ρωi,t−1 + αi + vit, (3)

where ξt is a year-specific effect, αi is a plant-specific effect, vit is an i.i.d. productivity shock. Using a

dynamic common factor representation, equation (7) in the main text with (3) can be rewritten as:

yit = βkkit − ρβkki,t−1 + βsl
s
it − ρβsl

s
i,t−1 + βuluit − ρβului,t−1 + βeeit − ρβeei,t−1

+βxxit − ρβxxi,t−1 + βddit + (γ − ρβd)di,t−1 + ρyi,t−1 + ξt + αi + µit (4)

where µit = ηit − ρηi,t−1 + vit.

Following Blundell and Bond (2000), we first estimate the unrestricted parameter vector of (4) by

the one-step GMM and then obtain the restricted parameter vector (βk, βs, βu, βe, βm, βd, γ, ρ) using

minimum distance (cf., Chamberlain, 1982). The following moment conditions are used:

E[zi,t−s∆µit] = 0 for s = 2, 3, (5)

E[∆zi,t−s(α∗i + µit)] = 0 for s = 1, (6)
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where zit = (yit, kit, l
s
it, l

u
it, xit, dit) and ∆zit = zit − zi,t−1. The first set of the moment conditions (5)

comes from the first differenced equations with lagged levels of the variables as instruments. Blundell

and Bond (1998) find that exploiting the additional moment conditions (6), based on the level equations

with lagged differences of the variable as instruments, may lead to dramatic reductions in finite sample

bias. Recently, however, some researchers have found that even the system GMM estimator could lead

to imprecise and possibly biased estimates due to weak instruments (e.g., Griliches and Mairesse, 1998;

Mulkay, Hall, and Mairesse, 2000; Levinsohn and Petrin, 2003).

1.3 Adjustment Costs: Ackerberg, Caves and Fraser (2005)

Suppose that skilled labor, unskilled labor, and energy are subject to adjustment costs so that the

past variables for skilled labor, unskilled labor, and energy are also this period’s state variables. De-

note sit = (lsit, l
u
it, eit). Then, the demand functions are written as: lsit = ls∗t (kit, dit, ωit, si,t−1), luit =

lu∗t (kit, dit, ωit, si,t−1), and eit = e∗t (kit, dit, ωit, si,t−1). Or we can write

sit = s∗t (kit, dit, ωit, si,t−1),

where s∗t (·) is a vector-valued function. We add the subscript t since the demand functions depend on

prices which are time-dependent.

We maintain the assumption that materials are not subject to adjustment costs. Since xit is a freely

variable input and, thus, the adjustment costs for skilled labor, unskilled labor, and energy affect the

demand for materials only through their effects on the choices of sit, we may consider the demand function

for materials conditioned on sit = (lsit, l
u
it, eit):2 xit = x∗t (kit, dit, ωit, sit). In the Cobb-Douglas case, it is

straightforward to verify that this demand function is strictly increasing in ωit and we get the function

ω∗t (kit, dit, xit, sit) which corresponds to the equation (10) in the main text.3

The rest of the estimation procedure is similar to the one discussed in the main text. In particular,

we have an estimate of the residual for each candidate parameter vector as:

( ˆνit + ηit)(β∗) = yit − β∗s lsit − β∗uluit − β∗eeit − β∗kkit − β∗xxit − β∗ddit − Ê[ωit|ωi,t−1, di,t−1, χit = 1].

Based on the residual, we can construct the GMM estimator using the instrument Zit = (kit, ki,t−1, di,t−1,

di,t−2, xi,t−1, xi,t−2, l
s
i,t−1, l

s
i,t−2, l

u
i,t−1, l

u
i,t−2, ei,t−1, ei,t−2). That is, the parameters β∗ = (β∗k , β∗s , β∗u, β∗e , β∗x, β∗d)

2Alternatively, as Ackerberg, Caves and Fraser (2005) suggest, we may also consider the demand function for materials
as xit = x∗t (kit, dit, ωit, si,t−1) but, in this case, it is not easy to verify the strict monotonicity condition.

3For example, consider a simplified version of production function: Yit = eωitK
βk
it L

βl
it Xβx

it . In this case, sit = lit and we
omit dit. Then, from the first order condition for Xit, we have x(kit, ωit, lit) = constt+(βk/(βx−1))kit+(βl/(βx−1))lit+ωit,
where “constt” depends on prices and parameters. It’s clear that this function is strictly increasing in ωit. Inverting it with
respect to ωit, we have ω∗t (kit, xit, lit) = constt − (βk/(βx − 1))kit − (βl/(βx − 1))lit + xit.
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are estimated by minimizing the GMM criterion function Q(β∗) =
∑12

h=1[
∑N

i=1

∑Ti

t=1981( ˆνit + ηit)(β∗)Zit,h]2,

where Ti is the last year the ith firm is observed. Note that, by using past, rather than current, labor and

energy variables as instruments to identify βs, βu and βe we allow for the possibility that a plant makes

these decisions after observing this period’s innovation in productivity.

2 Additional Estimation Results

2.1 Ackerberg, Caves, and Frazer (2005)

There are several reasons to suspect the coefficients estimated in the first stage of the OP/LP technique.

One possibility is that the level of skilled labor cannot be altered without incurring extra adjustment

costs; in this case, they are more properly defined as state variables in the firm’s problem, rather than

freely variable inputs. Columns (1) and (3) of Table 1 present the results from the OP/LP estimator

where skilled labor is treated as a state variable for the Basic and Extended Sample, respectively. Because

skilled labor is a state variable its coefficient is estimated in the second stage. The results show that the

coefficients across all variables are reasonably similar to those found in the original experiment and again

indicate the substantial static and dynamic effects from using imports.

Recently, Ackerberg, Caves and Frazer (2005) show that the OP/LP estimation technique may not

properly identify the coefficients estimated in the first stage. Their critique argues that the demand

functions for skilled labor, unskilled labor, and energy can be written as functions of the state variables

(kit, dit, ωit) and, since we have ωit = ω∗t (xit, kit, dit) in equation (10), they are fully written as functions

of (xit, kit, dit). Then, looking at the first stage regression (11), we notice that lsit −E[lsit|xit, kit, dit] = 0

etc.. That is, there would be no variability left in the regressors to identify the first stage coefficients.

To deal with this identification issue, we estimate all of the coefficients in the second stage of the

OP/LP technique, extending a method proposed by Ackerberg et al. (see also Bond and Söderbom,

2005). Our method assumes that skilled labor, unskilled labor, and energy are also subject to adjustment

costs. Then, their demand functions depend on their past values, which in turn provide variations in

their current values that are independent of (kit, dit, ωit) to identify their coefficients. In this case, βs,

βu, and βe are identified from the moment conditions E[(νit + ηit)lsit−1] = 0, E[(νit + ηit)luit−1] = 0,

and E[(νit + ηit)eit−1] = 0, respectively, while (βx, βk, βd) are identified from the moment conditions

E[(νit + ηit)xit−1] = 0, E[(νit + ηit)kit] = 0, and E[(νit + ηit)dit−1] = 0. We also include six over-

identifying conditions using the predetermined variables (ki,t−1, di,t−2, xi,t−2, l
s
i,t−2, l

u
i,t−2, ei,t−2).

The results are reported in columns (2) and (4) of Table 1. In column (2) we see that the coefficient

for unskilled labor is close to zero and the standard errors are considerably wider on skilled labor and

energy. Similarly, in column (4) the coefficient on skilled labor is close to zero and the standard errors
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Table 1: Additional Estimates of Production Function: Discrete Import Variable

The Data Set Basic Sample Extended Sample
Estimators OP/LP Proxy ACF OP/LP Proxy ACF

(1) (2) (3) (4)
Skilled labor 0.111 0.049 0.076 0.0001

(0.032) (0.181) (0.010) (0.084)
Unskilled labor 0.147 0.0001 0.138 0.107

(0.008) (0.017) (0.009) (0.021)
Energy 0.041 0.199 0.048 0.097

(0.004) (0.143) (0.004) (0.096)
Capital 0.060 0.036 0.075 0.058

(0.009) (0.012) (0.010) (0.013)
Materials 0.603 0.528 0.632 0.655

(0.023) (0.049) (0.020) (0.034)
Disc. Import (βd) 0.260 0.228 0.178 0.162

(0.037) (0.047) (0.035) (0.031)
γ 0.035 0.051 0.024 0.028

(0.009) (0.007) (0.008) (0.007)
ρ 0.815 0.868 0.816 0.821

(0.024) (0.035) (0.024) (0.028)
Implied γ

1−ρ 0.190 0.388 0.130 0.157

P-value for over- 0.744 0.719 0.975 1.000
identification test

No. of Obs. 33200 45518

Notes: Standard errors are in parentheses. Columns (1)-(2) use the “Basic Sample” that excludes plants for which the initial
capital stock are not reported. Columns (3)-(4) use the “Extended Sample” in which a missing initial capital stock is imputed by a
projected initial capital stock based on other reported plant observables. The OP/LP estimators in columns (1) and (3) specify the
stochastic process of ωt of the equation (8) in the main text. The OP/LP estimators in column (1) and (3) estimate the coefficient
of skilled labor in the second stage by treating it as an additional state variable. The ACF estimator in column (2) and (4) treats
skilled labor, unskilled labor, and energy as additional state variables and, hence, estimates all of these coefficients in the second
stage.

are again wider on skilled labor, unskilled labor and energy. While this may be indicative of model

misspecification, it could likely to point to a lack of good instruments for those variables. However, the

size and significance of the coefficients measuring the static and dynamic effect from using imports does

not change qualitatively across the estimation procedure. Both βd and γ are positive and significant even

when all coefficients are estimated in the second stage of the OP/LP procedure.

2.2 Industry-level Results

We also check how the results change across industries. We estimate the production functions based

on the Basic Sample for two of the largest 3-digit level industries (ISIC codes): Food (311) and Metals

(381). Table 2 presents the results from the OP/LP estimators, where ωit processes are specified using

either AR(1) or a third-order series approximation. Probably reflecting a difference in the sample sizes,

the standard errors for Metal Industry are generally larger than those for Food Industry.

Using the discrete import variable, the estimated coefficients on the import variables under the AR(1)

specification are reported in columns (1) and (3) and they indicate a large positive static effect on

productivity (24.3-25.7 percent). When we specify ωit processes by series in columns (2) and (4), the

estimates are slightly lower but still large (19.1-22.7 percent) although they are marginally significant at

a 10 percent level. The estimated values of γ for the discrete import variable are positive and significant
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Table 2: Estimates of Production Function for Food and Metal Industries
Discrete Import Variable Continuous Import Variable

Industry Food Metals Food Metals
ωit process AR(1) Series AR(1) Series AR(1) Series AR(1) Series
Skilled labor 0.073 0.139 0.072 0.138

(0.009) (0.017) (0.008) (0.017)
Unskilled labor 0.088 0.199 0.091 0.203

(0.015) (0.023) (0.011) (0.023)
Energy 0.070 0.051 0.072 0.050

(0.010) (0.011) (0.007) (0.010)
Capital 0.051 0.050 0.074 0.075 0.051 0.050 0.099 0.092

(0.009) (0.009) (0.032) (0.033) (0.009) (0.010) (0.036) (0.036)
Materials 0.664 0.658 0.400 0.378 0.753 0.722 0.434 0.408

(0.055) (0.060) (0.097) (0.099) (0.025) (0.040) (0.096) (0.104)
Discrete Import 0.257 0.191 0.243 0.227

(0.103) (0.111) (0.110) (0.124)
Continuous Import 0.370 0.422 0.258 0.234

(0.167) (0.209) (0.157) (0.181)
γ 0.064 — 0.060 — 0.068 — 0.037 —

(0.025) (0.030) (0.107) (0.056)
ρ 0.837 — 0.881 — 0.748 — 0.884 —

(0.067) (0.073) (0.107) (0.093)
Implied γ

1−ρ 0.393 — 0.504 — 0.270 — 0.319 —

Implied θ 3.035 2.711 2.682 2.748
P-value for over-
identification test 0.784 0.769 0.809 0.834 0.724 0.871 0.844 0.839

No. of Obs. 12273 3733 12273 3733

Notes: Standard errors are in parentheses. The estimates are based on the “Basic Sample” that excludes plants for which the initial
capital stock are not reported. The OP/LP estimators that specify ωit processes by “Series” use the third order polynomials in
(ωt−1, dt−1) for discrete import variable and (ωt−1, nt−1). for continuous import variable.

for both industries, suggesting a positive dynamic effect of the usage of imported materials.

As for the results from using the continuous import variable, all the estimated coefficients for the

continuous import variable are positive and of large size, ranging from 23.4 to 42.2 percent, but the

estimates from the Metal industry are not as significant; for the Metal industry, the estimate from AR(1)

specification in column (7) is barely significant at a 10 percent level while the estimate from series in

column (8) is not significant even at a 10 percent level. Although the relatively large standard errors

for the Metal industry might be due to its small sample size, the insignificance of the static productivity

effect adds a caveat on the positive impact of changing the amount of imported materials on productivity.

The estimated values of γ for the continuous import variable are positive but not significant for both

industries. Thus, the evidence for the positive dynamic effect of an increase in the usage of imported

intermediates is, at best, weak. Compared to the result for the discrete import variables, the relative

insignificance of the dynamic effect of the usage of imported materials in the regression using continuous

import variables might indicate that, it is not the intensive margin of how much a plant imports but

the extensive margin of whether a plant imports or not that determines the dynamic effect of importing

materials. This could be the case, for instance, if importing intermediates from foreign countries per

se—regardless of how much a plant imports—provides an opportunity to learn foreign technologies and

thus leads to a positive dynamic effect on productivity.
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Table 3: Panel OP/LP Estimates: Energy vs. Materials

The Data Set Basic Sample
Import Variable Discrete Continuous

The Proxy Materials Energy Materials Energy
(1) (2) (3) (4) (5) (6) (7) (8)

ωit process AR(1) Series AR(1) Series AR(1) Series AR(1) Series
Skilled labor 0.137 0.137 0.138 0.138

(0.006) (0.022) (0.006) (0.006)
Unskilled labor 0.145 0.143 0.148 0.147

(0.008) (0.024) (0.008) (0.007)
Energy 0.043 0.057 0.061 0.044 0.098 0.084

(0.005) (0.016) (0.022) (0.005) (0.024) (0.022)
Capital 0.058 0.064 0.026 0.029 0.066 0.074 0.047 0.041

(0.009) (0.010) (0.009) (0.010) (0.009) (0.010) (0.014) (0.011)
Materials 0.549 0.509 0.643 0.616 0.577 0.643

(0.025) (0.029) (0.101) (0.021) (0.027) (0.006)
Import 0.214 0.220 0.431 0.448 0.246 0.270 0.520 0.495

(0.035) (0.038) (0.039) (0.045) (0.052) (0.061) (0.158) (0.086)
θ — — — — 3.505 3.115 2.237 1.170

(1.428) (2.361) (0.035) (0.064)
γ 0.041 — 0.072 — 0.030 — 0.086 —

(0.011) (0.011) (0.010) (0.035)
ρ 0.892 — 0.808 — 0.822 — 0.837 —

(0.027) (0.027) (0.031) (0.052)
Implied γ

1−ρ 0.380 — 0.373 — 0.169 — 0.528 —

(0.166) (0.107) (0.086) (0.246)
P-value for over-
identification test 0.593 0.759 0.930 0.980 0.824 0.759 1.000 0.915

No. of Obs. 33200

Notes: Standard errors are in parentheses. Columns (1)-(8) use the “Basic Sample” that excludes plants for which the initial capital

stock are not reported. Columns (1), (2), (5) and (6) use the materials variable as the OP/LP proxy, while columns (3), (4), (5)

and (6) use energy as a proxy. The OP/LP estimators in columns (2), (4), (6) and (8) specify the stochastic process of ωt using

the third order polynomials in (ωt−1, dt−1).

2.3 Energy As A Proxy

Table 3 presents the results from the OP/LP Proxy estimator using energy as a proxy (instead of ma-

terials) on the Basic Sample. Columns (1)-(4) use the discrete import variable, while columns (5)-(8)

present the results for the continuous import variable. We have included the results for both energy and

materials to ease comparison. Columns (1),(2),(5) and (6) use materials as the proxy for productivity in

the OP/LP estimation, whereas columns (3),(4),(7) and (8) use energy as the proxy. Columns (1), (3), (5)

and (7) present the results under the assumption that the plant-specific productivity shock, ωit, follows

an AR(1) process. Columns (2), (4), (6) and (8) use the OP/LP estimation technique without making

any assumptions on the structure of ωit and estimate ωit as a third order polynomial in (ωi,t−1, Pit, di,t−1)

where di,t−1 is the lagged decision to import.

The most important finding is the significance and large size of the current discrete import variable

across proxies. Comparing columns (1) and (3), (2) and (4), (5) and (7), and, (6) and (8) it is clear that

using the energy proxy increases the estimated impact of switching to imported materials. Similarly, a

positive and significant γ coefficient across proxies strengthens the evidence of a dynamic import effect.

As a consequence of the strong dynamic effect, the long run effect, γ/(1 − ρ), is also substantially

higher using the energy proxy compared to the materials proxy. None of the specifications are rejected
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Figure 1: Monotonicity Condition

by the bootstrapped overidentification test.

2.4 Monotonicity Condition

In this section we graphically examine the monotonicity condition required for the OP/LP estimation

procedure to be valid. The monotonicity condition is essentially the same as that in Levinsohn and Petrin

(2002): conditional on capital and the decision to import intermediates, profit maximizing behavior must

lead more productive firms to use more intermediate materials.

Figure 1 shows the relationship between productivity, capital and materials for each group of years.

On the left hand side we show this relationship for non-importers and on the right hand side we show

this relationship for importers. In all cases we see that the materials variable is increasing in both capital

and productivity indicating that the monotonicity condition is satisfied.
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Table 4: Descriptive Statistics in 1980 (Extended Sample)

Interme- Import Output/ No. of
Output Capital Labor Energy diates Ratios Workers Plants

All 98.33 40.76 54.33 0.64 50.65 0.07 1.18 4502
Plants (468.41) (233.12) (127.34) (7.65) (235.82) (0.18) (1.93)

Importing 442.28 180.44 168.44 2.91 203.11 0.37 2.58 308
Plants 1003.26) (430.15) (231.34) (14.46) (404.55) (0.26) (3.69)

Non-Importing 22.03 10.91 25.93 0.08 13.02 0.00 0.75 2626
Plants (57.58) (74.60) (29.39) (0.57) (32.36) (0.00) (0.84)

Switchers 158.55 63.32 79.48 1.13 83.72 0.13 1.62 1568
(625.17) (323.55) (173.49) (11.18) (343.34) (0.22) (2.43)

Survivors 201.20 77.06 84.34 1.46 99.60 0.11 1.65 1460
(784.12) (377.72) (192.22) (12.87) (388.51) (0.22) (2.64)

Quitters 48.95 23.34 39.93 0.25 27.16 0.05 0.95 3042
(149.14) (105.10) (75.05) (2.59) (90.49) (0.15) (1.41)

Notes: Standard errors are in parentheses. The statistics are based on the Extended Sample, where a missing initial capital

stock is imputed by a projected initial capital stock based on other reported plant observables. “Importing Plants” are plants

that continuously imported foreign intermediates in the sample. “Non-Importing Plants” are plants that never imported foreign

intermediates in the sample. “Switchers” are plants that switched their import status in the sample. “Survivors” are plants that

did not exit during the sample period (1980-1996) while “Quitters” exit during the sample period. “Output,” “Capital,” “Energy,”

and “Intermediates” are measured in millions of 1980 pesos. “Labor” is the number of workers. “Import Ratios” are the ratios of

imported intermediate materials to total intermediate materials.

2.5 Other Omitted Results

In the main text, we omitted some results from the Extended Sample because these results are qualita-

tively very similar to those from the Basic Sample. In this section we report the omitted results.

Table 4 and 5, corresponding to Table 1 and 2 in the main text, report descriptive statistics for

variables in the year of 1980 and transition rates across import status together with exit rates from the

Extended Sample. The descriptive statistics as well as the transition probabilities across import status

from the Extended Sample are similar to those from the Basic Sample.

Table 6 shows the frequency of export/import status change over the sample period of 1990-1996

among continuosly operating plants. More than 80 percent of plants did not change export/import

status throughout the sample period.

For brevity, 90 % bootstrap confidence intervals are omitted in Figure 2 in the main text. As a

example, Figure 1 plots the productivity dynamics before and after plants start importing together with

90 % bootstrap confidence interval for the 50 percentile importing plants with 22.2 percent import shares

(nt = 0.251). Note that the solid line in Figure 1 of this appendix corresponds to the dotted line in

Figure 2 of the main paper.
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Table 5: Transition Probability of Import Status and Exit (Extended Sample)

Year t status No Imports Imports
Year t + 1 status No Imports Imports Exit No Imports Imports Exit
1981-1985 ave. 0.832 0.052 0.116 0.169 0.785 0.046
1986-1990 ave. 0.877 0.052 0.071 0.176 0.801 0.023
1991-1995 ave. 0.866 0.064 0.070 0.126 0.852 0.023
1981-1995 ave. 0.858 0.056 0.086 0.157 0.813 0.031

Notes: The statistics are based on the Extended Sample, where a missing initial capital stock is imputed by a projected initial

capital stock based on other reported plant observables.
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Figure 1: Productivity Dynamics for the 50 Percentile Importing Plants
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Table 6: Export and Import Status Change

Exports Imports
Status Changes No. % No. %
0 1837 0.835 1765 0.802
1 207 0.094 190 0.086
2 109 0.050 163 0.074
3 33 0.015 55 0.025
4+ 15 0.007 28 0.013
No. of Plants 2,201

Notes: Based on the sample of plants that continuously operated over the 1990-1996 period.
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