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Abstract

This paper considers a decision-maker who prefers to make a point decision when

the object of interest is interval-identi�ed with regular bounds. When the bounds

are just identi�ed along with known interval length, the local asymptotic minimax

decision with respect to a symmetric convex loss function takes an obvious form:

an e¢ cient lower bound estimator plus the half of the known interval length.

However, when the interval length or any nontrivial upper bound for the length

is not known, the minimax approach su¤ers from triviality because the maximal

risk is associated with in�nitely long identi�ed intervals. In this case, this paper

proposes a local asymptotic minimax regret approach and shows that the mid-

point between semiparametrically e¢ cient bound estimators is optimal.
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1 Introduction

Many objects of inference in economics are related to decisions that are to be implemented

in practice. For example, estimation of willingness-to-pay in discrete choice models is closely

related to transportation and environmental policies or marketing strategies. Also, treatment

decisions are based on the estimated treatment e¤ects in various program evaluations or

medical studies. In such an environment, a point decision (or estimate) about the object

1I thank Don Andrews, Xu Cheng, Jinyong Hahn, Ulrich Müller, Aureo de Paula, Frank Schorfheide, Xun
Tang, and Yoon-Jae Whang for valuable comments. I thank Co-Editor and two referees for their detailed
comments that have led to a substantial improvement of the paper. All errors are mine. Corresponding
address: Kyungchul Song, Department of Economics, University of British Columbia, 997-1873 East Mall,
Vancouver, BC, Canada, V6T 1Z1. Email address: kysong@mail.ubc.edu.
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of interest is preferred to a set estimate for practical reasons. A natural way to proceed in

this case would be to introduce identifying restrictions for the object of interest and obtain

its reasonable estimator using data. However, the decision-maker faces a dilemma when the

empirical results are sensitive to the identifying restrictions that have no a priori justi�cation

other than that of practical convenience. Relying on the unjusti�able restrictions will erode

the validity of the decision, while shedding them will yield no guidance as to a reasonable

point decision (or estimate). This paper attempts to address this dilemma by searching for

an optimal point decision when the object of interest is interval-identi�ed.

Searching for a point estimator of an interval-identi�ed parameter may sound odd at

�rst. The problem of estimation is fundamentally a decision problem, for it is the problem

of producing an �appropriate�mapping from the observed data into the parameter space. A

formal de�nition of �appropriateness�of an estimator presumes a decision-theoretic descrip-

tion of the problem. As far as the nature of the problem is decision-theoretic, the candidate

class of decisions - whether it be a point or an interval - is a matter of the decision maker�s

choice. This decision-theoretic perspective where an optimal decision is pursued regardless

of the informational content of the observations makes contrast with the perspective of infer-

ence where one is allowed to declare �non-discovery�when the informational content of the

observations is thin. This paper demonstrates how the problem of point estimation can be

formulated in decision-theoretic terms even when the object of interest is interval identi�ed.

Let Xn be a random vector of observations with distribution Pn. We are interested in

an object �0 2 [�L; �U ]; where �B = (�U ; �L)
>; �L � �U , is identi�ed by Pn. See Manski

(2003) for an overview of the bound approach. (See also Imbens and Manski (2004), Stoye

(2009a) and Fan and Park (2009) for examples and for inference procedures.) The boundary

parameter �B is not known, but has
p
n-consistent and asymptotically e¢ cient estimators

constructed using Xn. This paper focuses on the problem of deciding on (or estimating) �0
after observing Xn.

When the interval length has a known bound along which the interval bounds are just

identi�ed, one can show that the local asymptotic minimax approach of Hájek (1972) and Le

Cam (1979) with respect to a symmetric convex loss gives an intuitive solution: a semipara-

metrically e¢ cient lower bound estimator plus the half of the upper bound for the interval

length. When there is no known bound for the interval length that is nontrivial (i.e., there

exist sampling variations in which the bound can be potentially violated when the bound

is not externally forced on the variations), the local asymptotic minimax approach does

not provide a meaningful solution, because the worst possible scenario that the minimax

approach focuses on arises when the interval is in�nitely long.

This paper introduces the approach of local asymptotic minimax regret, and shows that
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the mid-point between e¢ cient estimators of upper and lower bounds is a minimax regret

decision. We call this estimator a mid-point decision. First, the paper establishes a lower

bound for the local asymptotic minimax regret bound. De�ning a minimax regret bound

encounters a di¢ culty that pertains to the analysis of a set-identi�ed parameter: the asymp-

totics that sustains a �xed interval length with the growing sample size does not provide

a good description of the �nite sample environment for decisions. To address this issue,

this paper adopts what this paper calls asymptotics of near identi�cation where the interval

length shrinks along with the sample size as the bound estimators become more accurate.

The minimax regret approach has a long history in statistical decision theory. (See Berger

(1985) for example.) In econometrics, the approach has been recently employed by Manski

(2004) and a few others such as Tetenov (2007), Hirano and Porter (2009) and Stoye (2009b)

who applied the approach in search of good statistical treatment rules.

A recent contribution by Kitagawa (2012) explores robust Bayes decisions for set-identi�ed

parameters. The main advantage of Kitagawa (2012) is three-fold. First, it o¤ers a �nite

sample inference method as compared to this paper�s approach that relies on asymptotic

theory. Second, the class of identi�ed sets are more general than the class of identi�ed sets

here - which are intervals. Third, in contrast with this paper, Kitagawa (2012) allows the

loss functions to be asymmetric. On the other hand, the robustness of decisions that this

paper pursues is the robustness against any local perturbation of the true probability in any

direction, and hence various semiparametric or nonparametric models for observations are

accommodated. This makes contrast with Kitagawa (2012)�s approach which focuses on a

parametric model for observations, and pursues robustness only against various priors for

the object of interest, not against (local) likelihood misspeci�cations, while assuming a single

prior distribution for the identi�ed parameters.

2 Boundary Parameters, Loss, and Risks

Let us introduce boundary parameter �B formally. Let N be the collection of natural num-
bers. Suppose that P = fP� : � 2 Ag is a family of distributions on a measurable space
(X ;G) indexed by � 2 A, where the set A is a subset of a Euclidean space or an in�-

nite dimensional space. Suppose that Y1; � � �; Yn are i.i.d. draws from P�0 2 P so that

Xn � (Y1; � � �; Yn) is distributed as P n�0 . We focus on local asymptotic analysis centered
around �0. For this, we consider �n;h = �0+�h=

p
n; �h 2 A, and the direction �h is indexed

by h 2 H, where (H; h�; �i) is a subspace of a separable Hilbert space called a tangent space.
Hence we denote Pn;h = P n�n;h for simplicity, and consider sequences fPn;hgn�1 indexed by
h 2 H. From here on, one can view H as an in�nite dimensional parameter space indexing
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the sequences of distributions for Xn. (For a formal background, see Appendix A.)

The boundary parameter �B is identi�ed under Pn;h for each n 2 N and is viewed here as
a sequence of R2-valued maps on H; i.e., �B;n(h) = (�U;n(h); �L;n(h))>, h 2 H. Identi�cation
here means that the map �B;n(�) is point-valued in R2, not set-valued. We keep the notation

�B = (�U ; �L)
> when we do not need to make explicit its dependence on n.

As for �B = (�U ; �L)>, we assume two standard conditions: local asymptotic normality

of probabilities that identify �B (Assumption A1) and a smooth behavior of �B at the local

perturbation of the probabilities (Assumption A2). These two conditions are well-known

and well studied in the literature of semiparametrically e¢ cient estimation (e.g. van der

Vaart (1991), and Bickel, Klaassen, Ritov, and Wellner (1993)). Their formal statements

are found in Appendix A.

The loss for each decision d 2 R is given by

L (d� �0) = jd� �0j�; � 2 [1;1): (1)

The loss function is symmetric. While assuming symmetric losses can serve as a benchmark

case, this assumption excludes interesting situations where asymmetric losses are appropriate

as in Manski (2004) and Hirano and Porter (2009).

For each n 2 N and given an observed random vector Xn taking values in a set Xn, de�ne
Dn to be the collection of random variables of the form d̂ = 	n(Xn), where for each n 2 N; 	n
is a measurable function: Xn ! R. Each member d̂ 2 Dn is a candidate estimator of �0 that
is constructed usingXn: Each d̂ 2 Dn is associated with its normalized risk n�=2Eh[L(d̂��0)];
where Eh denotes expectation under Pn;h.

Since �0 is not point-identi�ed, the risk is not identi�ed either. This paper introduces

what this paper calls the identi�able maximal risk :

�h(d̂) = sup
�2[�L;n(h);�U;n(h)]

n�=2Eh

h
L(d̂� �)

i
; d̂ 2 Dn: (2)

(Throughout the paper, the supremum of a nonnegative map over an empty set is set to be

zero.) The identi�able maximal risk is the largest risk possible by any potential location of

�0 in the identi�ed interval [�L;n(h); �U;n(h)]. (The form of the identi�able maximal risk in

(2) is due to comments from Don Andrews. A related notion is also employed by Tetenov

(2009).)
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3 Local Asymptotic Minimax Regret Decisions

3.1 Overview and Examples

This paper focuses on a minimax regret approach.2 The unknown state in the decision

problem is the parameter h 2 H. For each n, if the decision-maker knew h 2 H which

indexes the underlying probabilities, she would solve the following problem:

inf
d̂2Dn

�h(d̂) = inf
d̂2Dn

sup
�L;n(h)����U;n(h)

n�=2Eh

h
L(d̂� �)

i
:

The maximal regret is written as:

sup
h2H:�n(h)�0

�
�h(d̂)� inf

d̂2Dn
�h(d̂)

�
;

where for h 2 H;
�n(h) � �U;n(h)� �L;n(h):

Once h 2 H is known, so are �U;n(h) and �L;n(h), and hence a minimizer of �h(d̂) over d̂ 2 Dn
is f�U;n(h) + �L;n(h)g=2, so that we have

inf
d̂2Dn

�h(d̂) = n
�=2L

�
�n(h)

2

�
:

Therefore, the maximal regret is equal to

sup
h2H:�n(h)�0

�
�h(d̂)� n�=2L

�
�n(h)

2

��
:

A local asymptotic minimax regret decision is de�ned to be one that minimizes an asymp-

totic version of this maximal regret. In Theorem 2 below, it is shown that if (~�U ; ~�L) is a

semiparametrically e¢ cient estimator of (�U ; �L), the mid-point decision

~d1=2 �
~�U + ~�L
2

is a local asymptotic minimax regret decision.

To see this result heuristically, assume that L(x) = x2 and consider for simplicity candi-

2As compared to a previous version of this paper, the de�nition of a minimax regret decision is now
reformulated here thanks to a referee�s comment and Co-Editor�s suggestion.
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date decisions of the following form:

d̂(� ; b) = � �̂U + (1� �)�̂L + b; � 2 R and b 2 R; (3)

where �̂B = (�̂U ; �̂L)> 2 R2 is such that for all sample sizes n;

p
n(�̂B � �B;n(h)) � N(0; S), with a positive de�nite matrix S: (4)

(The choice of candidate decisions d̂(� ; b) made here is only for a heuristic purpose.) Then

we can write for � 2 [�L;n(h); �U;n(h)];

p
nfd̂(� ; b)� �g = ~ZL + � ~Z

� + (� � sn(h))
p
n�n(h) +

p
nb; (5)

where ~ZU �
p
n(�̂U � �U;n(h)); ~ZL �

p
n(�̂L � �L;n(h)); ~Z� � ~ZU � ~ZL, and sn(h) � (� �

�L;n(h))=�n(h). From (5), the maximal regret (after maximizing over � 2 [�L;n(h); �U;n(h)])
becomes:

sup
s2[0;1]

E

��
~ZL + � ~Z

� + (� � s)
p
n�n(h) +

p
nb
�2�

�
�p

n�n(h)

2

�2
:

When � > 1=2; the maximal regret can be made to diverge to in�nity by setting s = 0 and
p
n�n(h) " 1. When � < 1=2, the regret can be made to diverge to in�nity by setting s = 1

and
p
n�n(h) " 1. When � = 1=2, the maximal regret becomes

sup
s2[0;1]

E

24 ~ZU + ~ZL
2

!235+ n (b+ (1� s)�n(h)) (b� s�n(h)) : (6)

One can easily check that unless b = 0, the maximal regret can be made to be in�nity, e.g.,

by taking s = 1fb < 0g and
p
n�n(h) " 1. Hence the minimax regret is achieved by taking

� = 1=2 and b = 0, i.e., by a mid point decision.

The heuristic derivation of optimal decisions so far in large part relies on the choice of

the candidate decisions of the form (3). It is the main result of this paper that such an

optimality result, once we replace �̂B by a semiparametrically e¢ cient estimator ~�B of �B;

continues to hold even when we expand the candidate decisions widely so that any decision

(as any measurable function of observations) are now taken to be a candidate decision.

When one adopts the seemingly natural asymptotics of a �xed positive interval length

�n(0) = c > 0 for all n, we have
p
n�n(h)!1 as n!1. Since ~ZU + ~ZL is stochastically

bounded for all n, it is like focusing only on the case where the interval length is in�nity,
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resulting in the maximal regret for any decision d̂(� ; b) taking the value of either E[( ~ZU +
~ZL)

2]=4 (with � = 1=2 and b = 0) or1. Hence to re�ect properly the �nite sample situation
with �nite interval length, this paper introduces alternative asymptotics which this paper

calls asymptotics of near identi�cation. The asymptotic scheme is expressed in the following

assumption.

Assumption 1: �0 � limn!1
p
n�n(0) exists in [0;1):

Assumption 1 says that the interval length �n(h) at h = 0 (i.e. at the true data generating

process) converges to a constant �0 at the rate of
p
n. Along with the di¤erentiability

condition for the bound parameters (Assumption A2 in the appendix), this assumption

implies that for all h 2 H,
�h � lim

n!1

p
n�n(h)

exists in [0;1).
One major criticism regarding asymptotics of near identi�cation that the author has

received in numerous occasions is that the paper�s analysis begins with a partially iden-

ti�ed parameter but reduces the analysis to the easy case of point identi�cation through

asymptotics of near identi�cation. This criticism stems perhaps from misunderstanding the

basic motivation for the asymptotic device here. The asymptotics of near identi�cation is

analogous to the local power analysis in hypothesis test where one chooses a sequence of

alternatives that are local around the boundary of the null hypothesis. The local analysis

is motivated by the fact that for a consistent test, under a �xed alternative, its power con-

verges to one, preventing one from comparing the power properties of di¤erent consistent

tests. Similarly, the asymptotic near identi�cation approach chooses a sequence of proba-

bilities that are local around point identi�cation. Point-identi�cation is not assumed under

near identi�cation, just as the null hypothesis is not assumed under local alternatives.

Now let us consider examples.

Example 1 (Missing Outcomes with Identified Treatment Probability): Let

(Y;W ) be a pair of random variables such that W 2 f0; 1g; EW = p and E[Y jW = 1] = �.

The econometrician observes (YW;W ), and is interested in the parameter � = E[Y ]. As

shown in Imbens and Manski (2004), the identi�ed interval for � is [�L; �U ]; where �L = �p

and �U = �p+ 1� p.

Example 2 (Bounds on Conditional Treatment Effects): This example is taken

from Manski (1990). Suppose that Yd 2 [0; 1], d 2 f0; 1g, is an outcome for the treated
(d = 1) or not treated (d = 0). A random variable D 2 f0; 1g represents the treatment
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incidence, with D = 1 representing treatment, and a discrete random vector X represents a

vector of covariates. The object of interest is the conditional treatment e¤ect:

T (x) = E[Y1jX = x]� E[Y0jX = x]:

Without further assumptions about the underlying data generating process, Manski (1990)

showed that T (x) is in the interval [�L; �U ], where

�L = y1p1 � y0p0 � p1;
�U = y1p1 � y0p0 � p1 + 1;

pd = PfD = djX = xg and yd = E[YdjX = x;D = d], d 2 f0; 1g.

Example 3 (Censored Outcomes and Covariates due to Survey Nonresponses):

Horowitz and Manski (1998) established bounds for a conditional outcome given covariates

and its asymptotic bias, when outcomes and covariates are censored. Let Y 2 [0; 1] be an
outcome variable and D 2 f0; 1g denotes the censoring indicator, with D = 1 representing

the noncensoring event. The object of interest is E[Y jX 2 A], where X is a covariate vector

and A is a designated set. Horowitz and Manski (1998) showed that E[Y jX 2 A] is identi�ed
in the interval [�L; �U ], where

�L = E[Y jX 2 A;D = 1] � q1 and
�U = E[Y jX 2 A;D = 1] � q1 + q0;

with

q1 =
PfX 2 AjD = 1gPfD = 1g

PfX 2 AjD = 1gPfD = 1g+ PfD = 0g
and q0 = 1� q1.

Example 4 (Missing Treatments): Molinari (2010) o¤ers identi�cation analysis for

status quo treatment e¤ects and average treatment e¤ects, when some treatment decisions

are not observed due to survey nonresponse. One of her examples is the following. Suppose

that Yd 2 [0; 1] denotes the potential outcome for the treated (d = 1) and the untreated

(d = 0), Z 2 f0; 1g indicates the treatment decision with Z = 1 meaning the decision to

be treated, and D 2 f0; 1g the selection indicator, where D = 1 means that the treatment

decision is observed. Then Molinari showed that the average treatment e¤ect E[Y1]� E[Y0]
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is interval identi�ed with the identi�ed interval [�L; �U ], where

�L = BL � PfD = 0g and
�U = BU + PfD = 0g;

and, with ys;d � E [Y 1fD = s; Z = dg], d; s 2 f0; 1g,

BL = y1;1 � y1;0 � P fD = 1; Z = 1g and
BU = y1;1 � y1;0 + P fD = 1; Z = 0g :

3.2 Local Asymptotic Minimax Regret Decisions

In this section, we formally present the main results of this paper. Let Z = (ZU ; ZL)> 2 R2

be a normal random vector that has the same distribution as the asymptotic distribution

of
p
n(~�B � �B), where ~�B � (~�U ; ~�L)

> is a semiparametrically e¢ cient estimator of �B;n
(without imposing the inequality restriction �L;n � �U;n and without imposing any interval
length restriction such that �U = �L+ c). Let � be a 2� 2 matrix such that for each b 2 R2,

b>Z � N(0; b>�b): (7)

Here we take N(0; b>�b) to be a point mass at zero when b>�b = 0: Note that we do not

require that � be invertible. A formal de�nition of � is given in Appendix A. We write

� =

"
�2U
�L;U

�L;U

�2L

#
:

In many cases, the matrix � can be found using the method of projection in the L2 space

(e.g. Bickel, Klaassen, Ritov and Wellner (1993)). We also de�ne

�2� � �2U � 2�L;U + �2L and Z� � ZU � ZL:

Thus �2� is the variance of Z
�.

Theorem 1 below establishes a lower bound for the local asymptotic minimax regret,

and Theorem 2, a result that the mid-point decision ~d1=2 � (~�U + ~�L)=2 is local asymptotic
minimax regret among the sequences of decisions in Dn: For a given decision d̂, and " > 0,
let

~R"
n(d̂) � sup

h2H"
n

�
�h(d̂)� inf

d̂2Dn
�h(d̂)

�
;
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where H"
n � fh 2 H : �n(h) � �"=

p
ng. The restriction of the supremum to H"

n represents

our focus on the restriction �U � �L (up to a negligible error).

Theorem 1: Suppose that Assumptions 1 and A1-A2 (in the appendix) hold. Suppose

further that �2� > 0 and � 2 [1; 2]. Then for any sequence of estimators d̂ in Dn;

lim
"#0

liminf
n!1

~R"
n(d̂) � E

�
L

�
ZU + ZL

2

��
:

The condition �2� > 0 in Theorem 1 is plausible for the case where the interval length is

not a known constant. When � > 2, it is not hard to see that the minimax regret becomes

trivially in�nity.

In Theorem 2 below, we ascertain that the bound in Theorem 1 is sharp. For technical

facility, we follow a suggestion by Strasser (1985) (p.440) and consider instead

~R"
n(d̂) � sup

h2H"
n

�
�h;M(d̂)� inf

d̂2Dn
�h;M(d̂)

�
; (8)

where LM(�) � min
�
L(�);Mn��=2

	
; M > 0; and

�h;M(d̂) � sup
�2[�L;n(h);�U;n(h)]

n�=2Eh

h
LM(d̂� �)

i
:

As for ~�B = (~�U ; ~�L)>; we make the following assumption.

Assumption 2: suph2H jPn;hf
p
n(~�B � �B;n(h)) � tg � P fZ � tg j ! 0 for each t 2 R2.

The uniform convergence of distributions can often be veri�ed using the uniform central limit

theorem. Under regularity conditions, the uniform central limit theorem of a sum of i.i.d.

random variables follows from a Berry-Esseen bound, as long as the third moment of the

random variable is bounded uniformly in h 2 H. (See e.g. Theorem 3 of Chow and Teicher

(2003), p. 322.)

Theorem 2: Suppose that the conditions of Theorem 1 hold. Furthermore, suppose that

Assumption 2 holds. Then,

lim
M " 1

lim
"#0

limsup
n!1

~R"
n;M(

~d1=2) � E
�
L

�
ZU + ZL

2

��
:

Remarks 1: The results of Theorems 1 and 2 continue to hold even when V ar(ZU+ZL) = 0.

In this case, the minimax regret bound becomes zero. This case arises when one knows
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�U + �L although �U and �L are not known separately. In other words, one knows precisely

the minimax decision (�U + �L)=2. Hence there is no regret for this decision.

2: Interestingly, the mid-point decision does not require using a boundary estimator

�̂B = (�̂U ; �̂L)
> that satis�es �̂L � �̂U despite the known restriction that �L � �U :

3: Suppose that one mistakenly assumes point identi�cation (i.e., �U = �L = �0) and uses

its e¢ cient estimator ~d0 � �̂ �~�U + (1� �̂ �)~�L under the overidentifying restrictions �U = �L,
where �̂ � is a consistent estimator of � � � ��L;�=�2� and �L;� = �L;U��2L. Unless �2U = �2L;
this estimator is not local asymptotic minimax regret in general. In fact, when �2U 6= �2L,

one can show that the local asymptotic maximal regret of ~d0 is in�nity!

Example 1 (Cont�d) : Let (Y;W ) be as in Example 1, and de�ne p; � and � similarly, so

that the identi�ed interval for � is [�L; �U ]; where �L = �p and �U = �p+1�p. Now, suppose
that the econometrician observes a random sample f(YiWi;Wi)gni=1 from the distribution of

(Y �W;W ), and p is unknown, and there is no known nontrivial upper bound for 1�p. (Note
that the obvious bound 1 is a trivial bound for 1 � p, because the bound holds vacuously,
i.e., the bound does not induce non-vacuous restrictions on the space H.) When one takes
~�U = ��p̂+1�p̂ and ~�L = ��p̂ as e¢ cient estimators of bounds, where �� =

Pn
i=1 YiWi=

Pn
i=1Wi;

p̂ = 1
n

Pn
i=1Wi, the mid-point decision given by

~d1=2 =
~�U + ~�L
2

=
1

n

nX
i=1

�
Yi �

1

2

�
Wi +

1

2

is local asymptotic minimax regret.

4 Simulations

Suppose that the econometrician observes the i.i.d. data set f(XL;i; XU;i)gni=1 with unknown
means EXL;i = �L and EXU;i = �U . The object of interest �0 is known to lie in [�L; �U ]: In

the simulation study, we generated XL;i and XU;i as follows:

XL;i = 4aL � (wYL;i + (1� w)Zi)=2 + �L and
XU;i = 4aU � (wYU;i + (1� w)Zi)=2 + �U ;

where YL;i � N(0; 1); YU;i � N(0; 1), and Zi � Uniform[�1=2; 1=2]. The scale parameter
(aU ; aL) was chosen from f(4; 1); (3; 2); (2; 3)g, and w = 0:8. The mean vectors �L and �U
were chosen to be ��=2 and �=2, where � denotes the interval length. The sample sizes

were taken to be from f300; 1000g.
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Figure 1: The four panels plot maximal regret of a weighted average decision ~��= �~�U+(1� �)~�L
against � 2 [0; 1]. The maximal regret over c in [0,2] takes the supremum of the regret over the
interval lengths from 0 to 2. Hence when c is small (relative to the sample size), the situation is closer
to point-identi�cation. In this case, the mid-point decision is not necessarily an optimal decision
and one is better o¤ by taking into account the variance discrepancies of the bound estimators.
However, when the interval lengths can be potentially large (as in the case of c = 5 for example),
the maximal regret is minimized conspicuously at � = 1=2, showing that the mid-point decision is
optimal.

We investigate the �nite sample optimality of the mid-point decision ~d1=2: The �nite

sample maximal regret of a decision d̂ is taken to be the maximum of

sup
s2[0;1]

E
h���d̂� (�L + s�)���i� �����2

����
over � 2 [0; c], where � = �U��L. We considered c 2 f2; 5g. When c is large, the domain of
the maximum in the maximal regret becomes large, increasing the maximal regret. When c

is small, the situation is closer to the case where the parameter is point-identi�ed. We allow

for discrepancies in the variances of the upper and lower bound estimators ~�U and ~�L: For

this, we have considered three pairs of (aU ; aL) 2 f(4; 1); (3; 2); (2; 3)g: The decisions under
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consideration are of the form:
~d� = �~�U + (1� �)~�L

with the weight � running in the interval [0; 1].

In Figure 1, the maximal regret for decisions ~d� is plotted against � 2 [0; 1]. When

c is small, the mid-point decision is not necessarily an optimal decision, as shown in the

�gure where the maximal regret is not necessarily lowest at � = 1=2. In this case, the

variance discrepancies play a role. However, as c becomes larger (so that the model is farther

from point-identi�cation), the mid-point decision emerges as the unique optimal decision in

terms of the maximal regret, regardless of the variance discrepancies between the two bound

estimators.

5 Conclusion

This paper investigates the problem of making a point-decision for an interval-identi�ed

object, when the interval length is not known. This paper demonstrates that the mid-point

of e¢ cient upper and lower bound estimators is a reasonable point decision according to the

minimax regret principle.

Various extensions from the results may be of interest. One extension is to accommodate

the situation where the decision is binary and loss functions are asymmetric and the object

of interest is interval-identi�ed. Such a question is relevant in the context of treatment

decisions. (Manski (2004), Tetenov (2007), and Hirano and Porter (2009).) Although this

extension is very interesting, the extension does not appear obvious to the author, and seems

to require a substantial development that warrants a separate paper.
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6 Appendix

6.1 Appendix A: Conditions for the Boundary Parameter

To save space, we follow the general formulation in van der Vaart and Wellner (1996: Section

3.11) and refer the reader to it for further details. Suppose that P = fP� : � 2 Ag is a
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family of distributions on a measurable space (X ;G) indexed by � 2 A, where the set A is

a subset of a Euclidean space or an in�nite dimensional space. Suppose that Y1; � � �; Yn are
i.i.d. draws from P�0 2 P so that Xn � (Y1; � � �; Yn) is a measurable map from a measurable
space (
n;Fn) into another measurable space (Xn;Gn), distributed as P n�0 : Now let P(P�0)
be the collection of maps t! P�t such that for some h 2 L2(P�0),Z �

1

t

�
dP 1=2�t � dP

1=2
�0

�
� 1
2
hdP 1=2�0

�2
! 0; as t! 0:

When this convergence holds, we say that P�t converges in quadratic mean to P�0 and call

h 2 L2(P�0) a score function associated with this convergence. The set of all such h�s is
called a tangent set and denoted by T (P�0). We assume that T (P�0) is a linear subspace of

L2(P�0). Taking h�; �i to be the usual inner product in L2(P�0), we write H � T (P�0) and
view (H; h�; �i) as a subspace of a separable Hilbert space, with �H denoting its completion.

For each h 2 H and n 2 N, we consider a path of the form: �t(n;h) = �0 + t(n; h); where

t(n; h) = �h=
p
n, �h 2 A, and P�t(n;h) converges in quadratic mean to P�0 as n!1 having

h as its associated score. We simply write Pn;h = P n�t(n;h) and consider sequences of such

probabilities fPn;hgn�1 indexed by h 2 H. (See van der Vaart (1991) and van der Vaart and
Wellner (1996), Section 3.11 for details.)

The collection En = (Xn;Gn; Pn;h;h 2 H) constitutes a sequence of statistical experiments
for the boundary parameter (Blackwell (1951)). As for En, we assume local asymptotic
normality as follows.

Assumption A1: For each h 2 H,

log
dPn;h
dPn;0

= �n(h)�
1

2
hh; hi;

where for each h 2 H, �n(h) �(h) (under fPn;0g) and �(�) is a centered Gaussian process
on H with covariance function E[�(h1)�(h2)] = hh1; h2i:

The notation  denotes weak convergence of measures. Local asymptotic normality of ex-

periments was introduced by Le Cam (1960). The condition essentially reduces the decision

problem to one in which an optimal decision is sought under a single Gaussian shift exper-

iment E = (X ;G; Ph;h 2 H); where Ph; h 2 H, is a probability measure on a measurable
space (X ;G) such that log dPh=dP0 = �(h)� 1

2
hh; hi: (Note that the asymptotic Gaussianity

is concerned with the log-likelihood process of the potential distributions that identify �B.

This does not mean that candidate decisions are constructed only based on asymptotically

normal estimators of the boundary parameter �B.)
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Assumption A2: There exists a continuous linear R2-valued map on H, _�B = (_�U ; _�L)>;

such that for each h 2 H,

p
n(�U;n(h)� �U;n(0); �L;n(h)� �L;n(0))! ( _�U(h); _�L(h));

as n!1:

Assumption A2 says that �B;n(h) is regular in the sense of van der Vaart and Wellner (1996,

Section 3.11). The map _�B is associated with the semiparametric e¢ ciency bound of �B;n
in the following way. For each b 2 R2, b> _�B(�) de�nes a continuous linear functional on
H, and hence there exists _�

�
B;b 2 �H such that b> _�B(h) = h _��B;b; hi; h 2 H. Then for any

b 2 R2, jj _��B;bjj2 represents the asymptotic variance bound of the parameter b>�B;n (without
imposing the inequality restriction �L;n(h) � �U;n(h)) (e.g. van der Vaart (1991), p.180.) The
map _�

�
B;b is called an e¢ cient in�uence function for b

>�B;n in the literature. Let e1 = [1; 0]>

and e2 = [0; 1]>, and de�ne
_�
�
U =

_�
�
B;e1

and _�
�
L =

_�
�
B;e2

:

We also de�ne

�2U � h _�
�
U ;
_�
�
Ui; �2L � h _�

�
L;
_�
�
Li; �L;U � h _�

�
L;
_�
�
Ui (9)

and

� �
"
�2U
�L;U

�L;U

�2L

#
:

This � is the matrix that appears in (7).

The natural inequality restriction �L;n(h) � �U;n(h) suggests focusing on a proper subset
of H: For all n 2 N;

p
n (�U;n(h)� �U;n(0)) �

p
n (�L;n(h)� �U;n(0))

=
p
n (�L;n(h)� �L;n(0))�

p
n�n(0):

In the limit with n ! 1, we have ( _�U � _�L)(h) � ��0. Hence the tangent set under the

inequality restriction is given by

HR =
n
h 2 H : ( _�U � _�L)(h) � ��0

o
: (10)

The tangent set HR is a convex a¢ ne cone. When �0 = 1, HR = H, and hence in this

case, the inequality restriction leaves the tangent set intact. When �0 <1 and we consider

slices of the tangent space such that ( _�U � _�L)(h) = r � �0, r 2 [0;1), the analysis also
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remains the same regardless of whether we use HR or H. This technique is used in the proof

of Theorem 1. (See also Hirano and Porter (2009) for their use of this method.)

6.2 Appendix B: Mathematical Proofs

For any A � Rd, let vold(A) denote its Lebesgue measure on Rd. A set A � Rd is called

centrally symmetric if A = �A. The �rst part of the following lemma is Theorem 3.1 in

Fukuda and Uno (2007) which results from Brunn�s Theorem on convex bodies. (A convex

body is a convex compact set with nonempty interior.) When a set A is a centrally symmetric

convex body, we say A is a cscb.

Lemma A1: (i) For any convex bodies A and B in Rd, d � 1; vold(A\(B+a))1=d is concave
in a 2 fb 2 Rd : A \ (B + b) 6= ?g:
(ii) Let a 2 Rd and c 2 R. Then the following two statements are equivalent.
(a) For some cscb�s A;B � Rd, vold(A \ (B + a)) � vold(A \ (B + ca)):
(b) For any cscb�s C;D � Rd; vold(C \ (D + a)) � vold(C \ (D + ca)):

Proof: (ii) For a = 0; the inequality becomes trivially an equality. Assume that a 2
Rdnf0g: For c 2 R; let H(c) = fx 2 Rd+1 : xd+1 = cg; where xd+1 denotes the (d + 1)-th
entry of x 2 Rd+1. For any convex body A1 � Rd+1, let

S(c;A1) � f(x1; � � �; xd) 2 Rd : (x1; � � �; xd; c) 2 A1 \H(c)g and
f(c;A1) � vold(S(c;A1)):

Then f(c;A1) is quasiconcave in c on its support by Brunn�s Theorem. (e.g. Theorem

5.1 of Ball (1997).) Furthermore, for any centrally symmetric convex set A1 2 Rd+1 and

c 2 R; f(c;A1) � f(0;A1) by Lemma 38.20 of Strasser (1985) and f(c;A1) = f(�c;A1):
Therefore, for any cscb A1 2 Rd+1; f(c1;A1) � f(c2;A1) if and only if jc1j � jc2j: Since the
latter inequality does not involve A1, this statement implies that

9 cscb A1 � Rd+1 s.t. f(c1;A1) � f(c2;A1) (11)

if and only if

8 cscb C1 � Rd+1 s.t. f(c1;C1) � f(c2;C1):

Choose cscb�s A and B in Rd as in the lemma and let

�A = f(x1; � � �; xd; w) : (x1; � � �; xd) 2 A; w 2 [�m(c);m(c)]g; and
�B = f(x1; � � �; xd; w) : (x1; � � �; xd) 2 B + wa; w 2 [�m(c);m(c)]g;
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where m(c) = maxfjcj; 1g. Then, �PA;B � �A \ �B is a cscb in Rd+1: The statement in (a) is

equivalent to f(1; �PA;B) � f(c; �PA;B); because

f(c; �PA;B) = vold(A \ (B + ca)):

The inequality holds if and only if f(1; �PC;D) � f(c; �PC;D) for all cscb�s C;D � Rd by (11),

which is equivalent to (b). �

Lemma A2: Suppose that f't : t 2 Tg; T � R; is a class of Borel measurable functions

such that for any x1; x2 2 R; 't(x1) � 't(x2) for some t 2 T if and only if 't0(x1) � 't0(x2)
for all t0 2 T. For any measure � on the Borel �-�eld of T, let g(�) �

R
't(�)d�(t).

Then g(�) is quasiconcave if 't(�) is quasiconcave for all t 2 T, and g(�) is quasiconvex
if 't(�) is quasiconvex for all t 2 T.

Proof: Straightforward. �

Lemma A3: Let V 2 R be a continuous random variable with a quasiconcave density

function that is symmetric around b 2 R, and let � : R! [0;1) be symmetric around zero,
and let K � f� 2 R : E [�(V + �)] <1g.
Then E [�(V + �)] is quasiconvex in � 2 K if � is quasiconvex, and E [�(V + �)] is

quasiconcave in � 2 K if � is quasiconcave.

Proof: We focus on the case where � is quasiconvex. The case with quasiconcave � can

be dealt with similarly by considering ��. Write

E [�(V + �)] =

Z 1

0

P fV + � 2 RnA(t)g dt;

where A(t) � fz 2 R : �(z) � tg: Note that

P fV + � 2 A(t)g =
Z 1

0

�(�; t; e)de;

where �(�; t; e) � vol1(A(t) \ cl(fz 2 R : f(z) > eg+ b+ �)); f is the density of V � b; and
for any set B, cl(B) is the closure of B. Since f is quasiconcave and � is quasiconvex, A(t)

and clfz 2 R : f(z) > eg are closed intervals with their centers at zero, for all e and t in R.
By Lemma A1(i), �(�; t; e) is quasiconcave over J(t; e) for all e and t in R, where

J(t; e) � f� 2 R : A(t) \ cl(fz 2 R : f(z) > eg+ b+ �) 6= ?g:

Since A(t) and cl(fz 2 R : f(z) > eg + b) are intervals, J(t; e) is also an interval. Since
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�(�; t; e) � 0 and �(�; t; e) = 0 for all � 2 RnJ(t; e), we conclude that �(�; t; e) is quasiconcave
over R for all e and t in R. Since A(t) and clfz 2 R : f(z) > eg are closed intervals centered
at zero for all t and e; we apply Lemma A1(ii) to �nd that when �1 2 R and �2 2 R are

given, �(�1; t; e) � �(�2; t; e) for some t and e if and only if �(�1; t; e) � �(�2; t; e) for all t and
e. That is, the ordering of f�(�; t; e) : � 2 Rg remains the same as we shift t and e. Hence
by Lemma A2, P fV + � 2 A(t)g is quasiconcave in � 2 R for each t 2 R.
Take any �1; �2 2 K such that P fV + �1 2 A(t)g � P fV + �2 2 A(t)g for some t 2 R.

Then, since A(t) is a closed interval centered at zero for all t 2 R and �1 and �2 are real

numbers, the preceding inequality holds if and only if for all t0 2 (0;1); P fV + �1 2 A(t0)g �
P fV + �2 2 A(t0)g, by Lemma A1(ii) again. Therefore,

E [�(V + �)] =

Z 1

0

(1� P fV + � 2 A(t)g) dt

is quasiconvex in � 2 K by Lemma A2. �

Lemma A4: Let V 2 R be a continuous random variable with a quasiconcave density

function that is symmetric around b and let � : R ! [0;1] be convex and symmetric
around zero.

Then, for s � 0;

E [� (V � b� s=2)] � inf
c2R

sup
�2[0;s]

E [�(V + c+ �)] : (12)

Proof: Since � is quasiconvex and symmetric around zero, by Lemma A3,

inf
c2R

sup
�2[0;s]

E [�(V + c+ �)] = inf
c2R

max
�2f0;sg

E [�(V + c+ �)] :

Let ~�(d) � f�(d+ s) + �(d)g=2. It su¢ ces to show that

E
h
~�
�
V � b� s

2

�i
� E

h
~� (V + c)

i
, for all c 2 R. (13)

This is because the left hand side of (13) is equal to the left hand side of (12) (due to the

fact that the distribution of �(V � b � s=2) and that of �(V � b + s=2) are identical) and
because

E
h
~� (V + c)

i
=

1

2
fE [�(V + c)] + E [�(V + c+ s)]g

� max
�2f0;sg

E [�(V + c+ �)] ;
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for all c 2 R.
We now show (13). Let A(t) � fz 2 R : ~�(z) � tg and observe that

E[~�(V + c)] =

Z 1

0

P fV + c 2 RnA(t)g dt: (14)

Let f be the density function of V � b and write P fV + c 2 A(t)g asZ 1

0

vol1 (A(t) \ cl(fz 2 R : f(z) > eg+ b+ c)) de

=

Z 1

0

vol1((A(t) + s=2) \ cl(fz 2 R : f(z) > eg+ b+ c+ s=2))de:

Since ~� is symmetric around �s=2 and convex, A(t) + s=2 is convex and symmetric around
zero. By Lemma 38.20 of Strasser (1985),

vol1 ((A(t) + s=2) \ cl(fz : f(z) > eg+ b+ c+ s=2))
� vol1((A(t) + s=2) \ clfz : f(z) > eg):

The inequality becomes equality when b+ c+ s=2 = 0 or c = �b� s=2: This implies that

P fV + c 2 A(t)g � P fV � b� s=2 2 A(t)g : (15)

In view of (14), this proves the result in (13). �

We assume the environment of Theorem 1 and assume that �2� > 0: Choose fhigmi=1
from an orthonormal basis fhig1i=1 of �H. For a 2 Rm, we consider h(a) = �mi=1aihi so

that _�U(h(a)) =
Pm

i=1 ai
_�U(hi) = a> _�U and _�L(h(a)) = a> _�L; where _�U = (_�U(h1); � �

�; _�U(hm))> and _�L = (_�L(h1); � � �; _�L(hm))>: Let �� and ��� be m� 2 and m� 1 matrices such
that

�� �

2664
_�U(h1) _�L(h1)
...

...
_�U(hm) _�L(hm)

3775 and ��� �

2664
( _�U � _�L)(h1)

...

( _�U � _�L)(hm)

3775 ; (16)

and �� � (�(h1); � � �; �(hm))>, where � is the Gaussian process that appears in Assumption
A1. We assume that m � 2 and �� is full column rank. We �x � > 0; q 2 R, and let

A� 2 Rm � N(0; I=�) and let F�;q(a) be the cdf of ��A� + ��q; where

��q � ���( ��
>
�
���)

�1q and �� � I � ���( ��
>
�
���)

�1 ��>
� :
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Then, it is easy to check that for all realizations of A�,

( _�U � _�L)((��A� + ��q)>hB) = q; (17)

where hB = (h1; � � �; hm)>. Suppose that �̂B is a sequence of estimators such that for each
h 2 H and Vn;h �

p
nf�̂B � �B;n(h)g,"

Vn;h

log dPn;h=dPn;0

#
!V

"
Lh

�(h)� 1
2
hh; hi

#
; (18)

where !V denotes vague convergence and Lh is a potentially de�cient distribution. Finally
let ��� � �� + �I and let Z�;q;m 2 R2 and Z0;q;m 2 R2 be normal random vectors such that

Z�;q;m � N(��
>
(I � �����1� ��)��q; ��

> �����1�
����) and

Z0;q;m � N(��
>
��q; ��

> ����):

Let Z�;q;m denote the distribution of Z�;q;m: The following result is a conditional version of
the convolution theorem in Theorem 2.2 of van der Vaart (1989). For any positive integer

d, B(Rd) denotes the Borel �-�eld of Rd and for two measures F and G on B(Rd), F � G
denotes the convolution of F and G.

Lemma A5: Suppose that �2� > 0. Then for any � > 0 and q 2 R;Z
Lh(a)dF�;q(a) = Z�;q;m �M�;q;m;

where M�;q;m denotes a potentially de�cient distribution on B(R2):

Furthermore, as �rst �! 0 and then m!1, Z�;q;m weakly converges to the conditional
distribution of Z given ZU � ZL = q.3

Proof: Let �R = [�1;1] be the usual two-point compacti�cation of R and �R2 the product

of its two copies. By (18), along fPn;0g;�
Vn;h(a); log

dPn;h(a)
dPn;0

�
!V

�
Z0 � ��

>
a; ��

>
a� 1

2
jjajj2

�
;

where Z0 is a random vector distributed as L0, and jjajj2 = a>a. By Le Cam�s third lemma,
3The conditional distribution of ZL given Z� = 0 is taken to be a point mass at zero when its variance

is zero. This case arises when �2L � �2L;�=�2� = 0.
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we �nd that for all B 2 B(�R2),

Lh(a)(B) =
Z
E[1Bfv � ��

>
age��

>
a� 1

2
jjajj2 ]dL0(v):

Hence
R
Lh(a)dF�;q(a)(B) is equal toZ Z

E

�
1B

n
v � ��> ��q(a)

o
e
��q(a)>��� 1

2
��q(a)> ��q(a)��jjajj2

2

��
�

2�

�m
2

dL0(v)da;

where ��q(a) � ��a+��q. Using the fact that �� is idempotent and going through some tedious

calculations, we write
R
Lh(a)dF�;q(a)(B) asZ Z

E
h
1B

n
v � J�;q(a)� ��

> �����1�
����)
o
c�(��)

i
dL0(v)dN(a);

where J�;q(a) � ��
> ����

�1=2
� a+ ��

>
(I � �����1� ��)��q; N(�) is the cdf of N(0; I); and

c�(��) = e
1
2
(�����q)>(I�����

�1
�
��)(�����q)e

1
2
��
>��
q
det
�
���1�
�
�m=2:

For any B 2 B(R2),
R
B
J�;q(a)dN(a) = P fZ�;q;m 2 Bg : LettingM�;q;m be a measure such

that

M�;q;m(B) =

Z
E
h
1B

n
v � ��> �����1� ����

o
c�(��)

i
dL0(v); for all B 2 B(�R2);

we obtain the desired result.

As for the second statement, note that as �! 0, Z�;q;m !d N(��
>
(I� ��)��q; ��

> ����). Note

that ����q = 0. Hence as �! 0, Z�;q;m !d Z0;q;m. Since fhig1i=1 is an orthonormal basis for a
complete Hilbert space, as m!1, the Euclidean distance between ��>��q and [(�U;�=�2�)q;
(�L;�=�

2
�)q]

> and that between

��
> ���� and

"
�2U � �2U;�=�2� �U;L � �U;��L;�=�2�
�U;L � �U;��L;�=�2� �2L � �2L;�=�2�

#

become zero, where �U;� � �2U � �L;U and �L;� � �L;U � �2L. Hence as m ! 1, the
distribution of Z0;q;m converges to the conditional distribution of Z given ZU � ZL = q. �

Lemma A6: Let V 2 R be a continuous random variable that has a density function sym-

metric around zero. Let '�(t) � EL�(t + V ) � L�(t); for L�(t) = jtj�; � 2 [1; 2]. Then
'�(�) is quasiconcave and symmetric around zero.
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Proof: The symmetry around zero is obvious. Let L0� be the �rst order derivative of L�
when � 2 (1; 2], and de�ne L0�(t) = 1ft > 0g � 1ft < 0g when � = 1. Note that for all

v � 0,

L0�(t+ v)� L0�(t) � L0�(t)� L0�(t� v) if t � 0 and (19)

L0�(t+ v)� L0�(t) � L0�(t)� L0�(t� v) if t � 0:

Let f be the density of V . Splitting the absolute values and using Leibnitz�s rule and

symmetry of f , we �nd that

'0�(t) =
1

2

Z 1

�1
fL0�(t+ v) + L0�(t� v)� 2L0�(t)g f(v)dv:

From (19), if t � 0, '0�(t) � 0 and if t < 0, '0�(t) � 0, completing the proof. �

Proof of Theorem 1: Suppose that �2� > 0. Since d̂ can be viewed as an arbitrary

measurable map from 
n into R, we lose no generality by writing

d̂ = � ���U;n + (1� � �)��L;n; (20)

where ��U;n and ��L;n are any measurable maps: 
n ! R and � � � ��L;�=�2�. Let

Vn;h �
p
nf��B;n � �B;n(h)g and (21)

S� (v) � �vU + (1� �)vL; for v = (vU ; vL)> 2 R2 and � 2 R;

where ��B;n � (��U;n; ��L;n)
>. Let ~LM(�) � minfL(�);Mg; M > 0, so that n�=2LM(v) =

~LM(
p
nv) for all v 2 R2:

Take 0 < JM !1 as M " 1; and let

L
(J)
M (v) �

1

2JM

2JMMX
j=0

1
n
~LM(v) > j2

�JM
o

and Cj � fv 2 R : ~LM(v) 2 ((j � 1)2�JM ; j2�JM ]g. For all j = 0; � � �; 2JMM and all v 2 Cj,
L
(J)
M (v) = (j � 1)2�JM . The set [1j=2JMM+1

Cj is empty because when v 2 [1j=2JMM+1
Cj, it

means that ~LM(v) > M , which contradicts the fact that ~LM(�) �M . Therefore,

sup
v2R

���L(J)M (v)� ~LM(v)��� = max
0�j�2JMM

sup
v2Cj

���L(J)M (v)� ~LM(v)��� � 2�JM : (22)
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Also note that L(J)M (�) � ~LM(�) and as M " 1, L(J)M (�) increases.
For each r 2 [0;1) and for each " > 0; let

H"
n(r) � fh 2 H : r � " �

p
n�n(h) � r + "g: (23)

For each r 2 [0;1), the set fPn;h : h 2 H"
n(r)g collects probabilities Pn;h such that the length

of the identi�ed interval is approximately r=
p
n. Also, H(r) � fh 2 H : �h = rg, where we

recall �h � _�(h) + �0. Now we write ~R"
n(d̂) as

sup
h2H"

n

sup
s2[0;1]

E

�
L(S��(Vn;h) + (�

� � s)
p
n�n(h))� L

�p
n�n(h)

2

��
(24)

� sup
h2H"

n

sup
s2[0;1]

E

�
L
(J)
M (S��(Vn;h) + (�

� � s)
p
n�n(h))� L

�p
n�n(h)

2

��
� sup

r2[0;1)
sup
h2H(r)

sup
s2[0;1]

E

�
L
(J)
M (S��(Vn;h) + (�

� � s)r)� L
�
r + "

2

��
� "M � 2�JM ;

from some large n on.

By Helly�s Lemma (e.g. Lemma 2.5 of van der Vaart (1998) on page 9), every subsequence

of Vn;h has a further subsequence that vaguely converges to Lh and
p
n�n(h)! r as n!1

for each h 2 H(r). By Assumption A1, without loss of generality, we pick any subsequence
Vn0;h such that along fPn;0g;"

Vn0;h

log dPn0;h=dPn0;0

#
!V

"
Lh

�(h)� 1
2
hh; hi

#
;

(the vague limit Lh may depend on the choice of this subsequence), so that we bound the
liminfn0!1 of the last in�mum in (24) from below by

sup
r2[0;1)

sup
h2H(r)

sup
s2[0;1]

liminf
n0!1

Eh

�
L
(J)
M (S��(Vn0;h) + (�

� � s)r)� L
�
r + "

2

��
� sup

r2[0;1)
sup
h2H(r)

sup
s2[0;1]

Z �
L
(J)
M (S��(v) + (�

� � s)r)� L
�
r + "

2

��
dLh(v);

by Theorem 3 of Winter (1975).

Since �h = (_�U � _�L)(h) + �0, it follows that ( _�U � _�L)(h) = r � �0 if and only if

h 2 H(r). As in the proof of Theorem 3.11.5 of van der Vaart and Wellner (1996), choose an
orthonormal basis fhig1i=1 from �H. Fix m and take fhigmi=1 � H and consider h(a) =

P
aihi

for some a = (ai)mi=1 2 Rm such that h(a) 2 H(r): Fix � > 0 and let F�;q(a) be as de�ned
prior to Lemma A5 above with q = r � �0: Then the support of F�;q(�) is con�ned to the

25



set of a�s such that h(a) 2 H(r) from (17), so that

sup
h2H(r)

sup
s2[0;1]

Z �
L
(J)
M (S��(v) + (�

� � s)r)� L
�
r + "

2

��
dLh(v)

� sup
s2[0;1]

Z Z �
L
(J)
M (S��(v) + (�

� � s)r)� L
�
r + "

2

��
dLh(a)(v)dF�;q(a):

By Lemma A5, the above double integral is equal toZ �
L
(J)
M (S��(v) + (�

� � s)r)� L
�
r + "

2

��
d(Z�;q;m �M�;q;m)(v)

=

Z
E

�
L
(J)
M (S��(Z�;q;m + w) + (�

� � s)r)� L
�
r + "

2

��
dM�;q;m(w)

�
Z
E

�
LM(S��(Z�;q;m + w) + (�

� � s)r)� L
�
r + "

2

��
dM�;q;m(w)� 2�JM ;

whereM�;q;m is a potentially de�cient distribution as in Lemma A5.

We conclude that by sending " # 0; the liminfn!1 of ~R"
n(d̂) is bounded from below by

sup
r2[0;1)

sup
h2H(r)

sup
s2[0;1]

Z
E
h
LM(S��(Z�;q;m + w) + (�

� � s)r)� L
�r
2

�i
dM�;q;m(w)� 2�JM :

By Helly�s Lemma, we can �nd subsequences �k ! 0 and mj ! 1 such that the measure

M�k;q;mj
has a vague limit, say,Mq. Along this subsequence, by therefore, the liminfmj!1

liminf�k!1 of the above supremum is bounded from below by

sup
r2[0;1)

sup
s2[0;1]

liminf
mj!1

liminf
�k!0

Z
E
h
LM

�
S��(Z�k;q;mj

+ w) + (� � � s) r
�
� L

�r
2

�i
dM�k;q;mj

(w)

� sup
r2[0;1)

sup
s2[0;1]

Z
E
h
LM (S��(Z + w) + (�

� � s) r)� L
�r
2

�
jZ� = r ��0

i
dMq(w):

We bound the limM"1 of above supremum from below by

sup
r2[0;1)

sup
s2[0;1]

lim
M"1

Z
E
h
LM (S��(Z + w) + (�

� � s) r)� L
�r
2

�
jZ� = q

i
dMq(w)

= sup
r2[0;1)

sup
s2[0;1]

Z
E
h
L (S��(Z + w) + (�

� � s)r)� L
�r
2

�
jZ� = q

i
dMq(w)

= sup
r2[0;1)

sup
s2[0;1]

Z
E
h
L (S��(Z + w) + (�

� � s)r)� L
�r
2

�i
dMq(w);

where the �rst equality uses the Monotone Convergence Theorem and the second equality

26



uses the fact that S��(Z+w) = S��(Z)+S��(w) and S��(Z) is independent of Z�. As noted

in Section 3.1, when � � > 1=2, the above supremum is in�nity because we can take s = 0

and r as large as possible, and when � � < 1=2, the above supremum is in�nity because we

can take s = 1 and r as large as possible. Therefore, the above supremum is bounded from

below by

sup
r2[0;1)

sup
s2[0;1]

Z
E

�
L

�
S1=2(Z + w) +

�
1

2
� s
�
r

�
� L

�r
2

��
dMq(w)

� sup
r2[0;1)

E
h
L
�
S1=2(Z) +

r

2

�
� L

�r
2

�i
;

where the last inequality uses the argument in the proof of (13). By Lemma A6, the above

expectation is quasiconcave in r and symmetric around zero, and hence the supremum over

r 2 [0;1) is achieved when r = 0; delivering the desired lower bound of E
�
L
�
S1=2(Z)

��
. �

Proof of Theorem 2: First suppose that

�2U + 2�U;L + �
2
L > 0: (25)

We write ~R"
n;M(

~d1=2) as

sup
h2H"

n

sup
s2[0;1]

E

�
LM

�
S1=2(Zn;h) +

�
1

2
� s
�p

n�n(h)

�
� L

�p
n�n(h)

2

��
;

where Zn;h �
p
n(~�B � �B;n(h)). For any � 2 [�";1), s 2 [0; 1], and t 2 R,

P

�
S1=2(Zn;h) +

�
1

2
� s
�
� � t

�
! P

�
S1=2(Z) +

�
1

2
� s
�
� � t

�
; as n!1, (26)

by Assumption 2. The convergence is in fact uniform over (s;�) 2 [0; 1]� [�";1) because
E[S21=2(Z)] =

1
4
E[(ZU + ZL)

2] > 0 from (25), meaning that S1=2(Z) is a continuous random

variable. Therefore, we conclude that

limsup
n!1

sup
h2H"

n

sup
s2[0;1]

E

�
LM

�
S1=2(Zn;h) +

�
1

2
� s
�p

n�n(h)

�
� L

�p
n�n(h)

2

��
� sup

�2[�";1)
sup
s2[0;1]

E

�
LM

�
S1=2(Z) +

�
1

2
� s
�
�

�
� L

�
�

2

��
:

The above supremum is increasing in " > 0 and increasing in M . By sending " # 0 and then
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M " 1, the above supremum becomes sup�2[0;1)~� (��=2) ; where

~�(z) = E

�
L

�
ZL + ZU

2
� z
��
� L(z):

Certainly ~�(z) is symmetric around zero, and quasiconcave by Lemma A6. Hence the supre-

mum of ~�(��=2) over � 2 [0;1) achieved at � = 0.
Now suppose that �2U + 2�U;L + �

2
L = 0. This means that S1=2(Zn;h) !P 0 uniformly in

h 2 H. De�ne

�n(s;�) � S1=2(Zn;h) +
�
1

2
� s
�
� and �(s;�) �

�
1

2
� s
�
�:

Certainly, sup(s;�)2[0;1]�[�";1) j�n(s;�)� �(s;�)j !P 0. Therefore, following the steps after

(26), we obtain the desired bound. In fact, this bound is zero.4 �

4When �2U + 2�U;L + �
2
L = 0, we have _�U (h) + _�L(h) = 0 for all h 2 H. Therefore, �U;n(h) + �L;n(h)

is locally constant at h = 0. This is the case where we know �U;n(h) + �L;n(h) although we do not know
separately �U;n(h) and �L;n(h). Hence we still know the minimax decision f�U;n(h)+ �L;n(h)g=2, causing no
regret.
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