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Abstract

We develop a methodology for the empirical study of the markets for services. These
markets are typically organized as multi-attribute auctions in which buyers take into ac-
count seller’s price as well as his various characteristics, including quality. Our identifi-
cation strategy exploits observed buyer and seller decisions to recover the distribution of
seller quality conditional on observable characteristics, the distribution of seller’s costs con-
ditional on the full vector of characteristics including quality, and the distribution of buyers’
tastes. These objects are central to understanding the functioning of these markets, their
efficiency, and their optimal design. We propose an implementable econometric procedure
based on our identification strategy and apply it to an on-line market for programming
services. Our empirical results confirm that quality plays a central role in this market: for
example, the variation in quality among the providers and the willingness of buyers to pay
for quality account for over 50% of the variation in buyer choices, while the observable
characteristics account for less than 20%.
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1 Introduction

Recall the last time you hired someone to paint your house. Several painters evaluated the job
and submitted their price quotes (bids). Since candidates potentially differed in quality, you
interviewed each of them to assess their professionalism, the likelihood that the job would be
completed on time and according to your expectations. When submitting their bids, painters
might have been uncertain about your idiosyncratic willingness to pay for quality, and most likely
uninformed about the identity and costs of their competitors. You selected the painter taking
both the price and his quality into consideration. You probably went through a similar process
when hiring a nanny for your kids, a piano tuner, a hairdresser, or when choosing a brokerage.
In each of these examples, the price was an important, but quality considerations also played
an important role in your ultimate choice. Formally, you conducted a multi-attribute auction,
where the price and the quality dimensions of the bidder were relevant to your selection.

Transactions described above are not rare. Services account for around 80% of the U.S. gross
domestic product, and many service markets, including private business sector procurement, are
organized in the form of multi-attribute auctions. This is suggestive of the fact that, in addition
to price, other bidder attributes, such as quality, play a role in choosing the provider. How
important is that role? What is the distribution of buyer preferences for quality? How large is the
dispersion of the quality of suppliers? How well do the observable (to an econometrician) supplier
characteristics proxy for their quality? What is the distribution of supplier costs conditional
on quality? More generally, how efficient are these markets? What is their optimal design?
Unfortunately, despite the manifest importance of these questions the literature provides limited
answers.

The primary constraint on the analysis of these markets has been the limited nature and
availability of the data. These markets are decentralized, with many small players providing
similar but not identical services. Fortunately, recently such markets have become increasingly
organized on the Internet, opening an avenue for their study. Yet, even with the wider availability
of centralized data, the characteristics of the service providers observed in these data likely
provide a relatively poor measure of quality. For example, while the observed qualifications
and experience of the painter mattered for your selection, the photographs of completed jobs
probably provided considerably more information about quality. Similarly, you probably got
more information about the quality of the nanny by observing her interaction with your kids
than from knowing her age, and education. Thus, a buyer is likely to have richer information on
the quality of a service provider than what is recorded in data set. The objective of this paper is
to develop methodology that supplements quality-related characteristics recorded in data with
information inferred from the economic choices observed made by buyers.

Our modeling choices are motivated by the data from an online market for programming
services1 that is explicitly structured as a multi-attribute auction and resembles an off-line service
markets in many ways. While this market, like many other service markets, lacks a uniform and
objective record of quality, it is observed that the buyers often do not award the contract to the
lowest bidder and that the premium the buyers agree to pay is not well accounted for by the
difference in other observed seller characteristics. In other words, buyers are willing to pay a

1Professional services such as computer services account for half of the 20% growth in GDP share of services
over the last fifty years (Herrendorf, Rogerson, Valentinyi(2009)).
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premium for desirable seller characteristics that are not recorded in the data.

In our model, each project advertised by a buyer is associated with a set of potential bidders.
A subset of potential bidders chooses to participate the auction (to become actual bidders).2

Bidders’ idiosyncratic costs for completing the project are private information. The buyer’s
utility from a specific seller’s services is a function of the seller’s characteristics with a buyer-
specific weights. It also includes seller-specific component that reflects the value of the match
as perceived by buyer. One characteristic considered by the buyer captures seller’s permanent
quality which remains the same across projects. Buyers assess bidders’ qualifications through
private communications during the bidding process.

We begin by developing a strategy to identify the key objects of interest: the distribution
of bidder quality, the distribution of the buyers’ tastes for quality, and the distribution of the
sellers’ costs for completing the projects. While our environment is unique, it shares both the
features of discrete choice and auction settings. Our identification strategy builds on the insights
from these two literatures.

The discrete choice framework is typically used to model purchases in markets for differen-
tiated physical products.3 Similar to the environment we consider, in those markets multiple
buyers choose from a finite set of products, buyers may be heterogeneous in their tastes for prod-
uct attributes, and some product attributes may not be observed by an econometrician but are
known to market participants. In the market for physical products, researchers observe decisions
of a large number of consumers operating in the same market and, therefore, choosing from the
same set of products. Thus, product market shares are observed and product qualities can be
solved for from their relationship with the market shares.

These techniques cannot be applied in our setting. The main difficulty is that in service
markets sellers’ market shares conditional on the choice set are not observed since very few buyers
are choosing from exactly the same set of alternatives. Moreover, while some generalized notion
of the market shares can potentially be defined for the “permanent” sellers, in most auctions they
compete with “transitory” competitors who enter the market only for a short time. This feature
is typical of many service markets that are often characterized by high turnover of the providers.
Our evidence suggests that, due to private communication between buyers and sellers, buyers are
well-informed about the quality of even transitory sellers and take it into account when selecting
a winner. Since a reliable estimate of market shares for transitory sellers is not available, and
the market shares for the permanent sellers involve unobserved quality differences among both
permanent and transitory bidders, it is infeasible to infer product qualities merely from their
relationship with the market shares.

Our solution to this problem, which is the first step of our three-step identification strategy,
is to use the long-run performance of permanent bidders to rank them in the order of increasing
qualities conditional on observable characteristics. In particular, we construct a pairwise index

2We utilize auction participation models, such as in Li and Zheng (2009), Krasnokutskaya and Seim (2011),
Roberts and Sweeting (2010), Marmer, Shneyerov, and Xu (2010), in linking the set of potential competitors
to the set of alternatives from which the buyer eventually makes his choices as well as in rationalizing pricing
competition for a specific project.

3The identification of such models is studied in, e.g., Berry and Haile (2010b), Berry and Haile (2010a), Fox
and Amit (2012), Bajari, Fox, Kim, and Ryan (2012).
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that reflects one seller’s probability of winning in the auctions where both sellers are among
potential bidders. Since the sellers often do not fully know their actual competitors when they
decide on their bids, the set of potential bidders captures the relevant competitive environment.
We show that between two sellers, the seller with the higher quality has a higher value of this
index. Since we apply this procedure to permanent bidders who complete a large number of
projects, the probability of winning on which the index is based can be considered observed in
the data.4 This step effectively identifies (up to a monotone transformation) the distribution
of quality for permanent bidders as a function of other covariates while bypassing the issues of
unobserved buyers’ tastes, the unavailability of information on market shares, and the presence
of transitory bidders.

Next, we identify the distribution of buyers’ tastes and sellers’ quality levels. To do so,
we exploit a feature of our environment often encountered in auction settings – variation in
private sellers’ costs. We consider auctions that are characterized by different configurations
of the set of permanent actual bidders. For example, we consider auctions where only bidders
with the same characteristics participate or a set of auctions with bidders that share same
characteristics except for quality. After we fix the set of permanent actual bidders, bidders’
prices vary exogenously across auctions due to the presence of private cost information. Then, the
relationships between permanent seller’s price and his probability of winning in the presence of
different sets of permanent competitors identify distributions of various buyer’s taste components
and quality levels. To summarize, in our setting the distribution of buyers’ tastes is identified
non-parametrically out of the variation in the sets of permanent actual bidders combined with the
exogenous variation in prices. We provide conditions under which our model generates sufficient
price variation.

In the third and final step of our identification strategy, we recover the distribution of sellers’
costs conditional on observable characteristics and quality. Note that in our environment it
is natural to assume that buyers are heterogeneous in their requirements for the quality of
the job and therefore their willingness to pay for quality. Moreover, the buyers’ decision rule
is not revealed to bidders at any time, so that there is uncertainty about the weight the buyer
would assign to different characteristics. It is this unstructured nature of the auction format that
distinguishes the market we study from those studied in the previous auction literature, including
the recent literature on “non-standard auction formats” which assumes that the decision rule
is known to the bidders.5 When the award rule is not known, mark-up over costs charged by
bidders is not linked directly to the distribution of competitors’ prices. Instead, it also depends
on the distribution of buyers’ tastes. Therefore, we can proceed to identify the distribution of
bidders’ costs only after we identify the distributions of buyers’ tastes and all relevant seller

4Note that, as discussed above, the market shares for permanent bidders defined on the basis of the set of
potential bidders cannot be used to solve for quality of permanent bidders due to the presence of transitory
bidders.

5These include standard auctions with discrimination or preferential treatment for particular types of par-
ticipants in Marion (2007), Krasnokutskaya and Seim (2011), Swinkels (2009) and scoring auctions where the
award is based on a scoring rule that aggregates several bid components, studied in, e.g., Asker and Cantillon
(2010), Asker and Cantillon (2008), andBajari and Lewis (2011). Scoring auctions additionally differ from our
environment by treating bidder’s characteristics as auction-level choice variables. While a multi-attribute auc-
tion format is prevalent in industry procurement, we found only two papers that study it. Greenstein (1993) and
Greenstein (1995) analyze IBM’s procurement and documents different weights that IBM was revealed through
its choices to assign to different attributes of bidders.
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characteristics (including quality). We accomplish this by relying on the inversion method first
proposed by Guerre, Perrigne, and Vuong (2000) and later applied in various environments by
Li, Perrigne, and Vuong (2000), Jofre-Bonet and Pesendorfer (2003), Li, Perrigne, and Vuong
(2002), Krasnokutskaya (2011), Athey and Haile (2002).

Having established the identification of the model, we develop econometric methodology.
First we propose a nonparametric classification procedure that implements the first step of the
identification strategy. It uses the index developed in the identification section to rank bidders
with respect to quality, i.e., to effectively sub-divide them into groups of equal quality. Two
practical issues may potentially arise in small samples. First, the transitivity of the quality
ranking could be violated. Second, one may face indeterminacy with multiple compatible clas-
sifications. We propose a sequential algorithm that is designed to circumvent the transitivity
issue, and to choose the classification which is most strongly supported by the data. Through our
classification method, we consistently estimate a quality group structure. However, it provides
no evidence on quality levels and therefore does not permit comparison across covariate values.

Next, we estimate quality levels and the distribution of buyers’ tastes by method of mo-
ments. After parametrically specifying the distribution of buyers tastes, we use insights from
the nonparametric identification strategies to form moment restrictions. The main challenge in
the implementation of this step arises from the presence of transitory sellers. The relationship
between the prices and qualities of these sellers has to be integrated out in theoretical moment
conditions. The traditional approach that requires solving for sellers’ strategies at every itera-
tion is extremely computationally costly in our setting. Instead, we show that transitory sellers’
strategies are non-parametrically identified from the data through the variation in the sets of
permanent competitors. We then parametrically approximate the equilibrium distribution of the
transitory sellers’ bids and participation frequencies and estimate these objects jointly with buy-
ers’ tastes and quality levels. We also show that our methodology is amenable to semi-parametric
extension that allows estimating equilibrium objects non-parametrically.

Our methodology has a number of attractive features. For example, it recovers the qualities
of permanent sellers exactly. The recovered distribution of qualities is not restricted to be
orthogonal to other relevant seller characteristics such as seller’s country affiliation or measures
of performance recorded in the data. This allows us to explore the economic importance of
these relationships. In addition, our approach obviates the need for instrumental variables often
required to identify buyers’ price sensitivity conditional on quality. The instruments typically
used are the characteristics of competing products. These instruments are not available in
environments such as ours where all observable seller characteristics are potentially endogenous
(e.g., reputation score or the number of projects completed). Note that as the data sets with
transaction prices become available, our identification approach can also be used in the classic
differentiated product markets. That is, in environments where transaction price deviations from
wholesale price are based on private sellers’ information, the variation in transaction prices can be
exploited to identify buyers’ tastes in the absence of other instruments. While our methodology
is tailored to a specific service market, we believe it can be modified in a number of ways to
apply to wide range of settings with similar data structures.

Applying our identification and inference strategies to the data from the online market for
programming services, we find that quality plays an economically significant role. The model
with quality explains 70% of buyers’ choices, whereas the model without quality explains only
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25%. There is also clear evidence for nontrivial quality heterogeneity among the sellers. The
buyers exhibit a strong preference for quality: an average buyer is willing to pay a 50% premium
to move from the lowest to the highest quality level. Thus, the variations in quality levels across
the sellers and in buyers’ willingness to pay for quality account for more of the variation in the
data than all other covariates combined. We also estimate a statistically significant relationship
between transitory sellers’ bids and their qualities. This result demonstrates the strength of
our identification strategy and fit of our model, since the relationship between transitory seller’s
quality and price is not directly observed in the data. While unobserved quality is commonly
believed to be important in the service markets, our findings contribute to the literature by
offering the first formal assessment of its role. Moreover, the presence of large quality hetero-
geneity provides a plausible explanation for why the market we study, and service markets more
generally, tend to be organized as multi-attribute auctions.

Our empirical results also contribute to a better understanding of the information and en-
forcement issues studied in the literature on Internet auctions. Main questions in this literature
are whether consumers are able to obtain credible information about the product sold and what
mechanism incentivizes sellers to exert higher effort. One possibility emphasized in the literature
is that reputation score proxies for the quality of the seller, or, in other words, it serves as an
informative device that counteracts adverse selection problems. On the other hand, it may rep-
resent an enforcement mechanism that eliminates moral hazard issues. The emerging consensus
in the literature seems to indicate that the latter role is probably more relevant (e.g., Cabral and
Hortacsu (2010)). Our empirical results appear to reinforce this consensus, as we explain below.

First, we estimate a non-trivial quality heterogeneity within a narrow band of reputation
scores, which suggests that the reputation score predicts seller’s quality very imperfectly. Second,
we estimate that the bid distribution of transitory bidders significantly depends on the bidder
quality in addition to all the covariates. Recall, that this object is recovered from the variation
in buyers choices since no direct link between transitory seller’s bids and his quality is observed
in the data. This suggests that the buyer must be informed about quality either directly or
indirectly through signaling. It appears thus that information problems play only a limited
role, at least in the segment of the market we study.6 The reputation scores are nonetheless
valued by the buyer, which must indicate that they fulfill their literal role, namely, that of
creating reputation. In summary, evidence from the data appear to point more toward the role
of reputation scores as addressing moral hazards rather than adverse selections.

The estimated bidding strategies show expected regularities: they are increasing in costs, and
the prices of the low-quality bidders are noticeably lower than those of the higher-quality ones.
A particularly interesting insight is that when we combine bid distribution with bid strategies to
recover the distribution of costs conditional on seller’s characteristics including quality, we find
that a tight (low variance) cost distribution can rationalize the large variation in prices observed
in this market. Intuitively, in a standard auction, the sensitivity of the winning probability to the
increase in prices provides a high-cost bidder with an incentive to lower his mark-up. In contrast,
our model allows for seller-specific match component of buyers’ tastes that is unobserved (and
therefore purely stochastic) from seller’s point of view. The high-cost seller’s winning probability
depends to a large degree on favorable realization of this stochastic component. This gives seller
incentive to drive the price up and gamble on a lucky outcome.

6Relatedly, Lewis (2011) finds little evidence of adverse selection in the context of the e-Bay auto market.
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The paper is organized as follows. Section 2 describes our market and main features of the
data that motivate our modeling choices. The model is described in Section 3. In Section 4 we
develop the identification strategy. Sections 5 and 6 describe the econometric implementation of
the proposed identification strategy. Section 7 presents the results of the empirical analysis based
on the methodology developed in this paper. Section 8 summarizes the findings and outlines
directions for further research.

2 Market Description and Some Features of Data

2.1 Market Description

We study a market mediated by an online platform that serves as a match-maker between the
demand and supply for services of computer programming. This company provides an environ-
ment that allows buyers (the demand side) to post job announcements. At the same time it
maintains the registry of potential sellers (the supply side). The registry provides limited infor-
mation on verifiable “outside” credentials as well as information about the on-site performance
of the seller. The later includes reputation scores or ratings, buyer’s numerical feedback about
working with a given seller, as well as instances of delays and disputes. In the case of a dispute,
the company provides professional arbitration services which ensure that a seller is paid if only
if the completed job satisfies industry standards.

The intermediary company allocates jobs through multi-attribute auctions. Under the rules of
such auction, a buyer is allowed to take into account multiple seller characteristics in addition to
the price quote. As a result, the selected seller is not necessarily the one who submits the lowest
quote. While the buyer considers some (possibly all) available information about participating
sellers when making his decision, the weights he assigns to different pieces of information are not
known to other market participants.

Suppliers can communicate with the buyer before posting a price quotes. Such an exchange of
messages is very common. On average each seller submits three messages per auction in our data.
In some cases, a seller can attach an example of his work or a sketch of the proposed code. The
number and the content of these communications are not observed by the other sellers. Hence
while the buyer has an opportunity to form an informed opinion about each sellers’ quality,
competing sellers have much more limited knowledge of their competitors’ quality. In principle,
competitors can infer seller’s quality from his long run rate of winning in the way similar to the
one we propose in this paper.

When a seller contacts a buyer for any reason, his code name appears on the project webpage.
Therefore, at any point in time, a visitor to the page can see the list of the sellers who contacted
the buyer before this point. This list generally does not coincide with the set of the sellers who
eventually submit price quotes since a few sellers may ask the buyer a question without submit-
ting a quote. Therefore, a prospective seller does not observe the set of his competitors.7 It is

7Another indication that the set of actual competitors is not observed is that bids are generally submitted
throughout the time period allocated for the auction and once submitted are rarely revised.
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possible, however, to form an opinion about the potential competition by observing participation
activity across similar auctions.

Finally, the buyer has an opportunity to set a secret reserve price in these auctions. This
means that some of the bids are rejected outright without being compared to the other bids.

2.2 Some Data Regularities

We have access to the data from the starting date of our online programming market and for
the subsequent 6 years of this company’s operation. The majority of buyers in these six years
are one-time participants. Less than 2% of buyers return with multiple projects. In addition,
repeated buyers do not return with the same type of project. As a result, they very rarely work
with the same seller repeatedly.

The multi-attribute feature of the auction is strongly supported in the data. Indeed, in our
sample, 58% of the projects are awarded to a seller who quotes a price above the lowest price
submitted in the auction. Table 1 documents the share of such projects as well as an average
mark-up over the smallest bid for some project types.

Table 1: Projects Awarded at a Price that Exceeds Lowest Price in Auction

Type of work Projects Share Price Mark-up
Database 64% 41.2%
Platforms 52% 37.9%
Graphics 71% 38.4%

Web-related 52% 41.2%

Note: The results in this table are based on full sample which includes 600,000 projects.

These results indicate that buyers consider seller characteristics other than price when choos-
ing a winner. We explore the buyers’ choices using a logit model with random coefficients (with-
out choice-specific fixed effects). In this analysis, we set the dependent variable, Yli, to be a
project award dummy which is equal to one if the seller i won the project l and zero otherwise.
The award depends on the buyer’s utility from a specific alternative (seller), which is modeled
as a linear function of seller characteristics, Xki, (the number of ratings (experience), average
score, delays, arbitration), seller location dummies, µc(i), and a seller-specific price quote, Bli:

Yli = Xiαl + γlBli + µc(i) + εli (1)

Table 2 reports the results of this analysis. As can be seen from this table, the mean of the
price coefficient is estimated to be positive and statistically significant. This result suggests an
omitted variable bias since in most markets, buyers dislike paying higher prices other things
equal. This means that some additional characteristic, not recorded in the data, affects buyers’
choice in conjunction with the price, location and performance measures. Such an omitted
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variable should be positively aligned with the price and is, therefore, some vertical characteristic
such as quality.

Table 2: Logit Model with Random Coefficients

Variable Coefficient Std.Error
Normalized Price (mean) 6.461 0.743

Note: The results in this table are based on full sample which includes 600,000 projects.

Another important feature of our data is summarized in Table 3. It shows that a large share
of sellers in our data are transitory. In particular, for 65% of the seller population, the tenure
with the intermediary is under one month and for 75%, under three months. On the other hand,
10% of the seller population stayed for more than two years. The share of transitory sellers is
larger in the beginning years, but settles down so that the distribution of the tenure is almost
constant over the last three years. In these years, 30% of the sellers stayed in the market for
more than a year, whereas 65% of the sellers left the market in less than three months.

In contrast to other online markets, the sellers’ performance does not appear to be related
to their propensity to stay in the market. To see this closely, we define permanent sellers to
be the sellers with a tenure longer than one year, and transitory sellers to be the sellers who
left after less than one year. Table 3 documents no significant differences between permanent
and transitory sellers in the number of bids submitted before the first success, as well as in the
distribution of reputation scores received by these bidders for their first or last projects. We
obtain similar results when transitory sellers are redefined to be those who left after six months.

An interesting regularity emerges concerning the number of the bids before the first success.
When we compute the unconditional distribution of this variable, the time to the first success for
the transitory sellers appears to be substantially shorter than that for the permanent seller. This
discrepancy disappears when the distribution of this variable conditional on achieving at least
one success is considered. This suggests that many transitory bidders do not wait for success,
and that sorting into permanent or transitory groups is driven by an outside option rather than
quality or performance differences among the sellers.

In general, transitory sellers appear to be quite successful: their rate of winning is comparable
to that of permanent sellers, and they often beat permanent sellers at comparable prices. Given
that the extensive communication between buyers and sellers is present, this suggests that buyers
may be able to assess the quality of transitory sellers as accurately as they assess the quality of
permanent sellers.

On the other hand, very little information about transitory sellers is publicly available. In-
deed, public information is released when a seller completes a project, and transitory sellers
usually complete one or two projects and leave the market. It is plausible, therefore, that com-
peting sellers are not informed about transitory sellers’ qualities. The situation is different for the
permanent sellers. The market may infer their quality from the long-run rate of their successes
through reasoning similar to that we use later in this paper.
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Table 3: Analysis of Permanent vs. Transitory Sellers

Tenure Distribution
≤ 1m ≤ 3m ≤ 12m ≤ 24m

overall 65% 75% 80% 90%
annual (last 3 years) 45% 65% 70% 75%

Number of Bids before First Success
≤ 10% ≤ 25% ≤ 50% ≤ 75%

tenure≥ 12m 5 9 17 42
tenure≤ 12m 1 2 3 12
tenure≤ 12m (success≥ 1) 3 7 15 36

First Reputation Score
8 9 10

tenure≥ 12m 5% 10% 85%
tenure≤ 12m 5% 10% 85%

Last Reputation Score
8 9 10

tenure≥ 12m 2% 30% 68%
tenure≤ 12m 2% 28% 70%

Note: The results in this table are based on full sample which includes 600,000 projects.

3 The Model

A market is served by two types of sellers: the permanent sellers staying with the market for
a long time completing many projects, and the transitory sellers present only for a very short
time completing one or two projects during their tenure. Formally, a population of sellers N is
partitioned so that N = N p ∪ N t where N p, and N t denote subpopulations of permanent and
transitory sellers respectively.

Every seller is characterized by a vector of discrete observable characteristics, xi, and a
scalar quality level, qi. The distribution of the qualities may potentially depend on seller’s
observable characteristics.8 In particular, the quality of the seller with observable characteristics
x is drawn from a discrete distribution with Kx distinct quality levels (denoted by {q̄x,k}k≤Kx
with q̄x,1 > q̄x,2 > ... > q̄x,Kx).

9

The demand side of the market is represented by one-time buyers. Each of them brings a
single project to the market and seeks to hire a service provider who would complete the job.
We use l to index a buyer as well as the job he posted. A project, in turn, is summarized by
a set of characteristics, zl, such as the date when the project is posted, and the contract terms

8Note that discreteness assumption could be relaxed in many parts of the paper. In addition, this assumption
suits well to our environment since all seller characteristics in our data are discrete.

9Discreteness of the quality distribution is not restrictive. We cannot hope to recover more quality levels than
the number of observations we have at our disposal. On the other hand, our approach allows for every seller to
have a distinct quality level.
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(e.g., specification of coding tasks, deadlines, etc). The set of potential bidders for project l,
Nl = Nl(zl) ⊆ N , depends on the project characteristics. This dependence is suppressed in most
places in the paper to simplify notation. The set of potential sellers is further partitioned into
potential permanent sellers, Np ⊆ N p, and potential transitory sellers, N t ⊆ N t.

Each potential bidder i ∈ N observes his own private entry cost Si,l ∈ R1
+ and the set

of potential competitors for project l. He then decides whether to enter the auction, i.e. to
submit a price quote to the buyer. The set of the entrants (or actual bidders) is denoted by
A = Ap ∪ At ⊆ N . Upon entry, an actual bidder observes the private cost Ci,l ∈ R1

+ for the
project, and quotes a price/bid Bi,l. An entrant’s private signals Si,l and Ci,l may be dependent.
Actual bidders do not observe the participation decisions of other potential bidders.

We assume that the buyer observes all relevant characteristics of the actual bidders including
qualities regardless of whether they are permanent transitory. This assumption reflects extensive
communications permitted to occur between the buyer and the sellers in these auctions. On
the other hand, the sellers (who can observe public information only) know the quality of the
permanent competing sellers, not that of the transitory ones.10

The projects are allocated through multi-attribute auctions. Under multi-attribute auction
rules, a buyer chooses a seller whose service provision would maximize the buyer’s utility. The
utility of buyer l from services of seller i is given by

ui,l = αlqi + x′iβl −Bi,l + εi,l. (2)

Here αl and βl represent buyers’ tastes for sellers’ quality and observed characteristics, and
εl ≡ (εi,l)i∈N denotes the vector of seller-specific match components as perceived by the buyer l.
The match components capture all relevant considerations other than those reflected by sellers’
observable characteristics and qualities. For example, they may reflect buyers’ impressions about
the sellers’ fit which are gleaned from communications with them.

Buyer l may set a secret reserve price Rl which from the seller’s point of view is drawn from
a distribution with a bounded support [r, r]. The reserve price may depend on buyer’s tastes for
quality and observable characteristics, α, β, but not on the vector of seller-specific components
,εl, which realizes after the reserve price is set. Only the sellers with price quotes below Rl belong
to buyer l′s choice set. We refer to the set of actual bidders with Bi,l ≤ Rl as the set of qualified
bidders and denote it by AQ,l to distinguish it from the set of all actual bidders Al.

To summarize, an actual bidder i wins the project l if and only if:

for all j 6= i in Al, either “Bj,l > Rl”or “ Bi,l ≤ Rl and αl∆qij + ∆x′ijβl + ∆εij,l ≥ ∆Bij,l ”,

where ∆qij ≡ qi − qj, ∆xij ≡ xi − xj, ∆εij,l ≡ εi,l − εj,l, and ∆Bij,l ≡ Bi,l −Bj,l.

10This assumption is not essential for our methodology. Here we assume that permanent sellers quality could
be inferred by competitors from their winning record. The methodology could easily be modified to suit an
environment where competing bidders do not observe each others quality.
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3.1 Assumptions

Next, we specify the model assumptions that are maintained throughout the paper. Let S ≡
(Si)i∈N , C ≡ (Ci)i∈N , and let Fα,β,ε,C,S|N denote the joint distribution of buyer tastes and sellers’
private information. For a given set of potential bidders N , we make the following assumptions.

(A1) Both N and Fα,β,ε,S,C|N are common knowledge among the sellers.

(A2) (i) (Si, Ci)i∈N are independent across i. (ii) For all i ∈ N , Ci is continuously distributed
with positive densities over [ci, ci]. (iii) (Si, Ci) are identically distributed for all i with
identical qualities.

(A3) (α, β, ε) are independent from (S,C). Suppliers do not observe (α, β, ε) in entry and bidding
stages.

(A4) (i) εi’s are i.i.d. across i with continuous and positive densities over [ε, ε]. (ii) α is contin-
uously distributed with positive densities over [0, α].

(A4′) Condition (A4) holds with α, β, ε being mutually independent.

(A5) The distribution of sellers’ qualities, Q, conditional on observable characteristics is inde-
pendent of sellers’ permanent or transitory status:

P (Qi = q̄|i ∈ N t, xi = x̄) = P (Qi = q̄|i ∈ N p, xi = x̄).

(A1)-(A2) are restrictions on the information available to sellers. (A3) requires buyers’ tastes
to be independent of sellers’ private information. (A4) requires that there be certain symmetry
in (εi)i∈N , and that the distributions of buyers’ tastes components have no gaps or points with
probability mass. (A5) suggests that the quality of a seller is not related to her status as a
permanent or transitory seller.

3.2 Equilibrium Characterization

We now characterize the pure-strategy, symmetric Bayesian Nash equilibria (PSBNE) of the
multi-attribute auction game. In this section all objects are defined for a specific set of the
potential bidders. We suppress the dependence on N = Np ∪ N t for brevity. We focus on
type-symmetric equilibria. In such equilibrium, participants who are ex ante identical, i.e char-
acterized by the same (xi, qi) and the permanent/transitory status adopt the same strategies.

A seller’s strategy, σi, consists of two components: participation strategy, σEi : ΩSi → {0, 1},
and bidding strategy, σBi : [ci, ci]→ R1

+. Conditional on participation, a seller i’s expected profit
from bidding b is given by

πi(b, ci; σ
E
−i, σ

B
−i) ≡ (b− ci)P (iwins | b;σE−i, σB−i),
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where (σE−i, σ
B
−i) is the profile of strategies of the other participants. Here,

P (iwins |Bi = b;σE−i, σ
B
−i) = (3)∑

a⊆N\{i}

(
P (“α∆qik + ∆xikβ +Bk + ∆εik ≥ b or Bk > R” ∀k ∈ A−i, and b < R|A−i = a)
×Πk∈aP (Dk = 1)× Πk∈N\{i,a}P (Dk = 0)

)
.

where A−i ≡ A\{i}; Bk = σBi (Ck) and Dk = σEi (Sk). Further, in this expression ∆qik = qi − qk
if k ∈ Ap−i and ∆qik = qi − Qk if k ∈ At−i. This reflects the fact that from i’s perspective,
the quality levels of permanent competitors are known constants, while the quality levels of
transitory competitors are random variables (denoted by (Qj : j ∈ N t\{i})).

A PSBNE is a profile of strategies {(σEi , σBi )}i∈N such that: (i) σBi (ci) = arg maxb πi(b, ci; σ
E
−i, σ

B
−i);

(ii) E[πi(σ
B
i (Ci), Ci)|Si = si] − si ≥ 0 for all si such that σEi (si) = 1 (and < 0 for all si such

that σEi (si) = 0).11

We assume that participation and bids in data are rationalized by a single PSBNE. While we
do not formally prove equilibrium existence we believe it could be justified using an argument
similar to the one presented in Athey and Levin (2001). We conclude this section by establishing
some properties of the distribution of prices and entry decisions in PSBNE. These properties
are direct consequences of assumptions maintained in (A1)-(A4) and the proof is omitted for
brevity.

Lemma 1 Suppose (A1)-(A4) hold. Then in a PSBNE:

(i) {α, β, ε} is independent from entry decisions {Di}i∈N (and therefore A);

(ii) {Di}i∈N are mutually independent across all i ∈ N ;

(iii) conditional on N t, Np, the bids {Bi}i∈a are mutually independent across i for a realization

of entrants’ set A = a;

(iv) bi ≤ r for all i ∈ N ; and

(v) if c̄i = r̄ for all i and the support of R is [r, r̄], then b̄i = r̄ for all i.

Lemma 1 essentially implies that properties (A1)-(A3) stated for the set of potential bidders
are also inherited by the set of actual bidders. Point (v) refers to the properties of the support
of bids in a special setting when the upper end of the support of costs is the same across all
seller types and coincides with the upper end of the support of reserve price. We consider
such environment later in the paper when we discuss requirements of our identification strategy.
Finally, note that if i ∈ Np and j ∈ N t, then entry probabilities and bidding distributions of i
and j could be different even with xi = xj and the realization of qj = qi. This is because the
information available to i and j is different.

11Note (ii) implies that entry strategies are monotone (i.e., ∃s̄i for all i such that σEi (si) = 1 iff si ≤ s̄i) if Ci
is independent from Si.
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4 Non-parametric Identification

We outline our identification strategy in this section. We proceed under the assumption that we
observe a large number of projects associated with the same set of characteristics, zl, and the
same set of potential bidders. In the subsequent exposition, reference to zl and Nl is suppressed
for brevity. For each project, the data contain information on the set of actual bidders, their
price quotes, the set of qualified participants, and buyer’s choices,12 and the objective of the
analysis is to recover the distribution of buyers’ tastes, quality levels of permanent sellers, and
the distributions of bidders’ private costs. In our setting, the qualities of permanent sellers may
naturally be viewed as sellers’ fixed effects. In contrast, the qualities of transitory bidders can
only be summarized at the distribution level, and are treated as random effects.

As discussed in the introduction, despite some similarities to the discrete choice, we cannot
directly use identification strategies developed in that literature, primarily due to (1) the un-
availability of market shares (probability of winning) of individual sellers conditional on buyers’
choice set (the set of qualified bidders), and (2) a large number of transitory sellers present in
the market and influencing permanent sellers’ winning probability in any given auction.

Our solution is to discretize the unobserved qualities. This allows us to first recover the the
quality group structure which informs us about the permanent sellers’ quality distribution up
to a finite set of parameters.13 Once the quality structure is recovered we proceed to identify
the distribution of buyers’ tastes for quality. Our identification strategy relies on the variation
in permanent sellers’ prices as well as the variation in permanent actual bidders sets conditional
on the set of potential bidders. The first source of variation is unusual in the choice literature.
It is available to us due to private costs that typically characterize auction environment. Later
in this section, we discuss conditions that ensure price variation required by our identification
strategy.

4.1 Quality Group Structure

This sub-section explains how the quality group structure of the set of permanent sellers, N p,
can be recovered from the data. This part of our identification strategy relies on the property
of our model summarized in the proposition below.

Let ΩBi denote the support of the distribution of bids submitted by seller i. Further, for
b ∈ ΩBi , define:

ri,j(b) ≡ P (iwins |Bi = b, i ∈ A, j 6∈ A). (4)

Proposition 1 Suppose (A1)-(A4) hold and P{Dk = 1} > 0 for all k ∈ N . Then:

sign(ri,j(b)− rj,i(b)) = sign(qi − qj)
12While we assume that realizations of the reserve price in a specific auction are observed in the data, it is

sufficient for most results to observe the set of qualified participants instead.
13In our setting this distribution coincides with the quality distribution of transitory bidders by assumption.
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for all b in the interior of ΩBi ∩ ΩBj and any {i, j} ∈ Np with xi = xj.
14

This proposition formalizes an observation that given the set of potential bidders, the uncer-
tainty in competition that i faces when “i ∈ A while j 6∈ A” is identical to that j faces when
“j ∈ A while i 6∈ A”. If we further condition on i and j quoting the same prices, then the
difference in winning probabilities must be solely due to the difference in their quality levels.

In our model the quality comparison is transitive, i.e. if qi > qj and qj > qk then qi > qk.
Therefore, the proposition below allows us to rank permanent sellers in the order of weakly
increasing qualities. In particular, it allows us to identify groups of equal quality or quality
group structure of permanent sellers.15

Further, while our index is pairwise in nature16 it’s pairwise feature is very weak and is
unlikely to cause problems in large datasets such as ours.

Our identification strategy requires that the supports of price distributions for bidders with
different qualities (and the same x′s) should overlap. We discuss this requirement at the end of
this section.

4.2 Distribution of the Buyer-Seller Components

Using recovered quality group structure from Section 4.1, we identify quality levels and the
buyers’ taste distribution. We begin with the seller-specific component of buyers tastes and then
proceed to identification of the taste for quality and the seller’s observable characteristics.

Having identified the quality group affiliation of permanent sellers, we ignore sellers’ identities
from now on, and treat different sellers in the same (x, q)-group as independent “draws” from
the (x, q)-group. In particular, we do not distinguish between bids submitted by the sellers i
and j, as long as both sellers i and j belong to the same (x, q)-group.

We identify the distribution of the buyer-seller component, εl,i, from the relationship between
the permanent seller’s price and his probability of winning against competitors from the same
group. First, we outline identification strategy in a simple case where all qualified participants
are permanent bidders. We then show how the method can be generalized to allow for presence
of transitory bidders among qualified participants.

Consider auctions where the set of qualified participants consists of three permanent entrants
i, j, k ∈ Np who belong to the same (x, q)− group. Let bi,j,k denote the event “Bi = bi, Bj = bj,

14The sign function is defined in a usual way: sign(a) > 0 if a > 0, sign(a) < 0 if a < 0, and sign(a) = 0 if
a = 0.

15Transitivity property maybe violated in estimation due to small sample issues. Our estimation strategy
takes this possibility into account.

16It is potentially possible that the full ranking of permanent sellers may not be constructed if not all sellers
could be linked through our index. In this case, partial ranking of sellers could be constructed by sub-dividing
sellers into sets for which full ranking could be obtained. In parametric estimation these sets can then be linked
in the second stage where the quality levels of various quality groups are recovered.
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Bk = bk. ”The probability that i wins conditional on bi,j,k and AQ = {i, j, k} is

P (εj − εi ≤ bj − bi, εk − εi ≤ bk − bi | i, j, k ∈ A, min
s∈A\{i,j,k}

Bs > R ≥ max
s∈{i,j,k}

Bs, bi,j,k) (5)

= P (εj − εi ≤ bj − bi, εk − εi ≤ bk − bi)

where we have used the independence between ε and R. The prices of permanent bidders
(Bi, Bj, Bk) vary independently from {ε}i,j,k under (A3). If the support of (Bj − Bi, Bk − Bi)
given “R ≥ max{Bi, Bj, Bk} and AQ = {i, j, k}” covers that of (εj − εi, εk − εi) then the joint
distribution of (εj − εi, εk − εi) can be fully recovered. After that, Fεi can be identified up to a
location normalization using, for example, Kotlarski Theorem (Kotlarski (1967)) under mutual
independence of (εi, εj, εk).

Next, we generalize this argument to allow for presence of qualified, transitory bidders.17 The
main issue here is that prices of transitory bidders are correlated with their random qualities.
Consider an auction where the set of qualified participants consist of four or more sellers, some of
these sellers may be transitory. We require that three of these participants should be permanent
sellers, i, j, k ∈ Np,that belong to the same (x, q) group.18 We rely on a modified probability
of winning. More specifically, for any vector of bids (bi, bj, bk) and the set of qualified entrants
AQ = a such that {i, j, k} ⊂ a, we consider the following probability

P (iwins|AQ = a, bi,j,k, “ui ≥ um ∀m ∈ a\{i, j, k}”) , (6)

That is, we additionally condition on the event that the buyer chooses between i, j and k. Notice
that, given AQ = a and bi,j,k, the event that i wins is the intersection of two events “∆εij ≥ ∆bji,
∆εik ≥ ∆bki” and “ui ≥ um for all m ∈ aQ\{i, j, k}.”Thus, expression in (6) is written as

P (∆εji ≤ ∆bji, ∆εki ≤ ∆bki|ω∗, bi,j,k) ,

where ω∗ denotes “AQ = a and ui ≥ um ∀m ∈ a\{i, j, k}”.

The main insight is that under (A1)-(A4’), εj and εk are mutually independent, and are
jointly independent from εi and the event “ω∗ and bi,j,k.”In addition, εi is independent from
(Bj, Bk) conditional on Bi = bi and ω∗. That is, Fεi,εj ,εk|ω∗,bi,j,k = Fεi|ω∗,biFεjFεk . Hence if for
some bi ∈ ΩBi the support of (Bj − bi, Bk − bi) covers the support of (εj − εi, εk − εi), then the
joint distribution of (εj − εi, εk − εi) conditional on Bi = bi and ω∗ can be recovered over its full
support. After this, we proceed as before to recover Fεi up to a location. Finally, notice that (6)
can be obtained from data as

P (iwins|AQ = a, bi,j,k)

P (iwins|AQ = a\{j, k}, bi)
(7)

by Bayes rule. We formalize these arguments by specifying two additional support conditions

17Note, that we can use the same approach to allow for presence of additional permanent bidders whose prices
are not used in identification.

18The identification can also be achieved with qualified participants’ sets consisting of three bidders with just
two permanent bidders who belong to the same (x, q)- group.
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and Proposition 2 below. The proof is included in the Appendix.

(A6) There exists an (x, q)-group of permanent sellers such that at least three sellers in N belong
to this group, and bi ∈ ΩB(x,q), such that for any two independent random variables, Bj

and Bk, distributed according to FB(x,q)(.), the support of (Bj − bi, Bk − bi) covers the
support of (εj − εi, εk − εi).

(R1) The support of B(x,q) with (x, q) specified in (A6) intersects with that of Bm for some
m ∈ N other than three (x, q)−bidders from (A6).

(A6) ensures the existence of a triplet {i, j, k} that delivers identification, and the identifi-
cation of the joint distribution of (εj − εi, εk − εi) given Bi = bi and ω∗.19 Condition (R1) is a
technical restriction that avoids conditioning on zero probability events in our argument.

Proposition 2 Suppose A1, A2, A3, A4’, A6 and R1 hold, P (Ds = 1) > 0 for all s ∈ N . Then

Fεi is identified up to a location normalization, E[εi] = 0.

Identifying the distribution of εi requires sufficient variation of prices in the data. We describe
conditions that yield such variation in Section 4.4.

4.3 Quality Differences and Buyer Tastes

Next, we show how to recover the distribution of buyers’ tastes for quality (Fα), and quality levels
for permanent sellers. As before, we exploit the relationship between the probability of winning
and prices of permanent bidders. To illustrate the main idea, we first consider a simple case
where the set of qualified entrants consist of two permanent entrants from the same x-group but
with different quality levels. For the sake of exposition, we also maintain that R is independent
from α. (We discuss extension to the case with more than two entrants, involving transitory
bidders, and the case with correlation between R and α later in this subsection.) Then,

P ( iwins | bi, bj, AQ = {i, j}) (8)

= P (α∆qji + ∆εji ≤ ∆bji| bi, bj, min
k∈A\{i,j}

Bk > R ≥ max{bi, bj}, i, j ∈ A)

= P (α∆qji + ∆εji ≤ ∆bji)

where we have used the fact that bids in equilibrium are functions of private costs only, which are
independent from buyers’ tastes (α, β, ε) as well as reserve price R. Under (A3), the distribution
of α∆qji + ∆εji is independent from Bi and Bj.Provided that the support of Bj − Bi covers
that of α∆qji + ∆εji, the distribution of α∆qji + ∆εji can be recovered through the variation
in bi and bj in (8). With F∆εji already identified from Section 4.2, this leads to the recovery of

19In principle, such a condition can be verified in data.



18

the distribution of α∆qji. This means that Fα and ∆qji are identified up to a normalization,
E[α] = 1.

We now extend this idea to auctions that involve three sellers i, j, k, where i, j are permanent
sellers known to belong to different quality groups within the same x− group, and the third
entrant k could be permanent or transitory. To simplify exposition, assume that k belong to the
same x-group. (Further generalizations to cases with more than four entrants or with k from
a different x−group do not pose additional challenges and are omitted for brevity.) We first
formulate the support condition.

(A7) There exists some bk ∈ ΩBk such that conditional on Bk = bk and AQ = {i, j, k} the
support of (Bi −Bj, Bi − bk) covers that of (α∆qij + ∆εij , α (qi −Qk) + ∆εik).

The interpretation of (A7) differs according to whether k is permanent or transitory seller.
If k ∈ Np then qk is a scalar constant. Otherwise, Qk is a random variable whose distribution is
correlated with that of Bk, since Bk depends on seller k’s quality, Qk.

Proposition 3 Suppose Fεi is identified and A1, A2, A3 and A4’ hold. If A7 holds for some

permanent i, j and some other transitory seller k, then Fα and ∆qij are identified up to a scale

normalization, E[α] = 1.

Proof of Proposition 3. By definition,

P (iwins| bi,j,k, AQ = {i, j, k})

= P

(
Y1 ≥ bi − bj, Y2 ≥ bi| bi,j,k, {i, j, k} ⊆ A, min

s∈A\{i,j,k}
Bs > R ≥ max

s∈{i,j,k}
bs

)
. (9)

where Y1 ≡ α∆qij + ∆εij and Y2 ≡ α(qi − Qk) + ∆εik+ Bk. This conditional probability can
be recovered from the data. Under the assumptions stated, the joint distribution of (Y1, Y2) is
independent from Bi, Bj given “AQ = {i, j, k}, and Bk = bk.”Thus, under (A7), the joint distri-
bution of (Y1, Y2) given “AQ = {i, j, k}, bi, bj, bk” can be fully recovered over its support through
variation in (bi, bj). Under stated assumptions, the marginal distribution of Y1 is independent
from the event “AQ = {i, j, k}, bi, bj, bk.”Thus the unconditional distribution of α∆qij + ∆εij
is identified. With Fεi identified for all i ∈ N , Fα and ∆qij are also identified up to a scale
normalization. Q.E.D.

For the case where R is correlated with buyers’ tastes α, the intuition from the first paragraph
in this subsection does not apply directly. To see this, note variations in bi, bj would affect the
event R ≥ max{bi, bj}, which in turn would affect the distribution of Y1, Y2 through its impact
on the distribution of α. Nonetheless, the logic above can be extended to show identification.
Specially, we can use

P (iwins, A = AQ = {i, j}| bi, bj, i, j ∈ A)

= P (α∆qji + ∆εji ≤ ∆bji, R ≥ max{bi, bj}|bi, bj) = P (α∆qji + ∆εji ≤ ∆bji, R ≥ max{bi, bj})
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With sufficient variations in bi, bj we can identify the joint distribution of α∆qji + ∆εji and R.
Of course this argument requires the use of a set of more restrictive support conditions.

Note that, once the group structure and quality levels for the set of permanent sellers are
identified, the distribution of quality levels for transitory sellers can be recovered as well. Indeed,
under (A5) the probability that quality of transitory seller is at a specific level is equal to the
proportion of permanent sellers who are of this quality level:

P (Qi = q̄|i ∈ N t, xi = x̄) = #{i∈N p:qi=q̄, xi=x̄}
#{i∈N p:xi=x̄} .

The identification of buyers’ tastes for observable characteristics follows steps similar to those
used in the identification of buyers’ taste for quality. Finally, once buyer’s tastes, permanent
sellers’ quality levels, and transitory bidders distribution of qualities are recovered, the distribu-
tion of bidders’ private information can be identified as well via an argument similar to that in
Guerre, Perrigne, and Vuong (2000). Details could be found in the Supplementary Appendix.

4.4 Support Conditions

The identification of the distribution of buyers’ tastes hinges on conditions which require that
supports of prices submitted by different quality groups should intersect and that sufficient
price variation should exist. In this sub-section we investigate whether a model such as ours is
capable of generating data that satisfy these conditions. We present our analysis for the case
where buyers’ tastes are a summarized by seller-specific component only, i.e. ui,l = −Bi,l + εi,l.

We begin by deriving restrictions on the relationship between the support of prices and that
of buyers’ tastes that are sufficient for (A6)and (R1). Then, we explain how sufficient price
variation could be generated by our model.

Remark 1 Suppose c̄i = c̄ for all i and r̄ = c̄. Then R1 holds. If, in addition, for some i ∈ Np,
b̄i − bi > 2(ε̄ − ε) and there exists j, k ∈ Np with qi = qj = qk and xi = xj = xk , then (A6)
holds.

By part (v) of Lemma 1, b̄i = c̄ for all i ∈ N when c̄i = ci for all i ∈ N . Hence, R1 holds.
This also implies the support of (Bi −Bj, Bi −Bk) given Bi = bi does not become smaller after
conditioning on “Bi = bi and R ≥ max{bi, Bj, Bk}.”

It is easy to visualize the second observation in Remark 1. Figure 1(1) depicts the uncondi-
tional support of (εj−εi, εk−εi). The support is a subset of the square [ε− ε̄, ε̄−ε] ⊗ [ε− ε̄, ε̄−ε]
that is formed by truncating the square by further restricting the difference between horizontal
and vertical coordinates being bounded between ε − ε̄ and ε̄ − ε. Figure 1(2) depicts the joint
support of (Bj − bi, Bk − bi) where xk = xj and qk = qj. Recall that in a type-symmetric BNE,
the support of Bi, Bj, Bk are the same if i, j, k belong to the same (x, q) group. Hence for the
square in Figure 1(2) to cover the support in Figure 1(1), it is sufficient to have b̄j − bi > ε̄− ε
and bj − bi < ε − ε̄. Therefore with b̄i − bi > 2(ε̄ − ε), A5 holds at least for bi =

b̄i+bi
2

because

ε̄− ε < b̄i − b̄i+bi
2

and ε− ε̄ > bi −
b̄i+bi

2
.
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Figure 1: Support Conditions
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We now present a heuristic argument on how conditions in Remark 1 can occur in a simple
case without the secret reserve price R and the entry stage (the addition of the secrete reserve
price and the entry stage only complicates the algebra without adding to the intuition). The idea
is to show that the bidding strategy is continuous in the length of the support of seller-specific
component of buyer’s tastes, ε̄ − ε. Suppose εi are i.i.d. uniform over [ε, ε̄]. Suppose sellers
observe the set of competitors. Then

max
b

(b− ci)
∫ ε̄

ε

Πj∈A\i

∫ ε̄

ε

1−FBj (b−∆εij)

ε̄−ε dεi
1

ε̄− ε
dεj.

By changing variables between εj and εj − ε first, and then between εj − ε and τj ≡ εj−ε
ε̄−ε , we

can rewrite the objective function as

(b− ci)
∫ 1

0

Πj∈A\i

∫ 1

0

1− FBj(b− (ε̄− ε)∆τij)dτidτj,

which is continuous in the length of support of ε. Arguments based on the Theorem of Maximum
suggest that the support of bids is also continuous in the length of the support of seller-specific
component. Hence as long as there is enough variation in the support of private costs so that
the support of bids without ε is sufficiently large, it can be shown that the condition in Remark
1 can hold when the support of ε is relatively small.

Additional details related to assumption (A7) are given in Supplementary Appendix. In
short, our results suggest that support conditions are satisfied if the variation in the private
costs, quality differences, and observable characteristics are sufficiently large relative to the
supports of ε, α, and β.
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5 Non-parametric Inference of Quality Rankings

This section translates the identification ideas presented in the preceding sections into an estima-
tion methodology. While in population the qualities are transitive, the estimated quality group
may not be so in small samples, if we use only individually pairwise tests to assign each seller to
a quality group. This means that we need to estimate the whole group structure simultaneously.
On the other hand, with a reasonably large number of sellers and with more than two quality
groups, estimation of a group structure would involve too many pairwise comparisons. This
paper suggests a feasible algorithm that classifies the sellers sequentially so that the transitivity
of quality groups is maintained and the computational cost is substantially reduced.

5.1 Estimation of Classifications with Known Number of Groups

We consider the case where Xi takes values from a finite set (x1, · · ·, xΛ). This implies that the
set of the permanent sellers can be partitioned into Λ groups, N1, · · ·, NΛ, such that for each
λ = 1, · · ·,Λ, and any i, j ∈ Nλ, xi = xj. The analysis in this section is performed conditional
on (z, λ). For brevity, we omit conditioning on (z, λ) in the exposition below. Define K0 to be
the number of distinct quality levels among the permanent sellers.

For ease of exposition, we first present the case with the number of quality levels K0 equal to
2 so that qi ∈ {q̄h, q̄l} for a pair of unknown numbers q̄h and q̄l. We explain how the algorithm
generalizes to the case with K0 > 2 later. For each λ = 1, · · ·,Λ, let Nh,λ ⊂ Nλ be the collection
of high quality sellers and Nl,λ ⊂ Nλ be the collection of low quality sellers. We estimate an
ordered partition (Nh,λ, Nl,λ) of Nλ in three steps. First, for each i ∈ Nλ, we estimate two
ordered partitions: one partition consists of the group of the sellers with higher or equal quality
than that of i (denoted by N1,λ(i)) and the rest (denoted by Nλ\N1,λ(i)), and the other partition
consists of the group of sellers with lower or equal quality than that of i (denoted by N2,λ(i))
and the rest. Second, among the two ordered partitions, we choose the one that is mostly likely
to coincide with (Nh,λ, Nl,λ). Third, we choose i such that the estimated partition associated
with this i is most strongly supported by the data.

Our method relies on the estimates of winning probabilities in Proposition 1. Let W p
i,l ∈ {0, 1}

be an indicator taking 1 if the i-th seller that is permanent wins at auction l and 0 otherwise.
Define δ̂ij(b) ≡ r̂ij(b)− r̂ji(b), where

r̂ij(b) ≡
∑L

l=1 W
p
i,lKh(Bi,l − b)1{j /∈ Al}∑L

l=1Kh(Bi,l − b)1{j /∈ Al}
,

where Kh(v) = K(v/h)/h for a univariate kernel function K. Then we construct test statistics:
τ̂+
ij =

∫
max{δ̂ij(b), 0}db, τ̂−ij =

∫
max{−δ̂ij(b), 0}db, and τ̂ 0

ij =
∫
|δ̂ij(b)|db. We confine the

integral domains to Ωi ∩ Ωj, and this restriction is omitted from the notation.

We use a bootstrap method to estimate the finite sample distributions of the test statistics.
We first construct r̂∗ij,s(b) and δ̂∗ij,s(b) using the s-th bootstrap sample, s = 1, · · ·, B, and consider
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the re-centered bootstrap test statistics:

τ̂ ∗+ij,s =

∫
max{δ̂∗ij,s(b)− δ̂ij(b), 0}db

τ̂ ∗−ij,s =

∫
max{−δ̂∗ij,s(b) + δ̂ij(b), 0}db, and

τ̂ ∗0ij,s =

∫
|δ̂∗ij,s(b)− δ̂ij(b)|db.

Using the bootstrap test statistics, we define the bootstrap p-values as follows:

p∗z(i, j) =
1

B

B∑
s=1

1
{
τ̂ ∗zij,s > τ̂ zij

}
with z ∈ {+,−, 0}.

We proceed in three steps as outlined above.

Step 1: Define

N̂1,λ(i) = {j ∈ Nλ\{i} : p∗+(i, j) ≤ p∗−(i, j)} and

N̂2,λ(i) = {j ∈ Nλ\{i} : p∗+(i, j) > p∗−(i, j)}.

Step 2: We determine now whether seller i has the same quality as those of N1,λ(i) or

N2,λ(i), i.e., high quality or low quality. If both N̂1,λ(i) and N̂2,λ(i) are non-empty,20 we classify
seller i as follows:

Take N̂l,λ(i) = N̂1,λ(i) and N̂h,λ(i) = N̂2,λ(i) ∪ {i} if min
j∈N̂1,λ(i)

log p∗0(i, j) < min
j∈N̂2,λ(i)

log p∗0(i, j)

Take N̂l,λ(i) = N̂1,λ(i) ∪ {i} and N̂h,λ(i) = N̂2,λ(i) if min
j∈N̂1,λ(i)

log p∗0(i, j) ≥ min
j∈N̂2,λ(i)

log p∗0(i, j).

That is, we put seller i into the high-quality group, if the evidence against the hypothesis that
seller i has the same quality as the sellers in group N̂1,λ(i) is stronger than the evidence against

the hypothesis that seller i has the same quality as the sellers in group N̂2,λ(i).

20If Î1,λ(i) is empty, we pick some level α = 0.05:

Take Îl,λ(i) = ∅ and Îh,λ(i) = Î2,λ(i) ∪ {i} if min
j∈Î2,λ(i)

p∗0(i, j) ≥ α.

Take Îl,λ(i) = {i} and Îh,λ(i) = Î2,λ(i) if min
j∈Î2,λ(i)

p∗0(i, j) < α.

We proceed in a similar way if Î2,λ(i) is empty.
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Step 3: For each i ∈ Nλ, we compute the following index:

s∗λ(i) =

{
1

|N̂l,λ(i)|

∑
j∈N̂l,λ(i) log p∗+(i, j) if i ∈ N̂h,λ(i)

1

|N̂h,λ(i)|

∑
j∈N̂h,λ(i) log p∗−(i, j) if i ∈ N̂l,λ(i)

,

where |N̂l,λ(i)| denotes the cardinality of the set N̂l,λ(i). The quantity s∗λ(i) indicates the
weakness of the likelihood that i is classified into her right quality group. Then choose i∗

that minimizes s∗λ(i) over i ∈ Nλ, and let N̂h,λ = N̂h,λ(i
∗) and N̂l,λ = N̂l,λ(i

∗). We take

Ĉλ = (N̂h,λ(i
∗), N̂l,λ(i

∗)) as an estimated classification of players into two quality groups.21

The constructed classification can be justified as follows. We introduce the metric of classifica-
tion discrepancy: for any two different classifications CA,λ = (NA

h,λ, N
A
l,λ) and CB,λ = (NB

h,λ, N
B
l,λ),

Nλ = NA
h,λ ∪NA

l,λ = NB
h,λ ∪NB

l,λ, we define

δ (CA,λ, CB,λ) = max
{

#(NA
h,λ∆N

B
h,λ),#(NA

l,λ∆N
B
l,λ)
}
,

where NA
h,λ∆N

B
h,λ denotes the set difference between NA

l,λ and NB
l,λ.

Let Nh,λ = {i ∈ Nλ : qi = q̄h} and Nl,λ = {i ∈ Nλ : qi = q̄l} and write Cλ = (Nh,λ, Nl,λ).

Also, we write Ĉλ = (N̂h,λ, N̂l,λ). We show that the estimated classification Ĉλ is consistent
under regularity conditions.

Theorem 1: As L→∞,
P
{
δ(Ĉλ, Cλ) ≥ 1

}
→ 0.

The generalization of the procedure to the case of K0 > 2 with K0 known can proceed as
follows. First, we split Nλ into N̂h,λ and N̂l,λ using the algorithm for K0 = 2. Then we find
a minimum value (denoted by p̂h) of log p∗0(i, j) among the pairs (i, j) such that i 6= j, and
i, j ∈ N̂h,λ, and a minimum value (denoted by p̂l) of log p∗0(i, j) among the pairs (i, j) such that

i 6= j, and i, j ∈ N̂l,λ. If p̂h < p̂l, we split N̂h,λ into N̂hh,λ and N̂hl,λ using the same algorithm for

K0 = 2, and otherwise, we split N̂l,λ into N̂lh,λ and N̂ll,λ using the same algorithm for K0 = 2.

We repeat the procedure. For example, suppose that we have classifications N̂1,λ, · · ·, N̂k−1,λ

obtained. For each r = 1, · · ·, k − 1, we compute the minimum value (say, p̂r) of log p∗0(i, j)
among the pairs (i, j) such that i 6= j and i, j ∈ N̂r,λ, and then select its minimum (say, p̂r∗) over

r = 1, · · ·, k − 1. We split N̂r∗,λ into N̂r∗h,λ and N̂r∗l,λ using the algorithm for K0 = 2 to obtain
a classification of Nλ into k groups. We continue until the groups become as many as K0.

21There may be alternative ways to obtain estimators of the quality partition. One way is to fix i and
apply hypothesis testing to the null hypothesis that qi ≤ qj . This essentially boils down to comparing the p-
value p∗z(i, j) with a certain level of the test. One unattractive feature of this alternative procedure is that the
result can be different depending on whether the null hypothesis is taken to be qi ≤ qj or qi ≥ qj . This is
because the conventional hypothesis testing procedure treats the null hypothesis and the alternative hypothesis
asymmetrically. Hence in this paper, instead of comparing a p-value with a fixed level of the test, we compare a
p-value with an alternative p-value, to capture the symmetry of the comparison.
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5.2 Consistent Selection of the Number of Groups

The methodology outlined above assumes that we know the exact number of groups. To accom-
modate the situation with real life data without knowledge of the number of the groups, we offer
a method of consistent selection of the number of groups. We suggest that the number of groups
should be selected to minimize the criterion function that balances a measure of goodness-of-
fit that captures a misspecification bias versus a penalty term that penalizes overfitting. The
goodness-of-fit measure is based on the variance test approach.

Given an estimated classification N = ∪Kk=1N̂k with K groups, let

V̂k(K) =

∣∣∣∣ min
i,j∈N̂k

log p∗0(i, j)

∣∣∣∣ ,
for each k = 1, · · ·, K.

Suppose that K0 is the true number of groups. Let g(L) → ∞ be such that g(L)/
√
L → 0

as L→∞. Then, define

Q̂(K) ≡ 1

K

K∑
k=1

V̂k(K) +Kg(L).

We select K as follows:
K̂ = argmin1≤K≤NQ̂(K).

The following theorem shows that this selection procedure is a consistent one.

Theorem 2: P{K̂ = K0} → 1 as L→∞.

The consistency result stems from two auxiliary facts. First, 1
K

∑K
k=1 V̂k(K) = OP (1), as

L→∞, if K ≥ K0. This measures the asymptotic behavior of the goodness-of-fit measure when
the classification is weakly finer than the true classification. Since Kg(L) → ∞ as L → ∞,
the minimization of Q̂(K) over K leans toward a lower choice of K that is closer to K0. On
the other hand, if the classification is strictly coarser than the true classification, i.e., K < K0,
the quantity 1

K

∑K
k=1 V̂k(K) diverges at a rate faster than g(L), as L → ∞. In this case, the

minimization of Q̂(K) over K excludes K such that K < K0 for large samples. Thus we obtain
the consistency of K̂.

We describe methods of constructing confidence sets for the estimated classifications as well as
report the results of Monte Carlo study investigating the algorithm’s small sample performance
in Supplemental Appendix.
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6 Estimation of Structural Elements

6.1 Overview

While our estimation approach is guided by the nonparametric identification results obtained
in Section 4, the complexity of our model makes full nonparametric estimation impractical.
Instead, we make parametric assumptions about the distribution of buyers’ tastes, α, β and
ε, and estimate the parameters of these distributions using generalized method of moments
estimation. In a parametric setting we have to confront one additional challenge: in order
to match the moments or distributions observed in the data, we need to integrate out the
relationships between the bidding and participation decisions and the qualities of transitory
sellers, as they are not directly observed in the data. A traditional approach to this problem
would be to re-solve the bidding and participation game for every parameter guess. In our
setting, however, such an approach is computationally intractable. Instead, we jointly estimate
the parameters of the distributions of the buyers’ tastes, the quality levels, the distribution
of transitory sellers’ bids and the participation strategies conditional on the transitory seller
qualities, noting that such equilibrium objects as the bid distribution of transitory sellers and
participation strategies can be non-parametrically identified alongside our model’s primitives
(buyers’ tastes and quality levels) given available data.

6.2 Notation

We introduce some notation. For each x in the common support X of xi, let Qx ≡ {q1,x, · · ·, qK,x}
be the set of possible quality levels for a seller i ∈ N with xi = x. With each (x, q) ∈ X ×Qx are
associated sets of sellers indices, Apx,q,l ≡ {i ∈ A

p
l : (xi, qi) = (x, q)}, Np

x,q,l ≡ {i ∈ N
p
l : (xi, qi) =

(x, q)}, Atx,l ≡ {i ∈ Atl : xi = x} and N t
x,l ≡ {i ∈ N t

l : xi = x}. It is convenient for exposition
to arrange observations in a certain order. More specifically, the observations for permanent
and transitory sellers are allocated into separate vectors. We enumerate observations for actual
entrants first then for non-entrants, and group the observations for permanent sellers according
to (x, q)-characteristics, and those for transitory sellers according to x-characteristics. Thus we
write Bt

j,l to denote the j-th transitory seller’s bid at auction l, Bp
j,l the j-th permanent seller’s

bid at auction l, Qt
j,l the j-th transitory seller’s quality at auction l, and W p

j,l ∈ {1, 0} taking the
value of one if and only if the j-th permanent seller wins at the l-th auction. Similarly, we define
xtj,l, x

p
j,l, and qpj,l. After the rearrangement, the competitive nature of auction l is summarized by

Il ≡
⋃

(x,q)∈X×Qx

{|Apx,q,l|, |N
p
x,q,l|, |A

t
x,l|, |N t

x,l|},

where |A| for any set A denotes its cardinality. For each auction l, we define Bl = [Bp′
l ,B

t′
l ]′,

where Bt
l and Bp

l are random vectors with their j-th entries given by Bt
j,l and Bp

j,l respectively.
We also define Qt

N,l and Qt
A,l to be both random vectors of entries Qj,l with j = 1, · · ·, |N t

l | and
with j = 1, · · ·, |Atl | respectively. We denote the set of values for Qt

N,l by {q̄N,1, · · ·, q̄N,K̄N,l} with
q̄N,k = (qN,1,k · · · qN,|Nt

l |,k). Similarly, the set of values for Qt
A,l is denoted by {q̄A,1, · · ·, q̄A,K̄A,l}
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with q̄A,k = (qA,1,k · · · qA,|Atl |,k). These sets change across auctions because the dimensions of Qt
N,l

and Qt
A,l change.

6.3 Preliminary Results

In accordance with the parametric estimation approach, we assume that εil and (α, β) are dis-
tributed according to F (ε|θ1) and F (α, β; θ2), distributions known up to a set of parameters
(θ1, θ2), so that the vector of parameters to be estimated is given by θ = (θ1, θ2, (Qx : x ∈ X ))
along with the parameters involved in the parametrization of f(Bi|Qt

A,i,l = q̄A,i,k, Il,1) and
P (i ∈ Atx,l|Qt

A,i,l = q̄A,i,k, Il,1).

We begin by deriving a representation of permanent seller’s winning probability conditional
on the vector of bids and auction competitive structure as observed by the econometrician. Unlike
the economerician, a buyer observes all the relevant characteristics for all actual competitors.
Let epx,q,k,l (Bl, Il; θ, j) ≡ P{W p

j,l = 1|Bl,Q
t
A,l = q̄A,k,l, Il} be the probability that seller j (with

(x, q)-characteristics) wins conditional on a full competitive structure of the auction, including
information on transitory actual bidders’ vector of qualities. More specifically,

epx,q,k,l (Bl, Il; θ, j) =

∫
P (αlq + βlx−Bj,l ≥ αlqi + βlxi −Bi,l ∀ i 6= j|αl, βl)dFα,β(αl, βl).

Also let pk,l = P{Qt
A,l = q̄A,k,l|Bl, Il} be the probability that the vector of transitory actual

bidders’ qualities is q̄k,l conditional on the vector of bids Bl, and information about the auction’s
competitive structure as summarized in Il. Then by the law of total probability, we obtain

P{W p
j,l = 1|Bl, Il} =

∑K̄A,l

k=1
epx,q,k,l (Bl, Il; θ, j) pk,l. (10)

Using the modeling assumptions, we can reformulate the expression in (10) as shown in the
proposition below. (The proof is lengthy and given in the Appendix.) For this, we introduce
some definitions. Let

Il,1 ≡ {|Np
x,q,l|, |N

t
x,l| : (x, q) ∈ X ×Qx},

Ipl,2 ≡ {|Apx,q,l| : x ∈ X , q ∈ Qx} and Itl,2 ≡ {|Atx,l| : x ∈ X},

so that Il = Il,1 ∪ Ipl,2 ∪ Itl,2. We also let

ωk,l ≡
∏
i∈Ātl

P (Qt
A,i,l = q̄A,i,k| x̄ti,l),

and

gk(B
t
l , Il,1, I

t
l,2) ≡

∏
x∈X

∏
i∈Ātx,l

f(Bi|Qt
A,i,l = q̄A,i,k, Il,1)P (i ∈ Atx,l|Qt

A,i,l = q̄A,i,k, Il,1).
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We are prepared to state the proposition.

Proposition 4 Under (A1)-(A5), for each x ∈ X , q ∈ Qx, and for the j-th permanent seller

with (x, q)-characteristic who participated in auction l, 22

P{W p
j,l = 1|Bl, Il} =

∑K̄A,l

k=1
epx,q,k,l (Bl; θ, j)

ωk,lgk(B
t
l , Il,1, I

t
l,2)∑K̄A,l

d=1 ωd,lgd(B
t
l , Il,1, I

t
l,2)

. (11)

The quantities gk(B
t
l , Il,1, I

t
l,2) involve f(·|Qt

A,i,l = q̄A,i,k, Il,1), i.e., the density of a transitory
seller’s bids in equilibrium conditional on this seller’s quality, and P (i ∈ Atx,l|Qt

A,i,l = q̄A,i,k, Il,1),
i.e., the probability of transitory seller i’s participation in the auction conditional on his qual-
ity. As mentioned earlier, we estimate these equilibrium objects jointly with the parameters
of buyer’s taste distribution and quality levels. In doing so, we do not need to recover these
objects separately. Since in our setting the distribution of signals is the same for permanent
and transitory bidders, we can use permanent bidder’s optimization problem, bid distribution,
and participation frequency to recover the distributions of signals. This requires knowing only
gk(B

t
l , Il,1, I

t
l,2) and not separately f(Bi|Qt

A,i,l = q̄A,i,k, Il,1) and P (i ∈ Atx,l|Qt
A,i,l = q̄A,i,k, Il,1).

We next argue that gk(B
t
l , Il,1, I

t
l,2) are non-parametrically identified in our environment along-

side the distribution of buyers’ tastes and quality levels. First, note that under (A1)-(A5), the
probability weights ωk,l in (11) are directly identified from observable distributions. Next, note
that since sellers’ information and buyers’ tastes are independent, the identities and bids of
permanent entrants Ipl,2 do not enter gk(.). Hence the variations in Bp

l and Ipl,2 could be used to
identify the objects of interest.

Recall from the nonparametric identification section that the variations in permanent sellers’
bids under specific configurations of Ipl,2 is used to identify the distributions of buyers’ tastes and
quality levels. A simple counting exercise shows that the identification of these objects uses up to
1 +

∑
xKx + dim{x}23 configurations of the set of permanent actual bidders. The total number

of possible configurations for the set of permanent actual bidders far exceeds this requirement.
Therefore, some actual bidder set configurations remain unexploited after the distribution of
buyers’ tastes and quality levels are non-parametrically identified. Notice next that if these
objects are known, epx,q,k,l (Bl; θ, j) are known as well. Further, the expression in (11) can be
re-written as ∑K̄A,l

k=1
ωk,l(e

p
x,q,k,l (Bl; θ, j)− P (W p

j,l = 1|Bl, Il))gk(B
t
l , Il,1, I

t
l,2) = 0, (12)

which is a system of linear functional equations where gk(B
t
l , Il,1, I

t
l,2) and [ωk,l(e

p
x,q,k,l (Bl; θ, j)−

P (W p
j,l = 1|Bl, Il))] play the roles of the unknown functions and known coefficients respectively.

22In fact, E[W p
x,q,l|Bl, Il] = E[W p

j,l|Bl, Il] for all j such that j ∈ Apx,q,l by symmetry. This formulation facilitates
its sample analogue when we replace the sample version of the moment conditions for estimation.

23We need one configuration involving symmetric bidders to identify the distribution of ε, and
∑
xKx con-

figurations to identify the distribution of α and the differences between quality levels. Finally, we need dim{x}
configurations to identify the distribution of β.
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The remaining configurations of permanent actual bidder sets as well as different values of Bp
l

combined with these configurations could be used to form a sufficient number of equations so that
this linear system could be solved to recover the {gk(Bt

l , Il,1, I
t
l,2)}k=1,···,K . Of course, formally we

need to verify that the determinant of the matrix of the coefficients should be non-zero. However,
given the high non-linearity of our environment both in Ipl,2 and in Bp

l such a property is likely
to hold in general. This argument also establishes that the data contain enough information to
identify gk(B

t
l , Il,1, I

t
l,2) nonparametrically when the distribution of buyers’ tastes is assumed to

belong to a parametric family of distributions. These results support the validity of our joint
estimation approach. While the empirical study in this paper adopts a parametric specification
of gk(B

t
l , Il,1, I

t
l,2), one may instead specify it as a nonparametric function and proceeds with a

semiparametric estimation method similar to Ai and Chen (2003). Details in this direction are
explained in the Supplemental Appendix.

In some applications, f(Bt
i|Qt

A,i,l = q̄A,i,k, Il,1) and P (i ∈ Atx,l|Qt
A,i,l = q̄A,i,k, Il,1) may be

of independent interest. While working with these objects allows one to make use of further
restrictions such as ∑

k

P (i ∈ Atx,l|Qt
A,i,l = q̄A,i,k, Il,1)ωkl = P (i ∈ Atx,l| Il,1) or∑

k

f(Bi|Qt
A,i,l = q̄A,i,k, Il,1)P (Qt

A,l = q̄A,k,l|Il) = f(Bt
i| Il,1),

one needs to invoke additional restrictions to separate f(Bt
i|Qt

A,i,l = q̄A,i,k, Il,1) from P (i ∈
Atx,l|Qt

A,i,l = q̄A,i,k, Il,1) within gk(B
t
l , Il,1, I

t
l,2). For this, one could use the expected profit

condition that summarizes the optimal participation behavior of different groups of transitory
potential bidders. Or one could alternatively use some exclusion restrictions if they are plausible.
We discuss more on this issue in the empirical section of our paper.

6.4 Generalized Method of Moments Estimation

We formulate the moment conditions which are primarily based on the probability that perma-
nent seller wins conditional on the information available to the econometrician as summarized
by the expression in (11) and in accordance with the identification argument in the previous
subsection.

More specifically, for any vector valued map hpx,q,1 : R|A| → Rdh1 , and for each x ∈ X , q ∈ Qx

we can write the moment condition as:

E
[
hpx,q,1(Bl, Il)W

p
x,q,l|Il

]
=

K̄A,l∑
k=1

E

[
hpx,q,1(Bl, Il)e

p
x,q,k,l (Bl; θ)

ωk,lgk(B
t
l , Il,1, I

t
l,2; θ)∑K̄A,l

d=1 ωd,lgd(B
t
l , Il,1, I

t
l,2; θ)

|Il

]
.
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where, gk(B
t
l , Il,1, I

t
l,2; θ) is a parametric approximation of gk(B

t
l , Il,1, I

t
l,2),

W p
x,q,l =

1

|Apx,q,l|
∑

j∈Apx,q,l

W p
j,l and

epx,q,k,l (Bl; θ) =
1

|Apx,q,l|
∑

j∈Apx,q,l

ex,q,k,l (Bl; θ, j) .

This can be further re-written as:

E
[
hpx,q,1(Bl, Il)

(
W p
x,q,l − e

p
x,q,l(θ, g)

)
|Il
]

= 0 with (13)

epx,q,l(θ, g) =

K̄l∑
k=1

epk,x,q,l (Bl; θ)
ωk,lgk(B

t
l , Il,1, I

t
l,2; θ)∑K̄A,l

d=1 ωd,lgd(B
t
l , Il,1, I

t
l,2; θ)

.

As we discussed in the previous subsection, it may be useful, especially in the parametric
setting, to separately specify and estimate f(Bt

i|Qt
A,i,l = q̄A,i,k, Il,1) and P (i ∈ Atx,l|Qt

A,i,l =
q̄A,i,k, Il,1) functions. In such a case, restrictions associated with (a) transitory sellers’ bid
distribution, (b) the transitory sellers’ probability of participation, as well as (c) restrictions
summarizing optimal participation behavior may be additionally imposed. More details are
given in Supplementary Appendix.

To construct a sample version of the moment conditions, we first obtain a consistent estimator
ω̂k,l of ωk,l via the sample analog principle, and construct

ρ̂x,q,l(θ) = hpx,q,1(Bp
l , Il)

(
W p
x,q,l − ê

p
x,q,l(θ)

)
,

where êpx,q,s(θ) is equal to epx,q,l(θ) except that ωk,l is replaced by ω̂k,l. We define ρ̂l(θ) to be a
column vector with ρ̂x,q,l(θ) stacked up with (x, q) running in X × Q1. Hence the dimension of
ρ̂l(θ) is dh,p × |X × Q1|, where |X × Q1| is the cardinality of the set X × Q1. Then define a
general method of moment estimator as follows:

θ̂GMM = argminθ∈ΘQ̂GMM(θ),

where

Q̂GMM(θ) =

(
1

L

L∑
l=1

ρ̂l(θ)

)
Σ̂−1

(
1

L

L∑
l=1

ρ̂l(θ)

)
, and

Σ̂ =
1

L

L∑
l=1

ρ̂l(θ̄)ρ̂l(θ̄)
′,

and θ̄ is the first step estimator of θ0 which is a minimizer of Q̂GMM(θ) only with Σ̂−1 replaced
by the identity matrix. Under regularity conditions, the estimator is known to be asymptotically
normal with a positive definite covariance matrix. Note that the estimation error due to ω̂k,l
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does not affect the asymptotic variance matrix because the components P{Qt
A,i,l = q̄A,i,k|I l} of

ωk,l take values only from a finite set and hence has a convergence rate that is arbitrarily fast as
L→∞.

7 Empirical Analysis

7.1 Data Description

Our data include information on close to 600,000 projects that involve the participation of around
50,000 different sellers. For every project, we observe the type of work, the approximate size
of the project, the time requirements, and the location of the buyer. We also observe all bids
submitted, including bids rejected through violation of the reserve price, the identity of the
winner, and measures of the winner’s subsequent performance.

The projects fall into several broad classes such as platform programming, databases, graphics
programming and website design. The work is then further divided into finer categories within
these classes. For example, one of the recurrent requirements is the specification that a particular
programming language should be used. We focus on graphics-related programming projects in
our analysis. The projects in this set involve programming computer games, computer-generated
animation, and media-related programming. Our decision was mostly motivated by sample size
considerations. However, this is also a highly specialized segment of the market. The related
work is very sophisticated and is done exclusively by hard-core professionals. This, therefore, is
an environment where the seller’s quality is likely to matter. On the other hand, this environment
perhaps would be characterized by lower variation in provider qualities as opposed to the less
skilled types of projects.

Table 4 provides some descriptive statistics for projects in our data set. Each row of the
table summarizes a marginal distribution of the correspondent variable. The table shows that
a sizable number of the projects are very small (below $100). On the other hand, some of the
projects are quite big (above $1000). We focus on the medium to medium-large size projects
(between $100 to $700).24 The projects are fairly short: the deadline for the majority of the
projects is between one to three weeks. Median number of sellers submitting bids for a project
is six while median number of permanent bidders is five. However, about 10% of projects receive
more than 18 bids (12 from permanent bidders). The projects with a large number of bids tend
to be small.

The table also summarizes the characteristics of permanent sellers. It shows that a median
permanent seller has completed 100 projects, while 10% of sellers completed 250 or more projects.
The distribution of the average reputation scores appears to be quite tight. A median permanent
seller has an average score of 9.87, while less than 25% have an average score below 9.7 or above
9.95. Similarly, a median permanent seller was never involved in an arbitration or had a delay.

24We can offer some anecdotal insight that helps to put the size into the right perspective. One of the authors
used this market to procure programming services: the project that costs $200 in this on-line market was quoted
at $800 in the off-line programming market in Philadelphia.
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Table 4: Data Summary Statistics

25% 50% 75% 90%
Project Characteristics

Size $150 $250 $500 $1000
Duration 5 10 14 21
Number of Bidders 4 6 11 18
Number of Permanent Bidders 3 5 10 12

Permanent Sellers’ Characteristics

Experience 75 100 150 250
Average Score 9.7 9.87 9.95 10
Arbitrations 0 0 0 1
Delays 0 0 0 1

Number of Projects 32,679

The results in this table are based on full sample of projects with graphics-related programming. Duration of

project is measured in days.

However, less than 10% of permanent sellers were involved in at least one arbitration or had at
least one delay.

We group sellers into country groups by geographic proximity and similarity of language
and economic conditions. We end up with seven country groups: North America (USA and
Canada), Latin America, Western Europe, Eastern Europe, Middle East and Africa, South East
Asia, Australia (grouped with New Zealand). In our data North America, Eastern Europe and
South or East Asia account for the majority of submitted bids.

We now turn to the discussion of the estimation results. We first summarize estimates from
our classification procedure, then we discuss the parametric estimates of the buyers’ tastes and
sellers’ quality levels as well as the bidding and participation strategies of transitory bidders.

7.2 Empirical Results: Classification

In this section we summarize the results of the group structure estimation. Classification algo-
rithm is applied to the set of permanent participants specializing in graphics-related program-
ming. For each seller we discard the first year of his tenure and only use observations that
correspond to the later years of his career with on-line market.

We assume that the buyer cares about the seller’s quality, price, and the seller’s covariates
such as reliability and country affiliation. We specifically distinguish between the seller’s quality
and reliability. In our environment quality reflects the seller’s ability to handle complex and not
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fully specified jobs and his ability to deliver a product of superior quality. In contrast, reliability
measures the likelihood that he completes the job if engaged, that he is on-time, maintains
regular communication with the buyer, is responsive to buyer’s requests, etc. We believe that
the number and value of reputation scores reflects seller’s reliability.25,26 The seller’s country
affiliation can proxy for things such as convenience of working with a given seller related to time
difference, the likelihood of language proficiency, and work culture.

All permanent sellers have a high number of ratings, therefore, we assume that the exact
number of ratings is not important. We divide all the sellers into three cells according to
the average reputation score: (cell 1) average reputation score less than 9.7, (cell 2) average
reputation score above 9.7 and below 9.9, (cell 3) average reputation score above 9.9. This
results approximately in an allocation of 30%, 30%, and 40% across cells.

The classification index is constructed for the pair of sellers on the basis of projects where
they both belong to the set of potential bidders. Our data do not contain information on the
set of potential sellers for a specific project. In our analysis we assume that the set of potential
sellers for project l consists of all sellers who were active in the market (i.e., submitted bids or
sent messages to buyers) during the week when project l was posted and who are qualified for
the type of work indicated for project l (i.e., they bid for similar projects in the past). The
pair-wise nature of our index does not have strong implications for our sample. We are able to
compute an index for each pair of sellers within each of our cells. We have also experimented
with alternative definitions of the sets of potential sellers. The results of the classification remain
stable even with different definitions.

We follow the steps described in the Section 5. That is, we start by estimating a group
structure for a range of the number of groups. We then apply a criterion function to select the
structure with the number of groups most supported by the data. For this structure we then
compute confidence sets. Table 9 in Supplemental Appendix demonstrates steps 1 and 2 for the
group of Eastern European sellers with a medium level of average reputation score.

Table 5 reports the estimated group structures with corresponding confidence sets for cells of
North American, Eastern European and East Asian sellers. We estimate multiple quality groups
in each cell and the confidence sets associated with each group structure are quite tight. It is
difficult to draw any substantive conclusions about quality distribution on the basis of these
results since classification into groups is ordinary and does not allow for comparison of levels
across countries or reputation scores. We note here that even the cells that correspond to a
very narrow range of reputation scores (such as medium or high reputation scores) allow for a
non-trivial number of quality groups. Also, mass allocation between quality groups differs across
cells. We defer the more interesting substantive inference to the section on the results of the
parametric estimation.

25The number of scores is highly correlated with the number of projects completed. It, therefore, serves as a
proof of sellers’s reliability. On the other hand, the value of the reputation score may include information about
the quality of work but also reflects whether buyer was satisfied with experience of working with this seller.

26We have also verified robustness of our results by repeating the analysis while including the number of
arbitrations and delays as additional measures of reliability. The results remain virtually unchanged.
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Table 5: Estimated Quality Groups by Supplier Covariates

Country Average Total Number Q1 Q2 Q3

Group Score of Suppliers

North America low 12 4 8

(6) (10)

North America medium 13 4 9

(6) (11)

North America high 17 12 5

(13) (6)

Eastern Europe low 18 6 12

(8) (14)

Eastern Europe medium 52 33 12 7

(37) (14) (9)

Eastern Europe high 83 6 65 12

(7) (69) (15)

East Asia low 91 62 18 11

(68) (22) (13)

East Asia medium 66 6 53 7

(8) (57) (9)

East Asia high 58 50 8

(53) (11)

This table shows the estimated group structure and a consistently selected number of groups for each cell de-

termined by covariate values. Column 3 indicates the total number of the suppliers in the cell. Columns 4-6

report the size of the estimated quality group. The size of the corresponding confidence set with 90% coverage is

reported in parenthesis.

7.3 Empirical Results: Parametric Estimation

In this section we present the results of the parametric analysis. We begin by summarizing our
specification and the exact set of moments used in estimation. Next, we discuss the estimates
of the objects of interest: parameters of buyers’ tastes distribution, quality distributions for a
range of covariate values, as well as sellers’ bidding strategies and recovered cost distributions.

7.3.1 Parametric Specifications and Moment Conditions

As we stated in the previous section, we assume that buyers’ utility from selecting a specific seller
depends on the seller’s quality, price quote, and country group affiliation as well as performance-
related indicators such as the number of scores, and the average reputation score. We modify
the utility specification for the purpose of estimation. More specifically, we divide the expression
for the utility function by the quality coefficient α. This obtains a utility function specification
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that is often used in the estimation of differentiated product models:27

ũli = qi(x) + xiβ̃l − α̃lbli + ε̃li.

Here qi(x) plays the role of a product-level unobservable that was first introduced into the differ-
entiated products studies by Berry, Levinsohn and Pakes (1995), and Nevo(2001). Further, we
assume that utility errors, ε̃ follow the Extreme Value Type I distribution with standard error
σε, while taste parameters α and β are assumed to be distributed according to the normal dis-
tributions N(µα, σ

2
α), and N(β0, Σβ), respectively.28 We impose the normalization assumptions

implied by our identification argument. That is, we normalize the expected value of ε to be equal
to zero, the expected value of α to be equal to one, and one of the quality levels (quality level
1 of the low average score group, the South and East Asian country group) to be equal to zero.
We, therefore, aim to estimate the vector of parameters θ = {σε, σα, β0,Σβ, {qx}} where {qx}
is the vector of quality levels that correspond to the quality groups recovered in the previous
section.

We assume that transitory and permanents sellers’ bid distributions are well approximated
by normal distributions N(µBt , σ

2
Bt) and N(µBp , σ

2
Bp),

29 respectively. The means of the bid dis-
tribution depend on the seller’s quality group, number of reputation scores (projects completed),
and average reputation score, and on the number of potential competitors by quality group. We
allow the effect of the average reputation score to vary flexibly with the number of scores. Notice
that the bid distribution of transitory sellers depends both on the current average score and the
long-run average score through the group structure. This is because the long-run average score
correctly reflects the seller’s true reliability. However, it is not observed in the data for transitory
sellers. Therefore, the buyer has to base his expectation of the long-run average reputation score
on contemporaneously available measures when awarding the project. This, in turn, implies that
transitory bidders would incorporate their current average scores into their bids. We explain how
we link the transitory seller’s long-run average score group to his current performance below.

Similarly, we approximate permanent and transitory bidders’ respective probabilities of par-
ticipation by normal distribution functions that depend on linear indices of the seller’s quality
group, number of reputation scores (projects completed), and average reputation score, and on
the number of potential competitors by quality group. As in the case with the bid distribution,
we allow the effect of the average reputation score to vary flexibly with the number of scores.

We have estimated the quality groups for permanent sellers conditional on country affiliation
and long-run average reputation score. The majority of transitory sellers complete only one or
two projects. Hence, their long-run average reputation scores are not observed in the data. We
assume that buyers use public information to form beliefs about the probability that a beginning
seller with a given number and sum of scores and a given quality level belongs to a particular
long-run average score group. We recover these beliefs non-parametrically using beginning of

27We could be worried about such re-parameterization in the case when zero belongs to the support of α.
However, this would only mean that infinity belongs to the supports of α̃ = 1

α , β̃ = β
α , and ε̃ = ε

α , the case that
can be easily accommodated.

28Strictly speaking, the distribution of α should have been chosen to have a non-negative support. However,
we estimate the standard error of this distribution to be quite small so that this assumption does not make any
practical difference. The same comment applies to our assumption on the distribution of bids below.

29See the comment for the distribution of α above.
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career and long-run data on permanent bidders. We use these beliefs to form the expected utility
that the buyer derives from transitory sellers.

The estimation is based on two types of moment conditions discussed in Section 6. The
first type of moments relates to the probability that permanent bidder wins under a variety of
permanent actual bidder set configurations. The second type of moments matches transitory and
permanent sellers’ empirical distribution of bids and participation frequencies to their theoretical
counterparts. The full details about moment conditions used in estimation can be found in
Supplemental Appendix.

7.3.2 Quality and Other Attributes as Determinants of Buyer’s Choice

Table 6 reports the estimated coefficients of the buyers’ utility function and quality levels. All
estimates have the expected signs and small standard errors. In the estimation the prices are
normalized by the project size; therefore, all coefficients represent the percentage mark-up over
the project size that an average buyer would be willing to pay for the unitary increase in the
corresponding covariate.

Notice that the estimated variance of ε is quite small, which indicates that the seller’ covari-
ates indeed play an important role in our environment in comparison to stochastic or unexplained
factors. The price coefficient α has a comparable variance. Nevertheless, the price component
plays a more important role than ε since it is additionally multiplied by price.

The last panel of the table reports the estimated quality levels across covariate cells. The
estimated levels have the expected sign and are increasing according to group ranking. The
differences across quality levels are substantial in magnitude. In addition, the model with qual-
ity is capable of explaining 70% of buyers’ choices in comparison to the 25% that the model
without quality could explain. These things indicate that quality plays an important role in our
environment.

Next, we observe that the quality levels are consistent across covariate cells. There appears
to be roughly three quality levels present in this market, with the lowest normalized to be
around zero, the medium quality level estimated to be somewhere in the range 0.1-0.3, and the
highest quality level is between 0.45-0.68. The exact levels differ across country groups with
Eastern Europe characterized by the highest values for each quality level and North America
characterized by the lowest “high” quality levels.

Having established that the quality levels are very similar across covariate groups, we can
conclude based on the results from the previous section that there exist important differences in
the distribution of quality mass across covariate levels. In particular, North America is missing
a middle quality level, whereas the lowest average score cell for Middle Europe and the highest
average score cell for South and East Asia are missing the lowest quality levels. Similarly, the
medium score cell for Eastern Europe allocates the most mass to the lowest and medium quality
levels, whereas the highest score cell allocates the most mass to the medium and high quality
levels. We observe similar regularities in the case of South and East Asia. Hence, the distribution
of qualities varies significantly with covariate values. That finding underscores the importance of
using our methodology, which allows for such dependence, as opposed to a mixture methodology
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that would have to impose the restriction that the distribution of unobserved heterogeneity is
orthogonal to other variables that enter utility function.

Country and long-run average reputation score appear to have independent effects on the
buyer’s utility. These effects, however, are rather small relative to the differences in quality
levels. For example, an average buyer would be willing to pay almost 7% more of the project size,
(0.523−0.451 = 0.072), to obtain the service of a high-quality North American seller with a high
reputation score rather than a high-quality North American seller with a low reputation score.
Similarly, an average buyer would be willing to pay 14% more of the project size, (0.693−0.532) =
0.141, to hire a medium score, high-quality supplier from Eastern Europe rather than a medium
score, high-quality supplier from South or East Asia.

We estimate that the number of reputation scores and an average reputation score matter
for beginning or transitory bidders in a statistically significant way. For example, at any quality
level, having no reputation scores bears a negative premium of close to 2%. On the other hand,
having a positive but small number of scores erodes this negative premium to zero. The average
reputation score does not appear to be important when the number of scores is really small.
However, the difference between 9 points and 10 is rewarded with a 5% premium if the number
of scores is moderate. This is comparable to the 7% premium documented above for the case of
a long-run average reputation score that corresponds to the number of scores much larger than
10.

7.3.3 Pricing Strategies, Cost Distributions and Quality Heterogeneity

Tables 7, and 10 in Supplemental Appendix report the estimated coefficients for bid distributions
and participation probabilities. These coefficients are difficult to interpret without the context
of a pricing game. We use them to comment on the performance of our estimation procedure
and model fit.

Our estimates indicate a statistically significant relationship between the transitory sellers’
mean bids, participation probabilities and quality levels. Further, the estimated coefficients for
the permanent sellers’ bid distributions and participation probabilities are very similar in sign
and magnitude to the coefficients from the transitory sellers’ bid distribution and participation
probabilities. Recall that the transitory sellers’ bid distribution is estimated jointly with the
utility function parameters from observed buyers’ choices via the set of moments that exploit the
structure of our model and proposed identification strategy. In particular, there is no direct link
between the transitory seller’s bids and his quality level. Our estimates, therefore, support our
assumption that the quality of the transitory bidder is observable to buyers and that transitory
bidders are not inherently different from permanent bidders in any way.

We rely on first order condition from the permanent bidder optimization problem to compute
the inverse bid functions, ξ(b|(q, x)), for sellers with various affiliations. More specifically, we
compute inverse bid function as

ξ(bi|(q, x)i) = bi −
P (iwins | bi;σE−i, σB−i)

∂
∂b
P (iwins | b;σE−i, σB−i)|b=bi

.
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The details can be found in Supplemental Appendix. The distributions of the seller’s costs
are then recovered by combining the bid distributions and the inverse bid functions:

FC(ξ(b|(q, x))|(q, x)) = FB(b|(q, x)).

Figure 2 depicts the estimated permanent sellers’ bidding functions for North America, East-
ern Europe, and South and East Asia respectively. Similarly, figure 3 shows the estimated
densities of the cost distributions across country groups and across average reputation score lev-
els. The estimated bid functions are increasing in costs, which is consistent with the theoretical
predictions for the environment with private values. The graphs imply that the mark-up over
sellers’ cost changes very little with cost level and, in fact, for some groups increases as costs
reach the upper end of the support. This feature arises because the buyer’s choice is based in
part on a purely stochastic (from the seller’s point of view) component, ε. As the seller’s costs
increase, his probability of winning increasingly depends on the realization of the ε component,
which in turn makes his bidding strategy less aggressive. This regularity is further clarified in
figure 5 shown in Supplemental Appendix. This graph shows that, in our environment, the
probability of winning and the derivative of probability of winning decrease at the same rate
over the large part of the support and the derivative of the probability of winning decreases
faster near the end of the support. This is in contrast to the standard auction environment
where the probability of winning usually decreases slower than the derivative throughout the
support. As should be expected, this “gambling effect” appears to be most pronounced in the
pricing strategies of lower quality levels. In general, stochasticity plays an important role in our
environment: sellers are uncertain about buyers’ tastes as well as their actual competition. This
accounts for the relatively large mark-ups we document in our environment.

The depicted cost distributions are based on the estimated bid distributions and inverse
bid functions for permanent bidders. The estimated project cost distributions are typically
“increasing” in sellers’ quality. More specifically, the cost distribution of the high-quality group
is always shifted to the right relative to the distribution of the medium-quality group. However,
the low-quality group often has costs that are comparable to or even higher than the costs of
the high-quality group. This indicates substantial costs heterogeneity unrelated to quality that
characterize the participants in this market.

Notice further that the estimated project cost distributions appear to have substantially
lower variances relative to the variance of the bid distributions. Thus, our model is capable of
rationalizing the highly variable pricing environment through reasonably tight cost distributions.
The “gambling” property of the bid functions described above explains this effect. Indeed,
convexity or increasing mark-up near the end of the support induces high variance in sellers’
prices and also explains the presence of really high bids in this environment. Thus, again our
modeling choice for buyers’ preferences appear to work well in this environment.



38

Table 6: Buyers’ Tastes and Quality levels

Variable Coefficient Std.Error

log(σε) -0.381∗∗ 0.03

log(σα) -0.346∗∗ 0.01

no ratings -0.018∗∗ 0.004

0 < ratings ≤ 3 -0.008∗∗ 0.002

3 < ratings ≤ 10 -0.005 0.004

Average Score*D0<ratings≤3 -0.006 0.005

Average Score*D3<ratings≤10 0.054∗∗ 0.003

North America, low score, Q=1 -0.016∗∗ 0.007

North America, low score, Q=2 0.451∗∗ 0.006

North America, medium score, Q=1 -0.016∗∗ 0.008

North America, medium score, Q=2 0.484∗∗ 0.005

North America, high score, Q=1 -0.016∗∗ 0.003

North America, high score, Q=2 0.523∗∗ 0.004

Eastern Europe, low score, Q=1 0.271∗∗ 0.002

Eastern Europe, low score, Q=2 0.613∗∗ 0.003

Eastern Europe, medium score, Q=1 -0.101∗∗ 0.007

Eastern Europe, medium score, Q=2 0.259∗∗ 0.005

Eastern Europe, medium score, Q=3 0.683∗∗ 0.008

Eastern Europe, high score, Q=1 -0.102∗∗ 0.004

Eastern Europe, high score, Q=2 0.279∗∗ 0.005

Eastern Europe, high score, Q=3 0.674∗∗ 0.004

South and East Asia, low score, Q=1 0.000

South and East Asia, low score, Q=2 0.096∗∗ 0.007

South and East Asia, low score, Q=3 0.426∗∗ 0.008

South and East Asia, medium score, Q=1 -0.029∗∗ 0.004

South and East Asia, medium score, Q=2 0.092∗∗ 0.004

South and East Asia, medium score, Q=3 0.532∗∗ 0.003

South and East Asia, high score, Q=1 0.102∗∗ 0.005

South and East Asia, high score, Q=2 0.563∗∗ 0.005

The results are based on the dataset consisting of 11, 300 projects. The quality level for South and East Asia,

low score, Q = 1, is normalized to be equal to zero. The stars, ∗∗, indicate that a coefficient is significant at the

95% significance level.
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Table 7: Participation Decision and Bid Distribution

Score Q I(T) II(T) I(P) II(P)

Mean

Constant 0.511∗∗ (0.013) -2.205∗∗ (0.011) 0.615∗∗ (0.043) -2.155∗∗(0.008)

No Ratings -0.097∗∗ (0.022) -0.48∗∗ (0.023)

0 < Ratings ≤ 3 0.021∗∗ (0.003) 0.004 (0.011)

3 < Ratings ≤ 10 0.051∗∗ (0.002) 0.003 (0.009)

Number of Ratings 0.068 (0.052) 0.006 (0.005)

Average Score 1 -0.006 (0.004) -0.006 (0.011)

Average Score 2 0.012∗∗ (0.003) 0.012∗∗ (0.002)

North America, Low, 1 -0.218∗∗ (0.023) 0.231∗∗ (0.021) -0.307∗∗ (0.046) 0.031 (0.027)

North America, Low, 2 -0.173∗∗ (0.018) -0.042 (0.022) -0.271∗∗ (0.044) -0.053∗∗ (0.025)

North America, Medium, 1 -0.004 (0.043) 0.251∗∗ (0.012) 0.086∗∗ (0.043) 0.288∗∗ (0.023)

North America, Medium, 2 -0.038∗∗ (0.022) -0.139∗∗ (0.023) -0.062 (0.046) -0.105∗∗ (0.026)

North America, High, 1 -0.173∗∗ (0.012) 0.134∗∗ (0.023) -0.214∗∗ (0.041) 0.165∗∗ (0.017)

North America, High, 2 -0.108∗∗ (0.021) -0.265∗∗ (0.031) -0.166∗∗ (0.039) -0.193∗∗ (0.031)

Eastern Europe, Low, 1 -0.026∗∗ (0.017) 0.232∗∗ (0.021) -0.083∗ (0.043) 0.205∗∗ (0.017)

Eastern Europe, Low, 2 -0.062∗ (0.022) -0.194∗∗ (0.013) -0.176∗∗ (0.038) -0.108∗∗ (0.021)

Eastern Europe, Medium, 1 -0.199∗∗ (0.035) 0.034∗∗ (0.015) -0.246∗∗ (0.044) 0.013 (0.012)

Eastern Europe, Medium, 2 -0.192∗∗ (0.024) -0.245∗∗ (0.021) -0.226∗∗ (0.048) -0.198∗∗ (0.022)

Eastern Europe, Medium, 3 -0.128∗∗ (0.032) -0.257∗∗ (0.017) -0.167∗∗ (0.051) -0.232∗∗ (0.029)

Eastern Europe, High, 1 -0.191∗∗ (0.024) -0.131∗∗ (0.023) -0.248∗∗ (0.038) -0.257 (0.034)

Eastern Europe, High, 2 -0.178∗∗ (0.043) -0.091∗∗ (0.031) -0.249∗∗ (0.051) -0.099∗∗ (0.012)

Eastern Europe, High, 3 -0.132∗∗ (0.022) -0.221∗∗ (0.011) -0.172∗∗ (0.038) -0.206∗∗ (0.029)

South-East Asia, Low, 2 -0.246∗∗ (0.034) -0.231∗∗ (0.012) -0.226∗∗ (0.041) -0.204∗∗ (0.021)

South-East Asia, Low, 3 -0.359∗∗ (0.044) -0.075∗∗(0.011) -0.434∗∗ (0.043) -0.051 (0.033)

South-East Asia, Medium, 1 -0.108∗ (0.063) -0.075∗∗ (0.021) -0.196∗∗ (0.044) -0.117∗∗ (0.017)

South-East Asia, Medium, 2 -0.183∗∗ (0.028) -0.071∗∗ (0.031) -0.231∗∗ (0.038) 0.033∗∗ (0.010)

South-East Asia, Medium, 3 -0.253∗∗ (0.035) -0.074∗∗ (0.023) -0.374∗∗ (0-.045 -0.059∗∗ (0.027)

South-East Asia, High, 1 -0.112∗∗ (0.037) -0.195∗∗ (0.011) -0.178∗∗ (0.038) -0.105∗∗ (0.012)

South-East Asia, High, 2 -0.095∗∗ (0.024) -0.299∗∗ (0.014) -0.065∗∗ (0.053) -0.281∗∗ (0.034)

Std Error 0.232∗∗ (0.012) 0.292∗∗ (0.015)

This table reports the effects of the covariates and the group premiums on sellers’ bid distribution and partici-

pation decisions. Columns I(T), II(T), and I(P), II(P) report estimated coefficients for the bid distribution and

probability of participation of the transitory and permanent sellers respectively. “Average Score 1” and “Average

Score 2” denote interactions of the current average score variable with the indicators for 0 ≤ Ratings ≤ 3 and

3 ≤ Ratings ≤ 10. The results are based on the data set consisting 11, 300 projects. The quality level for South

and East Asia, low score, Q = 1, is normalized to be equal to zero. The stars, ∗∗, indicate that a coefficient is

significant at the 95% significance level.
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We assess the magnitude of the entry costs using a simple model of entry such that (a) entry
cost constitutes the seller’s private information, (b) entry cost is orthogonal to the seller’s cost
of completing the project, (c) the cost of completing the project is not observed at participation
decision.30 Under this model, the observed probability of participation satisfies the equation

FS(E[π(q, x)]) = Pr(i ∈ A(x, q)),

where FS(.) denotes the distribution of the entry costs and π(q, x) is an ex-ante expected profit.

We estimate the mean and standard deviation of entry costs distribution by fitting the trun-
cated normal distribution (truncated at 0) to the set of points implied by the ex-ante expected
profit and the probability of participation values for various covariate cells and quality groups.
The estimated value for the mean and standard deviation of the entry costs are 0.082 and 0.081
respectively. That is entry costs roughly correspond to 6% of the project cost on average. This
number is slightly higher than documented in other markets.31 The relatively large entry costs
estimated in this market may reflect the fact that active bidding for a project involves substantial
interaction with the buyer and possibly preparation of supplementary materials.

8 Conclusion

In this paper we proposed an empirical methodology that could be used to study many markets
for services. It is applicable in the environment where heterogeneous buyers take into account
seller characteristics (foremost their quality) in addition to price when choosing service providers,
while sellers are small, distinct and characterized by a large turnover rate. Our methodology
overcomes one of the most important hurdles that inhibited the study of these markets in the
existing literature – the lack of reliable data on sellers’ quality.

The environment we consider combines features of discrete choice (differentiated products)
and auction settings. We build on the insights offered by these two literatures to develop a
novel identification strategy as well as an implementable econometric procedure that recovers
the distribution of buyers’ tastes, the distribution of sellers’ qualities conditional on other seller
characteristics, as well as the distribution of sellers’ costs conditional on quality and other at-
tributes.

Our empirical findings confirm the economic significance of quality differences in our market.
In fact, these differences dominate other types of seller heterogeneity. Allowing for the variation
in sellers’ quality and buyers’ tastes for quality significantly improves the fit of the model.
Recovering the distribution of qualities conditional on sellers’ performance-related characteristics
provides interesting insights into the availability of information in the online markets as well as
the role of performance measures, such as the “reputation scores” collected in these markets.
Finally, the recovered distribution of costs conditional on sellers’ characteristics including quality

30The details of similar models can be found in Krasnokutskaya ans Seim (2011) and Li and Zheng (2009).
31Studies of the US highway procurement market have estimated entry costs to be around 2 − 5% of the

engineer’s estimate.
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Figure 2: Bid Functions
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The figure shows the equilibrium bidding strategies of permanent sellers recovered from the first order conditions

of bidders’ optimization program. The convexity at the upper end of the costs’ support arises due to presence of

stochastic component in buyers’ tastes.



42

Figure 3: Density of Project’s Cost Distribution
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The figure shows the permanent sellers’ distribution of costs recovered by combining estimated bidding strategies

and bid distributions.
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builds a foundation for a better understanding of the composition of participants attracted
to online markets as well as the cost of delivering quality services.

This paper represents the first step in the analysis of multi-attribute auctions with unob-
served quality. Consequently, it made a number of simplifying assumptions that we expect to
refine in subsequent research. We expect the basic insights of our identification and implemen-
tation strategies to carry over to those environments. In particular, we assume that sellers are
completely uninformed about buyers’ preferences, or, in more technical terms, we assume no
unobserved auction (buyer) heterogeneity. Such an assumption may be too strong in some set-
tings. We have some preliminary results that indicate that this assumption could be relaxed
under certain conditions. Further, we assume that the buyer is perfectly informed about the
seller’s quality. We realize that a number of alternative informational assumptions may appear
to be applicable in similar environments. We carefully thought about this aspect of our analysis,
and we believe that the assumption we currently use in the paper is the most appropriate in our
market. This assumption is supported by our empirical results, which show that the distribution
of transitory sellers’ bids depends on sellers’ qualities in a statistically significant way. However,
we also have some insights into how the model could be identified under alternative informational
assumptions. We plan to pursue these issues in future research.

Finally, we find that reputation scores and to some degree the number of scores (or accumu-
lated experience) are valued by the buyer. This potentially introduces dynamic considerations
into the pricing and participation behavior of the sellers who are new in the market. We do not
investigate these issues in our analysis. This does not impact the validity of our results. We
exploit sellers’ optimal decision making only in the last step when we use the seller’s problem
to recover the distribution of costs. In our analysis we rely on the problem of permanent sellers,
who we believe are less concerned with the dynamic implications of their behavior. However,
the reputation-building issues are of independent interest as an enforcement mechanism used in
many Internet markets. We hope that future research will explore these issues in more detail.

In summary, we believe that our methodology opens the possibility of analyzing various
aspects of service markets: from optimal pricing and optimal procurement to product design
and studying the market mechanism that eliminates moral hazard concerns in this environment.
Given the importance of service markets in modern economies, this seems to be an important
research agenda.
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Appendix

Proofs on Non-parametric Identification of Quality Rankings

Consider a set of potential sellers N partitioned into Np ∪Np. Let AQ and AU denote subsets of entrants that

meet (or fail to meet) reserve requirements respectively. (That is, Bk > R for all k ∈ AU and Bk ≤ R for all

k ∈ AQ.) For any {i, j} ⊆ N , define a collection of mutually exclusive sets Ai,j ≡ {(a, a′) : a 6= ∅, a ∩ a′ = ∅

and a ∪ a′ ⊆ N\{i, j}}. For any (a, a′) ∈ Ai,j , define

Pi(b; a, a′) ≡ P (iwins|Bi = b, AQ = i ∪ a, AU = a′)

for any b ∈ Ωi.

Lemma A1 Suppose A1-A4 hold, and consider any i, j with xi = xj and Ωi ∩ Ωj 6= ∅. Then (a) for any b ∈

Ωi ∩ Ωj and (a, a′) ∈ Ai,j,

∆qij > 0⇒ Pi(b; a, a′) ≥ Pj(b; a, a′)

∆qij = 0⇒ Pi(b; a, a′) = Pj(b; a, a′)

∆qij < 0⇒ Pi(b; a, a′) ≤ Pj(b; a, a′).

(b) For any a∗ ⊆ N\{i, j} s.t. xk = xi and “either qk = qi or qk = qj” for all k ∈ a∗,

sign(∆qij) = sign(Pi(b; a∗, a′)− Pj(b; a∗, a′))
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for all b ∈ Ωi ∩ Ωj and any a′ with (a∗, a′) ∈ Ai,j .

Proof of Lemma A1. Proof of (a). By A1-A3, sellers’ entry and bidding strategies do not depend on

realizations of (α, β, ε) or R. Therefore, for any given a ⊆ N\{i, j}, the random vector (∆εki, Bk,∆xikβ)k∈a and

the event “Bi = b, AQ = {i} ∪ a, AU = a′” are independent from α. Let E(a, a′) be shorthand for the event that

“the set of entrants is a ∪ a′ with Bk ≤ R for all k ∈ a, and Bk′ > R for all k′ ∈ a′.” By definition, for all such

a, a′,

Pi(b; a, a′) ≡ P (iwins|Bi = b, AQ = {i} ∪ a,AU = a′)

= P (∆εki −Bk −∆Xikβ − α∆ik ≤ −b ∀k ∈ a|Bi = b, R ≥ b, E(a, a′))

=

∫
Ωα

P (∆εki −Bk −∆Xikβ ≤ α∆qik − b ∀k ∈ a|R ≥ b, E(a, a′))dF (α|R ≥ b, E(a, a′)), (14)

where F (α|.) is the conditional distribution of α. By similar arguments,

Pj(b; a, a′) =

∫
Ωα

P (∆εkj −Bk −∆Xjkβ ≤ α∆qjk − b ∀k ∈ a|R ≥ b, E(a, a′))dF (α|R ≥ b, E(a, a′)), (15)

Note (xk)k∈a is a vector of constant given a. By part (i) in A4 and that xi = xj , the distribution of

(∆εki, Bk,∆xikβ)k∈a is identical to that of (∆εkj , Bk,∆xjkβ)k∈a conditional on “R ≥ b, AQ = i ∪ a, AU = a′”.

It follows that

∆qij > 0⇒ Pi(b; a) ≥ Pj(b; a)

∆qij = 0⇒ Pi(b; a) = Pj(b; a)

∆qij < 0⇒ Pi(b; a) ≤ Pj(b; a),

for all b ∈ Ωi ∩ Ωj and all a, a′ such that (a, a′) ∈ Ai,j .

Proof of (b). It is sufficient to show that the weak inequalities above hold strictly for all b ∈ Ωi ∩Ωj and any

a∗ that satisfies the conditions in part (b). By definition of a∗,

Pi(b; a∗, a′)− Pj(b; a∗, a′)

=

∫
Ωα

 P (∆εki − (Bk − b) ≤ α∆qik ∀k ∈ a∗|R ≥ b,E(a∗, a′))

−P (∆εkj − (Bk − b) ≤ α∆qjk ∀k ∈ a∗|R ≥ b,E(a∗, a′))

 dF (α|R ≥ b, E(a∗, a′))

for all b ∈ Ωi∩Ωj and a′ such that (a∗, a′) ∈ Ai,j . Under our assumptions, for a given a∗, (Bi)i∈a∗ are independent

from (εi)i∈a∗ and α. Under A4, (∆εki)k∈a∗ is continuously distributed with positive densities conditional on α,

and the support [ε − ε, ε − ε]#{a∗} contains 0 in its interior. Likewise for (∆εkj)k∈a∗ . For any b in the interior

of Ωi ∩ Ωj , there is a positive probability that (Bk − b)k∈a∗ is close enough to 0 and α is small enough so that

Pi(b; a∗, a′) > (and =, <) Pj(b; a∗, a′) for all a′ with (a∗, a′) ∈ Ai,j whenever ∆qij > (and =, < respectively) 0.

Q.E.D.
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Proof of Proposition 1. By definition,

ri,j(b) ≡ P (iwins|Bi = b, i ∈ A, j 6∈ A) = P (iwins|Bi = b, R ≥ b, i ∈ A, j 6∈ A)P (R ≥ b)

= P (R ≥ b)
∑

(a,a′)∈Ai,j

P (iwins|Bi = b,AQ = i ∪ a,AU = a′)

× P (AQ = i ∪ a,AU = a′|Bi = b, R ≥ b, i ∈ A, j 6∈ A)
,

where the first equality follows from the law of total probability, and the independence between R and (Si, Ci)i∈N ,

which implies P (R ≥ b| Bi = b, i ∈ A, j 6∈ A) = P (R ≥ b). Likewise,

rj,i(b) ≡ P (j wins|Bj = b, j ∈ A, i 6∈ A)

= P (j wins|Bj = b, Bj ≤ R, j ∈ A, i 6∈ A)P (R ≥ b)

= P (R ≥ b)
∑

(a,a′)∈Ai,j

P (j wins|Bj = b,AQ = j ∪ a,AU = a′)

× P (AQ = j ∪ a,AU = a′|Bj = b, R ≥ b, j ∈ A, i 6∈ A)
.

It follows from Lemma A1 that P (iwins|Bi = b,AQ = i ∪ a,AU = a′) ≥ (or = , ≤ ) P (j wins|Bj = b,

AQ = j ∪ a, AU = a′) whenever ∆ij > 0 (or = 0, < 0 respectively) for all (a, a′) ∈ Ai,j . Weak inequalities hold

strictly for any (a, a′) ∈ Ai,j such that xk = xi and “either qk = qi or qk = qj” for all k ∈ a. Such a pair (a,

a′) exists in Ai,j given the conditions for the Proposition. Recall under our assumptions P{Dk = 1} > 0 for

all k ∈ N ; R is independent from (Si, Ci)i∈N ; and (Si, Ci) are also independent across i ∈ N . Hence there is a

positive probability that “Dk = 1 ∀k ∈ a ∪ a′ and Dk = 0 ∀k 6∈ (i ∪ a ∪ a′)” given “Bi = b, R ≥ b, i ∈ A, j 6∈ A”

for any (a, a′) ⊆ Ai,j . Consequently, P (AQ = i∪a,AU = a′|Bi = b, R ≥ b, i ∈ A, j 6∈ A) must be strictly positive

for some (a, a′) ⊆ Ai,j such that xk = xi and “either qk = qi or qk = qj” for all k ∈ a. The same argument

applies as we switch the role of i and j. Finally note that under A1-A4, P (AQ = i ∪ a, AU = a′|Bi = b, R ≥ b,

i ∈ A, j 6∈ A) is identical to P (AQ = j ∪ a, AU = a′|Bj = b, R ≥ b, j ∈ A, i 6∈ A) for all (a, a′) ∈ Ai,j . Hence

sign(ri,j(b)− rj,i(b)) = sign(∆qij). Q.E.D.

Proof of Proposition 2. We first show that (6) is well-defined and can be recovered as in (7). Recall bm < c̄

for all m ∈ N in any PSBNE, and the reserve price R is independent from (α, β, ε, S, C). Hence the events Di,j,k,

Gi,j,k and R ≥ bi happen with positive probability, provided P (Di = 1) > 0 for all i ∈ N and the support

condition in R1 holds. Let i, j, k ∈ Np. Consider any (bi, bj , bk) and AQ = a such that {i, j, k} ⊂ a (with

a ⊆ N t ∪Np). Under (A1)-(A3),

P (iwins|AQ = a\{j, k}, bi, )

= P (ui ≥ um ∀m ∈ a\{i, j, k}|AQ = a, bi,j,k) (16)

for all bi, bj , bk on the support. Thus (6) can be written as:

P (iwins|AQ = a, bi,j,k)

P (iwins|AQ = a\{j, k}, bi)

where the numerator is directly observable from the data as the seller qualification are reported. Under (A4’),
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(εj , εk) is independent from (α, β, ε−j,k, S, C,R) and εj ⊥ εk. This implies that the joint distribution of (εi, εj , εk)

is independent from the event “AQ = a, bi,j,k”. Furthermore, conditional on “AQ = a, ui ≥ maxm∈a\{i,j,k} um,

Bi = bi”, the distribution of εi is independent from (bj , bk). Hence (6) takes the form of P (εi − εj ≥ ∆bij ,

εi−εk ≥ ∆bik|ω, Bi = bi), where Fεi,εj ,εk|ω,Bi=bi = Fεi|ω,Bi=biFεjFεk and ω ≡“AQ = a, ui ≥ maxm∈a\{i,j,k} um.”

Under A6, this joint distribution of (εi−εj , εi−εk) conditional on ω and Bi = bi can be recovered over the complete

support by varying Bj and Bk. The Kotlarski Theorem then applies to show that Fεi is identified up to a location

normalization. Q.E.D.

Proofs on the Estimation of Quality Classifications

Let τ+
ij =

∫
max{δij(b), 0}db, τ−ij =

∫
max{−δij(b), 0}db, and τ0

ij =
∫
|δij(b)|db, where δij(b) = ri(b) − rj(b). We

confine the integral domains to Ωi ∩ Ωj , and this restriction is omitted from the notation. From Theorem 2 of

Lee, Song, and Whang (2012), one can show that under regularity conditions there exist fixed positive numbers

σ+
ij , σ

−
ij , and σ0

ij such that whenver δij(b) = 0 for all b ∈ R (i.e., under the least favorable configuration),

√
L{τ̂zij −Eτ̂zij}

σzij
→d N(0, 1), (17)

as L→∞ for z ∈ {+,−, 0}. Here L denotes the number of projects used for comparison.

As for the regularity conditions, we require two high-level conditions. First, the convergence in distribution

(17) is satisfied under the least favorable configuration. The second condition is that the bootstrap tests are

consistent against fixed alternatives. Detailed low level conditions for the convergence in distribution in (17) can

be found in Lee, Song, and Whang (2012).

It is worth noting that the form of the test statistic is slightly different from that in Lee, Song, and Whang

(2012) because δ̂ij(b) is the difference between the two kernel estimators. However, the observations pertaining

to the i-th seller and the observations pertaining to the j-th seller are independent, if i and j are different. Using

this particular property, we can apply the Poissonization method by focusing on the Poissonized statistic and

representing it as an independent sum of Poisson random variables. We omit the details.

Proof of Theorem 1: First, observe that

if i ∈ Nl,λ, P
{

#
(
N̂1,λ(i)∆N1,λ(i)

)
≥ 1
}
→ 0 and

if i ∈ Nh,λ, P
{

#
(
N̂2,λ(i)∆N2,λ(i)

)
≥ 1
}
→ 0.

This is a simple consequence of the consistency of the bootstrap tests. Also, the consistency of the bootstrap test

implies that for any i ∈ Nh,λ, we have that for any j ∈ N̂2,λ(i), p∗0(i, j)→P 0 as L→∞ but for any j ∈ N̂1,λ(i),

p∗0(i, j) is stochastically bounded as L→∞. Therefore, i is classified in the high-quality group with probability
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approaching one. That is, P{i ∈ N̂h,λ} → 1. Hence for each i ∈ Nh,λ,

P
{
δ((N̂h,λ(i), N̂l,λ(i)), Cλ) ≥ 1

}
= P

{
δ((N̂2,λ(i) ∪ {i}, N̂1,λ(i)), Cλ) ≥ 1

}
+ o(1)→ 0.

Also, similarly, for any i ∈ Nl,λ,

P
{
δ((N̂h,λ(i), N̂l,λ(i)), Cλ) ≥ 1

}
→ 0.

Since Nλ is a fixed finite set as L→∞, we have

P
{
δ((N̂h,λ(i), N̂l,λ(i)), Cλ) ≥ 1 for some i ∈ Nλ

}
→ 0.

Therefore,

P
{
δ(Ĉλ, Cλ) ≥ 1

}
= P

{
δ((N̂h,λ(i∗), N̂l,λ(i∗)), Cλ) ≥ 1

}
≤ P

{
δ((N̂h,λ(i), N̂l,λ(i)), Cλ) ≥ 1 for some i ∈ Nλ

}
→ 0,

giving us the desired result. �

Lemma A1: (i) If K ≥ K0,
1
K

∑K
k=1 V̂k(K) = OP (1), as L→∞.

(ii) If K < K0, for any M > 0, as L→∞,

P

{
1
K

∑K
k=1 V̂k(K)

g(L)
> M

}
→ 1.

Proof: (i) The first statement of Lemma A1 can be proved in three steps. First we reclassify the true group

structure into a finer one with K groups. Let this new group structure be {Nk,1 : k = 1, · · ·,K}. Second, invoking

Theorem 1 above, we show that the quantity 1
K

∑K
k=1 V̂k(K) is asymptotically equivalent to the same quantity

(denoted by 1
K

∑K
k=1 Ṽk(K)) only with N̂k replaced by Nk,1. Finally, we show that 1

K

∑K
k=1 Ṽk(K) = OP (1). To

see the latter convergence rate, first, note that

√
L{τ̂0

ij −Eτ̂0
ij}

σ0
ij

→d Z

under the least favorable configuration, where Z is a standard normal random variable. This can be proved as in

the proof of Theorem 1 of Lee, Song, and Whang (2012). Hence using the asymptotic validity of the bootstrap

test, we find that

|log p∗0(i, j)| =
∣∣∣log

(
1− Φ(

√
L{τ̂0

ij −Eτ̂0
ij}/σ0

ij)
)∣∣∣+ oP (1)

≤ |log (1− Φ(Z))|+ oP (1).
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The inequality becomes an equality when we are under the least favorable configuration.

Suppose that K ≥ K0 and P{i, j ∈ N̂k} → 1. Then i, j ∈ Nk, i.e., i and j belong to the same quality group.

Hence by Proposition 1 of this paper, and δij(b) = 0 for all b ∈ Ωi ∩Ωj . Since we confine the integral domain to

Ωi ∩ Ωj , it follows that we are under the least favorable configuration. From the previous arguments, this yields

the result that | log p∗0(i, j)| = OP (1).

(ii) Suppose that K < K0. Then for some k = 1, · · ·,K, and for some i, j ∈ Nk, τ0
ij > 0. By invoking the

smoothness conditions for the winning probabilities and using the proof of Theorem 4 of Lee, Song, and Whang

(2012), it can be shown that under the
√
L-converging local alternatives, there exists cij > 0, for any m > 0,

P

{√
L{τ̂0

ij −Eτ̂0
ij}

σ0
ij

> m

}
= P {Z + cij > m}+ o(1). (18)

Using similar arguments, we can show that under the fixed local alternatives,

P
{√

L{τ̂0
ij −Eτ̂0

ij}/σ0
ij > m

}
= P

{
Z +
√
Lcij > m

}
+ o(1).

Therefore, for any M > 0,

P {(1/g(L)) |log p∗0(i, j)| > M}

≥ P{(1/
√
L)| log(1− Φ(

√
L{τ̂0

ij −Eτ̂0
ij}/σ0

ij))| > Mg(L)/
√
L}+ o(1)

≥ P{(1/
√
L)| log(1− Φ(Z +

√
Lcij))| > Mg(L)/

√
L}+ oP (1)

as L→∞. Since g(L)/
√
L→ 0, it follows from (18) that the last probability converges to 1. �

Proof of Theorem 2: For all K > K0, we have

Q̂(K0)− Q̂(K) =
1

K0

K0∑
k=1

V̂k(K0)− 1

K

K∑
k=1

V̂k(K) + (K0 −K)g(L)

→ −∞,

because 1
K0

∑K0

k=1 V̂k(K0)− 1
K

∑K
k=1 V̂k(K) = OP (1) as L→∞.

And for all K < K0, we have

Q̂(K0)− Q̂(K) =
1

K0

K0∑
k=1

V̂k(K0)− 1

K

K∑
k=1

V̂k(K) + (K0 −K)g(L)

→ −∞,

because 1
K

∑K
k=1 V̂k(K)→∞ faster than the rate (K0 −K)g(L)→∞ as L→∞.

Therefore, P
{
Q̂(K0)− Q̂(K) < 0

}
→ 1. Hence we find that P{K̂ = K0} → 1 as L→∞. �
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The Appendix on the Estimation of Structural Elements

For the purpose of the derivations below it is convenient to introduce mapping π(·;N,A) : {1, · · ·, |N |} → N .

This mapping plays the following role. Sometimes we need to consider a scenario where a subset of potential

bidders different from the one realized in the data would choose to participate in the auction. In considering

such a case we would re-arrange the observations in such a way that the observations for this hypothetical set

of actual bidders are listed first and the observations for the remaining potential bidders would be listed after

them. The mapping πl(j;N,A) reflects the original (data set) position of the observation that would be listed in

position j under this re-arrangement. In our analysis the order in which observations are listed within the set of

entering or non-entering bidders is not important. Therefore, when re-arranging observations we do not consider

all possible permutations (orderings) of the hypothetical set of actual bidders. Instead, we re-allocate them to

the front of the vector without changing the order in which they were listed originally.

We use N̄p
x,q,l, Ā

p
x,q,l, N̄

t
x,l, Ā

t
x,l to denote the realizations of respective random sets as they are recorded in

the data. Notice that, π(j; N̄p
l , Ā

p
l ) = j and π(j; N̄ t

l , Ā
t
l) = j. For simplicity, we write πtl (j) = π(j;At, N t

l ) and

πpl (j) = π(j;Ap, Np
l ) whenever it is clear which A and N sets are used.

Proof of Proposition 4: Notice that we consider the probability of a two-part event: (1) that a given vector

of qualities characterizes a subset of potential bidders, (2) potential bidders characterized by these qualities enter.

First, as for pk,l, note that by the Bayes rule, we can write

pk,l = P{Qt
A,l = q̄A,k|Bl, Il} =

f(Bl|Qt
A,l = q̄A,k, Il)P{Qt

A,l = q̄A,k| Il}
f(Bl| Il)

(19)

=
f(Bt

l |Qt
A,l = q̄A,k, Il)P{Qt

A,l = q̄A,k| Il}
f(Bt

l | Il)
=
f(Bt

l |Qt
A,l = q̄A,k, Il,1)P{Qt

A,l = q̄A,k| Il}
f(Bt

l |Il)
.

The first equality holds because the bids of permanent sellers are independent of bids of the transitory sellers

and do not depend on the qualities of the transitory sellers, f(Bp
l | Il) = f(Bp

l |Qt
A,l = q̄A,k, Il).

We denote terms in this expression by

(I) = f(Bt
l |Qt

A,l = q̄A,k, Il,1), (II) = f(Bt
l | Il,1), (III) = P{Qt

A,l = q̄A,k| Il}.

Next, we work with these terms one by one.

Term (I) Notice that Bt
l are independent conditional on Qt

A,l = q̄A,k, and Il,1, therefore

(I) =
∏
x∈X

∏
j∈Atx,l

f(Bt
j,l|Qt

A,l = q̄A,k, Il,1) =
∏
x∈X

∏
j∈Atx,l

f(Bt
j,l|Qt

A,j,l = q̄A,j,k, Il,1). (20)

The last equality holds because the transitory seller knows his quality but not the quality of his transitory

competitors.
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Term (II) Applying the rule of total probability we obtain

(II) =
K̄A∑
d=1

f(Bt
l |Qt

A,l = q̄A,d, Il)P{Qt
A,l = q̄A,d| Il} (21)

K̄A∑
d=1

f(Bt
l |Qt

A,l = q̄A,d, Il,1)P{Qt
A,l = q̄A,d| Il}. (22)

We will return to this expression after we tackle term (III).

Term (III) Our goal here is to relate an event in (III) to transitory bidders’ participation (entry) decisions,

and to express (III) in terms of the participation probabilities of the transitory bidders. First, we consider

(III) = P (Qt
A,l = q̄A,k| Il,1, Il,2 = Īl,2),

where Īl,2 = (mp
x,q,m

t
x : x ∈ X and q ∈ Qx). Then observe that this conditional probability is equal to

P (Qt
A,l = q̄A,k| Il,1, |Apx,q,l| = mp

x,q, |Atx,l| = mt
x for all x and q) (23)

=
P (|Apx,q,l| = mp

x,q, |Atx,l| = mt
x for all x and q|Qt

A,l = q̄A,k, Il,1)P (Qt
A,l = q̄A,k|Il,1)

P (|Apx,q,l| = mp
x,q, |Atx,l| = mt

x for all x and q| Il,1)

=
P (|Atx,l| = mt

x for allx, Qt
A,l = q̄A,k| Il,1)∑K̄A

d=1 P (|Atx,l| = mt
x for allx, Qt

A,l = q̄A,d| Il,1)
.

The second equality holds because the events |Apx,q,l| = mp
x,q, for all (x, q) and |Atx,l| = mt

x, for allx are indepen-

dent conditional on Qt
A,l = q̄A,k, Il,1, and the event |Apx,q,l| = mp

x,q, for all (x, q) is independent of Qt
A,l = q̄A,k

conditional on Il,1. We next work on the expression P (|Atx,l| = mt
x for allx, Qt

A,l = q̄A,k|x̄tA,l, Il,1) in the

numerator of equation (23). We then return to equations (23) and (19) to conclude our derivation. We let

Qt
N,l = (QtN,j,l)j∈Ntl and QNl be the set of values that Qt

N,l takes. Then

P (|Atx,l| = mt
x for allx, and Qt

A,l = q̄A,k| Il,1) = (24)

=
∑

q̃∈QNl

P (|Atx,l| = mt
x for allx, and Qt

A,l = q̄A,k, Qt
N,l = q̃| x̄tA,l, Il,1)

=
∑

q̃∈QNl

∏
x∈X

P
{
|Atx,l| = mt

x, and Qt
A,l = q̄A,k|Qt

N,l = q̃, Il,1
}
P (Qt

N,l = q̃| Il,1).

Further notice that P (Qt
N,l = q̃| x̄tl , Il,1) = P (Qt

N,l = q̃| x̄tl) =
∏
j∈Ntl

P (Qt
N,j,l = q̃j | x̄tj,l). The probability

P (Qt
N,j,l = q̃j | x̄tj,l) is primitive in our environment, which characterizes the distribution of sellers’ qualities

within x−cell. We now show how the expression for P
{
|Atx,l| = mt

x, and Qt
A,l = q̄A,k|Qt

N,l = q̃, Il,1
}

can be

modified and then return to equation (24). Recall that πtl (j) links elements from some set Ωx ⊂ {1, ..., |N t
l |} to
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a vector {1, ..., |Atl |}. Then for a given q̄A,k and q̃ we obtain

∑
Ωx⊂N̄tx,l

P

 j ∈ Atx,l, Qt
A,j,l = q̄A,j,k, for all πtl (j) ∈ Ωx and

j ∈ N t
x,l −Atx,l for all πtl (j) ∈ N t

x,l − Ωx
|Qt

N,s,l = q̃πtl (s) for all s ∈ N t
l , x̄tl , Il,1


=

∑
Ωx⊂N̄tx,l

∏
πtl (j)∈Ωx

P
{
j ∈ Atx,l, Qt

A,j,l = q̄A,j,k|Qt
N,s,l = q̃πtl (s) for all s ∈ N t

l , x̄tl , Il,1
}
×

∏
πtl (i)∈N̄

t
x,l−Ωx

P
{
i ∈ N t

x,l −Atx,l|Qt
N,s,l = q̃πtl (s) for all s ∈ N t

l , x̄tl , Il,1
}
,

where the sum over all sets Ωx that are consistent with the restrictions imposed on the set of entrants, i.e,

Ωx ⊂ N̄ t
x,l such that |Ωx| = mt

x, q̃πtl (j) = q̄A,j,k for all j such that πtl (j) ∈ Ωx. Next,

=
∑

Ωx⊂N̄tx,l

∏
πtl (j)∈Ωx

P
{
j ∈ Atx,l, Qt

A,j,l = q̄A,j,k|Qt
N,s,l = q̃πtl (s) for all s ∈ N t

l , Il,1
}
×

∏
πtl (i)∈N̄

t
x,l−Ωx

P
{
i ∈ N t

x,l −Atx,l|Qt
N,s,l = q̃πtl (s) for all s ∈ N t

l , Il,1
}

=
∑

Ωx⊂N̄tx,l

∏
πtl (j)∈Ωx

P
{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,k, Il,1
}
×

∏
πtl (i)∈N̄

t
x,l−Ωx

P
{
i ∈ N t

x,l −Atx,l|Qt
N,i,l = q̃πtl (i), Il,1

}

Notice that for every Ωx the set of qualities within Ωx and N t
x,l − Ωx is the same. Therefore, the expression

above can be written

∑
Ωx⊂N̄tx,l

∏
πtl (j)∈Ωx

P
{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,k, Il,1
}
× (25)

∏
πtl (i)∈N̄

t
x,l−Ωx

P
{
i ∈ N t

x,l −Atx,l|Qt
N,i,l = q̃πtl (i), Il,1

}
= |Ωx|

∏
πtl (j)∈Ω0

x

P
{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,k, x̄tπtl (j),l
, Il,1

}
∏

πtl (i)∈N̄
t
x,l−Ω0

x

P
{
i ∈ N t

x,l −Atx,l|Qt
N,i,l = q̃πtl (i), Il,1

}

Here, |Ωx| denotes the cardinality of set Ωx = {Ωx : Ωx ⊂ N̄ t
x,l, such that |Ωx| = mt

x and q̃πtl (j) = q̄A,j,k, for

all πtl (j) ∈ Ωx}, with Ω0
x representing one specific member of Ωx. For example, we can set Ω0

x = Ātx,l.
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Returning with expression (25) to equation (24) obtains

∑
q̃∈QNl

P (|Atx,l| = mt
x for allx, and Qt

A,l = q̄A,k|Qt
N,l = q̃, Il,1)P (Qt

N,l = q̃| Il,1)

=
∑

q̃∈QNl

∏
x∈X
|Ωx|

∏
πtl (j)∈Ω0

x

P
{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,k, Il,1
}
×

∏
πtl (i)∈N̄

t
x,l−Ω0

x

P
{
i ∈ N t

x,l −Atx,l|Qt
N,i,l = q̃πtl (i), Il,1

}
P (Qt

N,l = q̃| Il,1)

=
∑

q̃∈QNl

∏
x∈X
|Ωx|

∏
j∈Ātx,l

P
{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,k, Il,1
}
×

∏
πtl (i)∈N̄

t
x,l−Ā

t
x,l

P
{
i ∈ N t

x,l −Atx,l|Qt
N,i,l = q̃πtl (i), Il,1

} ∏
j∈Ntl

P (Qt
N,j,l = q̃j | x̄tj,l)

Note that in the last summation over q̃ ∈ QNl , part of the vectors in q̃ such that (q̃j)j∈Ātl , and hence the

summation is essentially over vectors in QN−Ā
t
l

l which is the set of values for Qt
N−Ātl

≡ (Qt
Ntl−Ā

t
l ,j,l

)j∈Ntl−Ātl .

Thus we write the last sum as

∑
q̃N−A∈QN−Al

∏
x∈X
|Ωx|

∏
j∈Ātx,l

P
{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,k, Il,1
} ∏
j∈Ātl

P (Qt
N,j,l = q̃j | x̄tj,l) (26)

×
∏

i∈N̄tx,l−Ā
t
x,l

P
{
i ∈ N t

x,l −Atx,l|Qt
N,i,l = q̃i, Il,1

} ∏
j∈N̄tl−Ā

t
l

P (Qt
N,j,l = q̃j | x̄tj,l)

=
∏
x∈X

∏
j∈Ātx,l

{
P
{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,k, Il,1
}
P (Qt

N,j,l = q̃j | x̄tj,l)
}

×
∑

q̃N−A∈QN−Al

∏
x∈X
|Ωx|

∏
i∈N̄tx,l−Ā

t
x,l

{
P
{
i ∈ N t

x,l −Atx,l|Qt
N,i,l = q̃i, Il,1

}
P (Qt

N,i,l = q̃i| x̄ti,l)
}
.

The expression in (26) is derived for an arbitrary q̄A,k. Therefore, we substitute it into both the numerator

and the denominator of (23). Notice that the dimensionalities of actual and potential bidders’ x-sets are the same

in the numerator and the denominator and that is why both expressions contain the common factor:

∑
q̃N−A∈QN−Al

∏
x∈X
|Ωx|

∏
i∈N̄tx,l−Ā

t
x,l

{
P
{
i ∈ N t

x,l −Atx,l|Qt
N,i,l = q̃i, Il,1

}
P (Qt

N,i,l = q̃i| x̄ti,l)
}

Therefore, after canceling out this factor, the expression in (23) transforms into

P (Qt
A,l = q̄A,k|Il,1, Il,2 = Īl,2) =

∏
x∈X

∏
j∈Ātx,l

{
P
{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,k, Il,1
}
P (Qt

A,j,l = q̄A,j,k| x̄tj,l)
}

∑K̄l
d=1

∏
x∈X

∏
j∈Ātx,l

{
P
{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,d, Il,1
}
P (Qt

A,j,l = q̄A,j,d| x̄tj,l)
} .

Having obtained an expression for (III), we now return to (II).



55

Denote ωtA,k,l =
∏
j∈Ātl

P (Qt
A,j,l = q̄A,j,k| x̄tj,l).

(II) =
K̄A∑
k=1

f(Bt
l |Qt

A,l = q̄A,k, Il,1)P{Qt
A,l = q̄A,k| Il} = (27)

K̄A∑
k=1

ωtA,k,l
∏
x∈X

∏
j∈Ātx,l

f(Bj |Qt
A,j,l = q̄A,j,k, Il,1)P

{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,k, Il,1
}

∑K̄l
d=1 ω

t
A,d,l

∏
x∈X

∏
j∈Ātx,l

P
{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,d, Il,1
}

Finally, combining (I), (II), and (III) obtains pk,l =

ωtA,k,l
∏
x∈X

∏
j∈Ātx,l

f(Bj |Qt
A,j,l = q̄A,j,k, Il,1)P

{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,k, Il,1
}

∑K̄A
d=1 ω

t
A,d,l

∏
x∈X

∏
j∈Ātx,l

f(Bj |Qt
A,j,l = q̄A,j,d, Il,1)P

{
j ∈ Atx,l|Qt

A,j,l = q̄A,j,d, Il,1
} .

Supplemental Appendix

Nonparametric Identification

Buyers’ Tastes for Observed Characteristics

To see how the distribution of β (buyers’ tastes for observed characteristics) can be recovered, consider an auction

involving M + 1 permanent sellers, who all bid below the reserve price. Let their quality levels be identified.

Then

P (i wins |A = AQ = a, (bi)i∈a)

= P (∆εji + α∆qji + ∆xjiβ ≤ ∆bji ∀j ∈ a\{i})

where #{a} = M + 1. Provided the joint support of (∆Bji)j∈a\i is large enough to cover the joint support of

(∆εji + α∆qji + ∆xjiβ)j∈a\i, we can recover the distribution of the later. With Fεi and Fα identified as above,

and under our assumption that (εi)i∈a are i.i.d. and jointly independent from α, the distribution of ∆εji+α∆qji

is known. With β assumed to be independent from α and (εi)i∈N , we can identify the distribution of (∆xjiβ)j∈a\i

by taking the ratio of the characteristic functions of (∆εji + α∆qji + ∆xjiβ)j∈a\i and (∆εji + α∆qji)j∈a\i. As

long as the matrix (∆xji)j∈a\i is full-rank, then the joint density of β is identified as the product of the joint

density of (∆xjiβ)j∈a\i and the absolute value of the determinant of the square matrix (∆xji)j∈a\i under the

standard change-of-variable techniques. We formalize this idea for the rest of this subsection.

(A8) For some i and a ⊆ Np with i ∈ a and #{a} = M + 1 such that (i) (∆xji)j∈a\i has a full rank;

(ii) the support of (∆εji + α∆qji + ∆xjiβ)j∈a\i is contained in the support of (∆Bji)j∈a\i; and (iii)

(∆εji + α∆qji)j∈a\i have non-vanishing characteristic functions.
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Both (i) and (iii) in A8 are mild conditions. Sufficient conditions for (ii) in A8 can be derived using arguments

similar to those in Section 4.4.

Proposition 5 Suppose the conditions A1-3,A4’,A6-8 hold. Then the distribution of β is identified.

Distribution of Private Project Costs

In this section we discuss how the distribution of project’s costs can be identified. We consider a simple case

when bidders’s entry costs are independent of the project’s costs. The general result obtains by combining steps

presented below with the identification strategy proposed by Li and Gentry (2011).

The identification of the distribution of project’s costs32 in a simple case of signals independence follows an

argument similar to Guerre, Perrigne, and Vuong (2000). To see this, note that the quality levels for permanent

sellers, the distribution of quality levels of transitory sellers, and buyer tastes can be considered known since they

are identified in preceding sub-sections.

The inverse bidding strategy can be recovered as follows. The first-order condition for bidder i choosing price

b0 in equilibrium is:

(b0 − ci) ∂
∂bP

{
maxj∈AQ\i (αQj − αqi + ∆xjiβ + ∆εji −Bj) ≤ −b

}
|b=b0 (28)

= P
{

maxj∈AQ\i (αQj − αqi + ∆xjiβ + ∆εji −Bj) ≤ −b0
}

.

Thus, it suffices to show that the distribution on the right-hand side can be identified. It would imply that

the derivative on the left-hand side would also be identified, in which case the inverse bidding strategy (and

consequently the distribution of private cost ci) would also be recovered for every (x, q) group of sellers. Note

the right-hand side is

∑
{a⊆N}

P
{

maxj∈a\i (αQj − αqi + ∆xjiβ + ∆εji −Bj) ≤ −bi
∣∣ AQ = a

}
P {AQ = a} .

For those sellers that are in (AQ\i) ∩ N t, Q is a multinomial random variable whose distribution is recovered

due to (A5). With seller qualification (1{Bi ≤ R}) observed in data, P{AQ = a} in a symmetric PSBNE can

be recovered. Next, note with a fixed, the distribution of maxj∈a\i (αQj − αqi + ∆xjiβ + ∆εji −Bj) can be

recovered since Fα, Fεi , Fβ and the distribution of Bj are identified.

Further Discussion of Support Conditions

To better illustrate how support conditions in A7 can be satisfied, we focus on a simpler case with A = {i, j, l},

where i, j, l have identical observed characteristics in x; both i, j are permanent with qi > qj and qi = q1 (highest

32The identification of the distribution of entry costs is standard. It can be found, for example, in ?.
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level possible); and l is transitory. Recall that, in this case, Ql is a random variable correlated with Bl. In this

simple case, the support condition we need is that the support of (Bi−Bj , Bi−Bl) conditional on Bl = bl covers

the unconditional support of (α∆qij + ∆εij , α∆qi,l + ∆εi,l). Let QL denote the lowest quality level possible,

and let ᾱ denote the supremum of the support of α.

Remark 2 Suppose c̄m = c̄ for all m ∈ N and r̄ = c̄. If for some i, j ∈ Np with qi = q1 and qi > qj .

bj < bi ; b̄i − bi > 2(ε̄− ε) + ᾱ∆qiL ;

b̄j − bj > 2(ε̄− ε) + ᾱ(∆qiL + ∆qij) (29)

and there exists l with xi = xj = xl , then (A7) holds.

It is not hard to visualize the restrictions posed by A7, and why the conditions in Remark 2 are sufficient

for A7. Figure 4(a) depicts the joint support of (Bi − Bj , Bi − Bl) conditional on Bl = bl. Figure 4(b) gives

the joint support of (α∆qi,j , α∆qi,l), and Figure 4(c) gives a superset of the joint support of (α∆qi,j + ∆εi,j

, α∆qi,l + ∆εi,l). Note because ε and α,C are independent, Figure 4(c) is simply the addition of Figure 4(b)

and Figure 1. For A7 to hold, we need the shape in Figure 4(c) to be covered by the support in Figure 4(a).

By comparing the coordinates of the vertices in these two figures, we can derive the following set of sufficient

conditions for A7:

bi − bl < ε− ε̄ ; bl − b̄j < ε− ε̄ ; ε̄− ε+ ᾱ∆qi,L < b̄i − bl;

ε̄− ε+ ᾱ∆qi,j < bl − bj ; ε− ε̄ > ᾱ∆qi,j + bj − bl ; b̄i − b̄j < ᾱ∆qi,j ;

ᾱ∆qi,L < ε− ε̄+ ᾱ∆qi,j + b̄i − bl.

For this system of inequalities to hold for some bl with ql < q1, it is sufficient to have the system of inequalities

in Remark 2 above.

To get the intuition of how the condition in Remark 2 can hold, consider a simplified model with two types

of sellers and without ε. (We have learned from the previous paragraph that the support of bids can be large

relative to that of ε. Therefore adding ε into the model will not pose addtional problems for showing the support

conditions.) For now, consider a model in which all potential sellers are permanent.

The basic argument in this case is that we need the support of bids for the permanent high-quality seller

i to be sufficiently large in a hypothetical model where the permanent potential seller j and other sellers with

lower qualities have been removed from the set of potential sellers. Denote the support by [b0i , b̄
0
i ]. Now consider

the model where lower quality sellers remain among the potential sellers. This support will be shortened as

high-quality sellers take into account the positive probability that after entry decisions, they may find themselves

competing with low-quality sellers only. Call this new support [bi, b̄i]. Due to the existence of secret reserve prices

(whose upper bound of support is c̄), it can be shown that the upper bound of the support of the bids must

be identical in both cases, i.e., b̄0i = b0i = c̄. The lower bound of the support is increased but the magnitude of

increment must be bounded between α∆qi,j and ᾱ∆qi,j . Thus, as long as [b0i , b̄
0
i ] is longer than ᾱ∆qi,j + ᾱ∆qH,L,



58

Figure 4: Support Conditions
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then the support [bi, b̄i] will satisfy the first inequality in (29). That the second inequality in (29) can hold can

be shown using similar heuristic arguments. In the more general model involving transitory sellers, this intuitive

argument still applies, with the only difference being that seller i’s strategies in both cases (with permanent

lower-quality sellers removed or included among the set of potential sellers) now also depend on the quality of

other permanent sellers and the identity of the remaining transitory sellers.

Nonparametric Estimation of Quality Group Structure

Confidence Set for Classification

Suppose that we have K0 groups. Since we can estimate K0 consistently, we assume we know it. We fix

k = 1, · · ·,K0 and construct a confidence set for the k-th quality group. In other words, we would like to construct

a random set Ĉk ⊂ N such that

liminfL→∞P{Nk ⊂ Ĉk} ≥ 1− α.

We need to devise a way to approximate the finite sample probabilities like P{Nk ⊂ Ĉk}. Since we do not
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know the cross-sectional dependence structure among the sellers, we use a bootstrap procedure that preserves

this dependence structure from the original sample. We first estimate N̂k,λ as prescribed above and also obtain

τ̂0
ij . Given the estimate N̂k,λ, we construct a sequence of sets as follows:

Step 1: Find i1 ∈ N\N̂k that minimizes minj∈N̂k τ̂
0
i1,j

, and construct Ĉk(1) = N̂k ∪ {i1}.

Step 2: Find i2 ∈ N\Ĉk(1) that minimizes minj∈Ĉk(1)τ̂
0
i2,j

, and construct Ĉk(2) = Ĉk(1) ∪ {i2}.

Step m: Find im ∈ N\Ĉk(m−1) that minimizes minj∈Ĉk(m−1)τ̂
0
im,j

and construct Ĉk(m) = Ĉk(m−1)∪{im}.

Repeat Step m up to |N |.

Now, for each bootstrap iteration s = 1, · · ·, B, we construct the sets N̂∗k,s and {Ĉ∗k,s(m)} following the

steps described above but using the bootstrap sample. (Note that this bootstrap sample is independent of the

bootstrap sample used to construct p∗0(i, j).)

Then, we compute the following:

π̂k(m) ≡ 1

B

B∑
s=1

1
{
N̂k ⊂ Ĉ∗k,s(m)

}
.

Note that the sequence of sets Ĉ∗k,s(m) increases in m. Hence the number π̂k(m) should also increase in m. An

(1− α)% level confidence set is given by Ĉk(m) with m, such that

π̂k(m− 1) < 1− α ≤ π̂k(m).

If there exists no such m ≤ m0 that satisfies this inequality, then set m = m0.

Monte Carlo Analysis

Here we explore properties of our classification algorithm in simulation analysis.

We choose the distributions of project and entry costs to be the same across quality levels and given by

truncated normals with N(1.5, 0.22) and N(0.08, 0.022) correspondingly. Further, we assume that the distribution

of the reserve price coincides with the bid distribution of high-quality bidders. The bidders are assumed to be

heterogeneous with respect to quality only. Buyers’ tastes, therefore, are represented by the distributions of α

and ε. We fix the distribution of α to be truncated normal N(0.4, 0.22) with support [0, 1]. The distribution of ε

is also chosen to be truncated normal with mean 0 and variance σ2
ε . We vary σε in experiments below to explore

the sensitivity of our methodology to the noise in buyers’ tastes. We truncate the support of epsilon at [−σε, σε].

Finally, we assume that the set of suppliers consists of 30 programmers and is split equally between high- and

low-quality suppliers.
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We use the modified projection algorithm from Paarsch, Hubbard (2009) and Bajari (2000) to solve for

participation and bidding strategies of our game. The data are generated through repetition of the following

steps:

1. At each round, 10 randomly selected bidders from the set above are declared to be potential bidders.

2. For each potential bidder we draw an entry and project cost. We, then, apply participation and bidding

strategies to these draws to determine whether a potential bidder enters the set of active participants and

if he does what bids he submits.

3. Next, we take draws from the distributions of α, ε, and of the reserve price. The winner of the project is

determined by evaluating submitted bids using the reserve price and buyer’s tastes.

4. The data record the set of potential bidders with their qualities, outcomes of participation and entry

decisions as well as the buyer’s choice.

Table 8: Results of Simulation Study

Probability of Correct Classification
number of bids=300 number of bids=200 number of bids=100

dQ σε QH QL QH QL QH QL

0.3 0.2σc 0.9773 0.9901 0.9613 0.9547 0.9314 0.9013
0.3 0.5σc 0.9645 0.9858 0.9477 0.9512 0.9223 0.8998
0.3 1.5σc 0.9619 0.9782 0.9457 0.9401 0.9207 0.8941
0.1 0.2σc 0.9632 0.9774 0.9329 0.9503 0.9164 0.8904
0.1 0.5σc 0.9551 0.9743 0.9263 0.9421 0.9034 0.8815
0.1 1.5σc 0.9518 0.9701 0.9227 0.9397 0.8927 0.8623

This table reports results of the simulation study of the sensitivity of the classification procedure to the quality

differences, the magnitude of the preference noise, and the data set size. The latter is measured in the average

number of bids per supplier. The difference in quality levels is measured relative to the project costs spread,

i.e., dQ = QH−QL
c̄−c . The variance of the preference noise is measured relative to the project cost variance, i.e.,

σε = dεσc.

We use the simulated data to investigate the sensitivity of our methodology to the magnitude of the quality

differences, the noise in buyer’s preferences, and the number of available observations. For the first two experi-

ments we tie the quality differences and the noise magnitude to the variance in the private project costs. That is,

we consider (a) high-quality differences with ∆Q = 0.3(c̄−c) and (b) low-quality differences with ∆Q = 0.3(c̄−c).

Similarly, we consider (c) low preference noise with σε = 0.2σc, (d) medium preference noise with σε = 0.5σc, (e)

high preference noise with σε = 1.2σc. Finally, we explore how the performance of our procedure changes with

sample size. Our procedure is performed at the individual level, therefore, we explore the performance of our

procedure as a function of the average number of bids per supplier.
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We run the simulation experiments as follows. For every set of parameters, we apply our procedure to 500

data sets simulated according to steps (1)-(4) described above. We then compute for every supplier the fraction

of the data sets in which his type was correctly recovered. We report the average of these fractions across bidders

of the same quality level in table 8.

The results of the simulation analysis show that the classification procedure performs quite well.33 In partic-

ular, it is not very sensitive to the magnitude of the preference noise. We would expect the preference noise to

impede recovery of the quality level since it disguises the link between the probability of winning and the quality

of participant. It would be natural to expect that the procedure should impose higher data requirements in the

presence of more noise. However, the endogeneity of prices successfully compensates for the noise in buyers’

preferences at least for moderate levels of noise. As the magnitude of the noise grows, bidding functions become

flatter, thus ensuring that more observations fall in the neighborhood of a specific price level.

As expected, the performance of the procedure does depend on the importance of the quality differences.

The estimation is more precise when quality differences are large and grows less precise as quality differences

diminish. Finally, the procedure is sensitive to the size of the data set. As the number of bids drops from 300

bids per supplier to 100 bids per supplier the probability of correct classification drops from 0.96 to 0.92 for

high-quality suppliers and from 0.98 to 0.89 for low-quality suppliers. The classification of low-quality suppliers

is affected to a larger degree since due to the lower probability of participation, the number of bids they submit

is substantially below the average.

Extension: Semiparametric Estimation

The estimation method in the previous section employs parametrization of nonparametric functions gk. The

functions gk involve the density of the transitory sellers’ bids and participation probabilities. Since the bids and

participations are equilibrium objects, one might prefer to use a more flexible specification for the nonparametric

functions gk. In this section, we explain how this extension can be done in practice.

Recall our definition epx,q,l(θ, g) in (13) and define

ρ̂x,q,s(θ, g) = hpx,q,1(Bp
l , Il)

(
W p
x,q,l − ê

p
x,q,l(θ, g)

)
,

making its dependence on the nonparametric function g explicit. Let

m̂x,q,l(θ, g) =

∑L
s=1 ρ̂x,q,s(θ, g)1 {Is = Il}∑L

s=1 1 {Is = Il}

and define m̂l(θ, g) to be a column vector with m̂x,q,l(θ, g) stacked up with (x, q) running in X ×Q1. Hence the

dimension of m̂l(θ, g) is dh,p × |X ×Q1|, where |X ×Q1| is the cardinality of the set X ×Q1.

In the semiparametric estimation, we regard the nonparametric function g as an infinite dimensional nuisance

33The procedure performs best when prices are scaled to lie in the [0,1] interval.
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parameter, and employ the sieve minimum distance estimation method of Ai and Chen (2003). As argued

previously, the functions g are nonparametrically identified under our set-up. Now let GL be the space of finite

dimensional sieves whose dimension increases as the number of auctions L grows. Details about the appropriate

sieves are found in the appendix. We construct the estimator as follows:

(θ̂CMD, ĝ) = argmin(θ,g)∈Θ×GLQ̂CMD(θ, g),

where

Q̂CMD(θ, g) =
1

L

L∑
l=1

m̂l(θ, g)Σ̂−1
l m̂l(θ, g),

and Σ̂l is a consistent estimator of a nonsingular matrix Σl. Ai and Chen (2003) showed that under regularity

conditions, we have
√
n
(
θ̂CMD − θ0

)
→d N(0, V ),

where V is a nonsingular covariance matrix.

We turn to the form of the covariance matrix formula which follows Ai and Chen (2003). For each i = 1, ···, N,

we let for α = (θ, g) ∈ AL = Θ× GL,

r
(1)
x,q,l(α) = E

[
hpx,q,1(Bl, Il){W p

x,q,l − e
p
x,q,l(α)}|Il

]
r

(2)
x,q,l(α) = E

[
htx,q,2(Bl, Il){W t

x,l − etx,q,l(α)}|Il
]

and r
(1)
l (α) = [r

(1)
x,q,l(α)′]′q∈Qx,x∈X and r

(2)
l (α) = [r

(2)
x,q,l(α)′]′q∈Qx,x∈X . In other words, r

(1)
l (α) is a column vector

with vectors r
(1)
x,q,l(α), q ∈ Qx, x ∈ X , stacked up and r

(2)
l (α) = [r

(2)
x,q,l(α)′]′q∈Qx,x∈X is a column vector with

vectors r
(2)
x,q,l(α), q ∈ Qx, x ∈ X , stacked up. We define

ml(α) =

 r
(1)
l (α)

r
(2)
l (α)

 .
For each j = 1, · · ·, dθ, we define for w ∈ G,

∂ml(θ0, g0)

∂g
[w − g0] =

∂ml(θ0, τw + (1− τ)g0)

∂τ
|τ=0.

The left-hand side term represents the pathwise derivative of ml(θ0, g0) along the direction w − g0. Let w∗j be

the solution to the minimization problem:

inf
wj∈G

(
∂ml(θ0, g0)

∂θj
− ∂ml(θ0, g0)

∂g
[wj − g0]

)′
Σl

(
∂ml(θ0, g0)

∂θj
− ∂ml(θ0, g0)

∂g
[wj − g0]

)
,

where

Σl = E
[
[r

(1)
l (α), r

(2)
l (α)][r

(1)
l (α)′, r

(2)
l (α)′]′|Il

]
.

Then we take

Dw∗,l =
∂ml(θ0, g0)

∂θ′
− ∂ml(θ0, g0)

∂g

[
w∗1 − g0, · · ·, w∗dθ − g0

]
.
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The asymptotic covariance matrix formula becomes

V = E
[
Dw∗,lΣ

−1
l Dw∗,l

]
.

The estimation of the asymptotic covariance matrix formula can be done in a straightforward way. For example,

we may follow Section 5 of Ai and Chen (2003), except that instead of using the series estimation to obtain

the sample analogue of the conditional expectation E[·|Il], we use the usual sample analogue of the conditional

expectation with discrete conditional variables because Il is a discrete random vector. Details are omitted.

Choice of the Sieve Space

Now let us consider the choice of the sieve space GL. Let K̄ > 0 be an integer such that for all L ≥ 1,

maxl=1,···,L K̄l ≤ K̄. Now let us discuss the construction of the sieve space GL. For each k = 1, · · ·, K̄, and

realized value of (Il,1, I
t
l,2), the function gk(·, Il,1, Itl,2) is of particular form. First we take GL = G1,L× · · ·×GK̄,L,

where Gk,L’s are constructed as follows. For i = 1, · · ·, N , L, and k = 1, · · ·, K̄, let Gk,L and Fk,L be sieve spaces,

where for each gk,L ∈ Gk,L, gk,L : I → [0, 1] and for each fk,L ∈ Fk,L, fk,L : R×I → [0,∞) and for each Il,1 ∈ I,∫
fk,L(b, Il,1)db = 1. Then we construct a sieve space Gk,L as the collection of maps gk,L(b, Il,1), where

gk,L(b, Il,1) =
∏
x∈X

|Ātx,l|∏
j=1

fk,j,L(b, Il,1)vxk,j,L(Il,1),

where vxk,j,L ∈ Vxk,j,L, and fk,j,L ∈ Fk,j,L. For Vxk,j,L, we choose a sieve spaceMx
k,j,L of real-valued functions and

define

Vxk,j,L =

{
exp(m(·))

1 + exp(m(·))
: m ∈Mx

k,j,L

}
.

As for Mx
k,j,L, we can take polynomial series.

As for Fk,L = ×K̄j=1Fk,j,L, we use a Hermite polynomial sieve, where

Fk,j,L =

 fk,KL,k(x;σk, ε0,k, r0,k,ak) : ε0 > 0, σ > 0, r0, as,k ∈ R, s = 1, · · ·,KL,k∫
fk,KL,k(x;σk, ε0,k, r0,k,ak)dx = 1

 ,

and fk,KL,k(x;σk, ε0,k, r0,k,ak) is defined to be

1√
2πσk

ε0,k +


KL,k∑
s=1

as,k

(
x− r0,k

σk

)s
2
 exp

(
− (x− r0,k)2

2σ2
k

)
.

Observe that ∫
fk,KL,k(x;σk, ε0,k, r0,k,ak)dx = ε0,k +

KL,k∑
s=1

KL,k∑
t=1

as,kat,kE
(
Zs+t

)
,

where Z is a standard normal random variable. The quantity E(Zs+t) can be explicitly computed from the

moment generating function of Z.
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Empirical Analysis Section

Additional Restrictions Imposed in Estimation

(a) The restriction associated with transitory sellers’ bid distribution:

f(Bt
i| Il) =

∑
k

f(Bt
i|Qt

A,i,l = q̄A,i,k, Il,1)P (Qt
A,l = q̄A,k,l|Il) = (30)

K̄A∑
k=1

ωtA,k,l
∏
j∈Ātl
{f(Bj |Qt

A,j,l = q̄A,j,k, Il,1)P (j ∈ Atl |Qt
A,j,l = q̄A,j,k, Il,1)}∑K̄l

d=1 ω
t
A,d,l

∏
j∈Ātl

P (j ∈ Atl |Qt
A,j,l = q̄A,j,d, Il,1)

.

Moment conditions associated with this restriction would relate the empirical moments of the f(Bt
i| Il)

distribution to the theoretical moments computed using (30).

(b) The restriction associated with the transitory sellers’ probability of participation:

P (|Atx,l| = mx,l| Il,1) =

K̄A,l∑
k=1

P (|Atx,l| = mx,l and Qt
A,l = q̄A,k| Il,1) = (31)

K̄A,l∑
k=1

∏
j∈Ātl

{
P (j ∈ Atl |Qt

A,j,l = q̄A,j,k, Il,1)P (Qt
N,j,l = q̃j | x̄tj,l)

}
×

∑
q̃N−A∈QN−Al

|Ω|
∏

i∈N̄tl−Ā
t
l

{
P (i ∈ N t

l −Atl |Qt
N,i,l = q̃i, Il,1)P (Qt

N,i,l = q̃i| x̄ti,l)
}
.

The derivation for this expression is provided in the proof of Proposition 5. Moment conditions associated

with this restriction would relate the transitory sellers’ empirical probability of participation and expected

x−characteristics of entrants conditional on Il,1 to their theoretical counterparts using (31).

(c) The restriction related to the expected profit condition. This restriction summarizes optimal participation

behavior. For example, in the environment where the cost of work is not observed at the time when the

entry decision is made and where C⊥S, the participation behavior is summarized by the threshold strategy

where potential bidders with S-draws below the ex-ante expected profit participate in the auctions and

those with higher draws stay out. This implies that in equilibrium

P (j ∈ Atx,l|Qt
j,l = qk,x, Il,1) = FS(E[πt(j,Qt

A,j,l = qk,x, Il,1)]), (32)

where FS(.) is a distribution of entry costs S and qk,x ∈ Qx.

Moments Used in Estimation

The estimation is based on two types of moment conditions discussed in Section 6. The first type of moments

relates the probability that a permanent seller wins under a variety of permanent actual bidder set configura-

tions. The second type of moments links transitory and permanents sellers’ empirical distribution of bids and
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participation frequencies to their theoretical counterparts. The moments of the first type are further subdivided

into three groups:

(a) Moments that are based on the permanent seller’s probability of winning conditional on two or more

qualified bidders belonging to the same quality group. In these moment conditions, we use the following

hcb(b)34 functions: a constant (equal to one), the difference between the winning bid and another bid

submitted by a bidder from the same quality group, or the squared difference between the winning bid

and another bid submitted by a bidder from the same quality group respectively.

(b) Moments that are based on the permanent seller’s probability of winning conditional on this seller’s quality

group, and one or more qualified bidders belonging to a different quality group. In these moment conditions,

we use the following hcb(b) functions: a constant (equal to one), the winning bid, the squared winning bid,

the difference between the winning bid and a bid submitted by seller from a different quality group, the

squared difference between the winning bid and a bid submitted by a seller from a different quality group,

respectively. We include moments for all possible pairs of different quality groups.

(c) Moments that are based on on the permanent seller’s probability of winning conditional on this seller’s

quality group, and at least one transitory qualified bidder belonging to a specific country group. In

these moment conditions, we use the following hcb(b) functions: the differences between the winning and

transitory bidders’ characteristics other than price, the winning bid, the product of the winning bid and

the differences between the winning and transitory bidders’ characteristics other than price, as well as the

squared differences, the squared winning bid, and the squared product of the winning bid and differences.

The second type of moments matches the empirical mean and variance of the permanent and transitory

bid distributions, as well as the covariance between the bid and the seller’s other characteristics, the frequen-

cies of transitory and permanent bidders submitting bids as well as the expected value of the actual bidders’

characteristics conditional on a set of permanent potential bidders, country group for transitory bidders, and

country, reputation score, and quality group for permanent bidders to their theoretical counterparts. We include

a separate moment for each of the five most frequent configurations of the set of permanent actual bidders.

We estimate the distribution of transitory sellers’ bids and their probability of participation separately, instead

of working with the composite function gk(.) described in Section 6. That is why we include the second type of

moments in addition to the probability-of-winning moments. More specifically, we rely on exclusion restrictions

in order to separate the product of bid density and participation probability into individual components. We

condition moments of type two on the country group of transitional sellers while restricting the coefficient that

captures the effect of the number of scores or current average reputation score to be constant across countries.

Therefore, the differences in the moments across country groups reveal the dependence of bidding or participation

strategies on the bidder’s own quality, since the distributions of qualities differ across country groups.

34For definition see section 6.
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An alternative identification strategy relies on the expected profit conditions that summarize the optimal

participation decision of transitory bidders. These conditions impose the restriction that in equilibrium only

potential bidders with entry costs below the ax-ante expected profit value should participate. In our setting,

re-computing the expected profit values at each iteration is very costly. That is why we opted for the exclusion

restriction channel of identification. However, this alternative estimation approach is also feasible. We were able

to obtain a set of coefficients using such an alternative estimation strategy. They are very similar to the set of

estimates we report in the paper.

Additional Figures and Tables

Table 9: Estimated Quality Structure for a Given Number of Groups

Number of

Groups K = 1 K = 2 K = 3 K = 4 K = 5 K = 6

1 52 45 33 2 2 2
2 0 7 12 31 26 24
3 0 0 7 12 5 2
4 0 0 0 7 12 5
5 0 0 0 0 7 12
6 0 0 0 0 0 7

V̄ 9.21 2.61 1.77 0.85 0.73 0.31
Q(K) 10.03 4.22 4.11 4.24 4.81 5.22

This table shows the estimated quality group structures for the various numbers of quality groups for Eastern

European suppliers with the medium levels of average reputation score. Rows 1-6 record the number of suppliers

estimated to belong to a respective group. Rows 7 and 8 record the value of the p − value component of

the criterion function and the value of the criterion function. The results are based on the penalty function

g(L) = log(log(L)). Results indicate that the number of groups most supported by the data is equal to three.
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Figure 5: Probability of Winning
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The graph is for Eastern European sellers, with the medium level of reputation score, and of medium quality.
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Table 10: Participation Decision and Bid Distributions: Competitive Effects

I(T) II(T) I(P) II(P)

North America, low, 1 0.021 (0.017) 0.021 (0.013) 0.003 (0.002) 0.011∗∗ (0.005)

North America, low, 2 0.011 (0.012) 0.015 (0.012) -0.005 (0.003) 0.011∗∗ (0.004)

North America, medium, 1 -0.023∗∗ (0.011) -0.089∗∗ (0.011) -0.002 (0.002) -0.004 (0.004)

North America, medium, 2 -0.015∗ (0.008) -0.031∗∗ (0.015) -0.004∗∗ (0.002) -0.007∗ (0.003)

North America, high, 1 0.052 (0.031) 0.001 (0.0078) -0.007∗∗ (0.002) -0.012∗∗ (0.003)

North America, high, 2 -0.026∗∗ (0.012) -0.085∗∗ (0.021) -0.008∗∗ (0.003) -0.016∗∗ (0.004)

Eastern Europe, low, 1 -0.005 (0.011) 0.001 (0.007) -0.001 (0.002) 0.002 (0.005)

Eastern Europe, low, 2 -0.007∗∗ (0.002) -0.025∗∗ (0.012) -0.005∗ (0.0026) -0.009∗∗ (0.0026)

Eastern Europe, medium, 1 -0.005 (0.003) -0.007 (0.004) -0.003∗ (0.001) -0.007∗∗ (0.002)

Eastern Europe, medium, 2 0.034 (0.031) 0.016 (0.012) 0.002 (0.004) 0.001 (0.003)

Eastern Europe, medium, 3 -0.021∗∗ (0.011) -0.016 (0.015) 0.001 (0.002) -0.004 (0.004)

Eastern Europe, high, 1 -0.011 (0.012) -0.012 (0.017) -0.002 (0.003) -0.003 (0.005)

Eastern Europe, high, 2 0.008 (0.005) 0.007 (0.004) 0.001 (0.005) 0.003 (0.002)

Eastern Europe, high, 3 -0.007 (0.004) -0.011 (0.019) 0.002 (0.003) -0.0001 (0.003)

South-East Asia, low, 1 0.001 (0.011) -0.017∗ (0.003) -0.002∗ (0.001) -0.001 (0.001)

South-East Asia, low, 2 -0.003 (0.004) -0.004 (0.008) -0.008∗∗ (0.003) -0.019∗∗ (0.002)

South-East Asia, low, 2 -0.023∗∗ (0.011) -0.026∗∗ (0.011) -0.001 (0.002) 0.001 (0.003)

South-East Asia, medium, 1 -0.011 (0.012) -0.013 (0.011) -0.004 (0.003) -0.001 (0.005)

South-East Asia, medium, 2 -0.003 (0.011) -0.002 (0.011) -0.002 (0.002) -0.004∗∗ (0.001)

South-East Asia, medium, 3 0.023 (0.033) 0.015 (0.014) -0.001 (0.002) 0.007 (0.005)

South-East Asia, high, 1 -0.004 (0.003) -0.007 (0.004) -0.002∗ (0.001) 0.001 (0.001)

South-East Asia, high, 2 -0.024∗∗ (0.012) -0.039∗∗ (0.018) -0.004∗ (0.002) -0.007∗∗ (0.003)

This table reports the coefficients summarizing the impact of the various potential competitors on sellers’ bid

distribution and participation decisions. Columns I(T), II(T), and I(P), II(P) report estimated coefficients for

the bid distribution and the probability of participation of transitory and permanent sellers respectively. The

results are based on the data set consisting 11, 300 projects. The quality level for South and East Asia, low

score, Q = 1, is normalized to be equal to zero. The stars, ∗∗, indicate that a coefficient is significant at the 95%

significance level.
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Table 11: Costs Distributions: Mean and Standard Deviation

Variable Mean Std.Deviation

Project Costs

North America, low score, Q=1 1.039 0.053

North America, low score, Q=2 1.275 0.087

North America, medium score, Q=1 1.627 0.039

North America, medium score, Q=2 1.551 0.073

North America, high score, Q=1 1.135 0.053

North America, high score, Q=2 1.535 0.099

Eastern Europe, low score, Q=1 1.169 0.037

Eastern Europe, low score, Q=2 1.328 0.079

Eastern Europe, medium score, Q=1 1.576 0.119

Eastern Europe, medium score, Q=2 1.202 0.062

Eastern Europe, medium score, Q=3 1.531 0.101

Eastern Europe, high score, Q=1 1.575 0.119

Eastern Europe, high score, Q=2 0.981 0.048

Eastern Europe, high score, Q=3 1.354 0.089

South and East Asia, low score, Q=1 1.621 0.056

South and East Asia, low score, Q=2 1.119 0.051

South and East Asia, low score, Q=3 1.417 0.169

South and East Asia, medium score, Q=1 1.609 0.107

South and East Asia, medium score, Q=2 1.589 0.121

South and East Asia, medium score, Q=3 1.255 0.124

South and East Asia, high score, Q=1 1.074 0.036

South and East Asia, high score, Q=2 1.235 0.047

Entry Costs 0.082 0.081

This table summarizes means and standard errors of the estimated distributions of permanent sellers’ project

costs that are displayed in Figure 2.


