
Semiparametric Models with Single-Index Nuisance
Parameters

Kyungchul Song1

Department of Economics, University of British Columbia

August 3, 2012

Abstract

In many semiparametric models, the parameter of interest is identi�ed through

conditional expectations, where the conditioning variable involves a single-index

that is estimated in the �rst step. Among the examples are sample selection

models and propensity score matching estimators. When the �rst-step estimator

follows cube-root asymptotics, no method of analyzing the asymptotic variance of

the second step estimator exists in the literature. This paper provides nontrivial

su¢ cient conditions under which the asymptotic variance is not a¤ected by the

�rst step single index estimator regardless of whether it is root-n or cube-root

consistent. The �nding opens a way to simple inference procedures in these

models. Results from Monte Carlo simulations show that the procedures perform

well in �nite samples.
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1 Introduction

Many empirical studies use a number of covariates to deal with the problem of endogeneity.

Using too many covariates in nonparametric estimation, however, tends to worsen the quality

of the empirical results signi�cantly. A promising approach in this situation is to introduce a

single-index restriction so that one can retain �exible speci�cation while avoiding the curse

of dimensionality. The single-index restriction has long attracted attention in the literature.2

Most literatures deal with a single-index model as an isolated object, whereas empirical

researchers often need to use the single-index speci�cation in the context of estimating a

larger model. An example is a structural model in labor economics that requires a prior esti-

mation of components such as wage equations. When single-index components are nuisance

parameters that are plugged into the second step estimation of a �nite dimensional parame-

ter of interest, the introduction of single-index restrictions does not improve the convergence

rate of the estimated parameter of interest which already achieves the parametric rate of
p
n:

Nevertheless, the use of a single-index restriction in such a situation still has its own merits.

After its adoption, the model requires weaker assumptions on the nonparametric function

and on the kernel function. This merit becomes prominent when the nonparametric function

is de�ned on a space of a large dimension and stronger conditions on the nonparametric func-

tion and higher-order kernels are required. (See Hristache, Juditsky and Spokoiny (2001) for

more details.)

This paper focuses on semiparametric models, where the parameter of interest is identi�ed

through a conditional expectation function and the conditioning variable involves a single-

index with an unknown �nite dimensional nuisance parameter. We assume that there is

a consistent �rst step estimator of this nuisance parameter. In this situation, a natural

procedure is a two step estimation, where one estimates the single-index �rst, and uses it

2For example, Klein and Spady (1993) and Ichimura (1993) proposedM -estimation approaches to estimate
the single-index, and Stoker (1986) and Powell, Stock and Stoker (1989) proposed estimation based on average
derivatives. See also Härdle, Hall, and Ichimura (1993), Härdle and Tsybakov (1993), Horowitz and Härdle
(1996), Fan and Li (1996) and Hristache, Juditsky and Spokoiny (2001).
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to estimate the parameter of interest in the second step. Among the examples are sample

selection models and propensity score matching estimators. The examples will be discussed

in detail later.

A distinctive feature of the framework of this paper is that the �rst step estimator of

a single-index is allowed to be either
p
n-consistent or 3

p
n-consistent. The latter case of

3
p
n-consistent single index estimators is particularly interesting, for the framework includes

new models that have not been studied in the literature, such as the sample selection model

with conditional median restrictions, or propensity score matching estimators with condi-

tional median restrictions. These conditional median restrictions often lead to a substantial

relaxation of the existing assumptions that have been used in the literature.3

Dealing with the case of a nuisance parameter that follows cube-root asymptotics of Kim

and Pollard (1990) in two step estimation is challenging. In typical two step estimation, the

asymptotic variance of the second step estimator involves an additional term due to the �rst

step estimation of the single-index component (e.g. Newey and McFadden (1994).) Unless

this term is shown to be negligible, one needs to compute this additional term by �rst �nding

the asymptotic linear representation of the �rst step estimator. However, in the case of a �rst

step estimator that follows cube-root asymptotics, there does not exist such an asymptotic

linear representation.

The main contribution of this paper is to provide a set of conditions under which the �rst

step estimator, regardless of whether it is
p
n-consistent or 3

p
n-consistent, does not have an

impact on the asymptotic variance of the second step estimator. This result is convenient,

because under these conditions, one can simply compute the asymptotic variance as if one

knows the true nuisance parameter in the single-index.

3For example, the semiparametric sample selection model in Newey, Powell and Walker (1990) assumes
that the error term in the selection equation is independent of observed covariates. Also, parametric speci-
�cations of propensity scores in the literature of program evaluations (such as logit or probit speci�cations)
assume that the error term in the program participation equation is independent of observed covariates.
(See Heckman, Ichimura, Smith and Todd (1998) for example.) In these situations, the assumption of the
conditional median restriction is a weaker assumption because it allows for stochastic dependence between
the error term and the observed covariates.
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The result of this paper is based on a recent �nding by the author (Song (2012)) which

o¤ers generic conditions under which conditional expectation functionals are very smooth.

This smoothness is translated in our situation into insensitivity of the parameter of interest

at a local perturbation of the single-index nuisance parameter.

To illustrate the usefulness of the result, this paper applies it to new semiparametric

models such as semiparametric sample selection models with conditional median restrictions,

and single-index matching estimators with conditional median restrictions. This paper o¤ers

procedures to obtain estimators and asymptotic variance formulas for the estimators.

This paper presents and discusses results from Monte Carlo simulation studies. The

main focus of these studies lies on whether the asymptotic negligibility of the �rst step

estimator�s impact remains in force in �nite samples. For this, it is investigated whether

the estimators and the con�dence sets based on the proposed asymptotic covariance matrix

formula performs reasonably well in �nite samples. Simulation results demonstrate clearly

that they do so.

The main result of this paper is closely related to the literature of so-called generated

regressors in nonparametric or semiparametric models. For example, Newey, Powell, and

Vella (1999) and Das, Newey, and Vella (2003) considered nonparametric estimation of si-

multaneous equation models. Li and Wooldridge (2002) analyzed partial linear models with

generated regressors when the estimated parameters in the generated regressors are
p
n-

consistent. Rilstone (1996) and Sperlich (2009) studied nonparametric function estimators

that involve generated regressors. Recent contributions by Hahn and Ridder (2010) and

Mammen, Rothe, and Schienle (2012) o¤er a general analysis of the issue with generated

regressors in nonparametric models. None of these papers considered generated regressors

with coe¢ cient estimators that follow cube-root asymptotics.

The paper is organized as follows. The paper de�nes the scope, introduces examples,

and explains the main idea of this paper in the next section. Then Section 3 presents

the formal result of the asymptotic distribution theory, and discusses their implications for
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exemplar models. Section 4 discusses Monte Carlo simulation results, and Section 5 presents

an empirical illustration based on a simple female labor supply model. Some technical proofs

are found in the Appendix.

2 The Scope, Examples, and the Main Idea

2.1 The Scope of the Paper

Let us de�ne the scope of the paper. Suppose that W � (W1; � � �;WL)
> 2 RL; S is a

dS � d' random matrix, and X 2 Rd is a random vector, where all three random quantities

W , S; and X, are assumed to be observable. We let X = [X>
1 ; X

>
2 ]
> 2 Rd1+d2 , where

X1 is a continuous random vector and X2 is a discrete random vector taking values from

fx1; � � �; xMg. Let � � Rd be the space of a nuisance parameter �0 that is known to be

identi�ed. Denote U� � F�(X
>�), where F� is the CDF of X>�. We assume that X>� is

a continuous random variable for all � in a neighborhood of �0. Given an observed binary

variable D 2 f0; 1g, we de�ne

��(U�) � E [W jU�; D = 1] ; (1)

and when � = �0, we simply write �0(U0), where U0 � F�0(X
>�0). The support of a random

vector is de�ned to be the smallest closed set in which the random vector takes values with

probability one. For m = 1; � � �;M , let Sm be the support of X1fX2 = xm; D = 1g. and

SW be the support of W , and let ' : SW ! Rd' be a known map that is twice continuously

di¤erentiable with bounded derivatives on the interior of the support of E[W jX;D = 1].

Then we de�ne a map a : �! RdS by

a(�) � E [S � '(��(U�))jD = 1] ; � 2 �. (2)
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The general formulation admits the case without conditioning on D = 1 in which case it

su¢ ces to put D = 1 everywhere.

This paper focuses on semiparametric models where the parameter of interest, denoted

by �0; is identi�ed as follows:

�0 = H(a(�0); b0); (3)

where H : RdS � Rdb ! Rd� is a map that is fully known, continuously di¤erentiable in

the �rst argument, and b0 is a db dimensional parameter that does not depend on �0 and is

consistently estimable. We will see examples of �0 shortly.

Throughout this paper, we assume that there is an estimator �̂ for �0 which is either
p
n-consistent or 3

p
n-consistent. A natural estimator of �0 is obtained by

�̂ � H(â(�̂); b̂);

where â(�) is an estimator of a(�) and b̂ is a consistent estimator of b0. The estimator â(�) can

be obtained by using nonparametric estimation of conditional expectation E [W jU�; D = 1].

For future reference, we denote

~� � H(â(�0); b̂);

an infeasible estimator using �0 in place of �̂. When �̂ is 3
p
n-consistent, it is not clear whether

p
n(�̂ � �) will be asymptotically normal. In fact, it is not even clear whether �̂ will be

p
n-consistent.

The main contribution of this paper is to provide conditions under which, whenever

�̂ = �0 +OP (n
�1=3) and

p
n(~� � �0)

d! N(0; V ); (4)

it follows that
p
n(�̂ � �0)

d! N(0; V ):

This result is very convenient, because the computation of the asymptotic variance matrix
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V in (4) can be done, following the standard procedure.

2.2 Examples

2.2.1 Example 1: Sample Selection Models with Conditional Median Restric-

tions

Let Y � be an outcome variable which is related to Z 2 RdZ ; a vector of covariates, as follows:

Y � = Z>�0 + v,

where v denotes an unobserved factor that a¤ects the outcome. The econometrician observes

Y � only when a selection indicator D 2 f0; 1g assumes number one, so that as for observed

outcome Y , we write

Y = Y � �D:

This paper speci�es D as follows:

D = 1fX>�0 > "g; (5)

where " is an unobserved component, and �0 2 Rd an unknown parameter.

Sample selection models and their inference procedures have been extensively studied

in the literature. The early generation of these models impose parametric distributional

assumptions on the unobserved components (Heckman (1974)). Gallant and Nychka (1987),

Cosslett (1990) and many others (e.g. Newey, Powell, and Walker (1990), and Das, Newey

and Vella (1999)) analyzed semiparametric or nonparametric models that do not require

parametric distributional assumptions. A common feature for these various models is the

7



following assumption:4

" is independent of X: (6)

Condition (6) is mainly used to identify �0 through a single-index restriction E[DjX] =

E[DjX>�0] or a parametric restriction E[DjX] = F (X>�0) for some known CDF F . De�ne

for � in a neighborhood of �0;

SZZ(�) � E
�
ZZ>jD = 1

�
� E

�
Z � E[Z>jU�; D = 1]jD = 1

�
and

SZY (�) � E[ZY jD = 1]� E [Z � E[Y jU�; D = 1]jD = 1] :

We consider the following assumptions.

Assumption SS0 : (i) ("; v) is conditionally independent of Z given X>�0.

(ii) Med("jX) = 0; a.e., where Med("jX) denotes the conditional median of " given X.

(iii) The smallest eigenvalue of SZZ(�) is bounded away from zero uniformly over � in a

neighborhood of �0:

Assumption SS0(i) is a form of an index exogeneity condition. Such an assumption has

been used in various forms in the literature (e.g. Powell (1994).) The distinctive feature of

this model stems from Assumption SS0(ii) which substantially relaxes Condition (6). The

relaxation allows the individual components of X and " to be stochastically dependent.

Assumption SS0(iii) is slightly stronger than the usual condition that SZZ(�0) is invertible.

Under Assumptions SS0(i) and (iii), we can write the equation for observed outcomes as

a partial linear regression model, and follow Robinson (1988) to identify �0 as

�0 = S�1ZZ(�0) � SZY (�0);

once �0 is identi�ed. To see that this �0 is a special case of (3), let 12 be a 2 � 1 vector of
4An exception to this assumption is Chen and Khan (2003) who considered semiparametric sample selec-

tion models with conditional heteroskedasticity, and proposed a three-step estimation procedure.
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ones, S = 12
Z, (the notation 
 represents the Kronecker product of matrices) and de�ne

W = [Y ;Z>], �(U�) = E[W jU�; D = 1],

a(�) = E [S � '(�(U�))jD = 1] ; and

b0 = E [S �W jD = 1] ;

where ' : RdZ+1 ! RdZ+1 is an identity map. Note that a(�) and b0 are 2dZ � (dZ + 1)

matrices. Furthermore, b0 does not depend on �. Given 2dZ � (dZ +1) matrices a and b, we

denote a22 and b22 to be the dZ � dZ lower-right sub-blocks of a and b; and denote a11 and

b11 to be the dZ � 1 upper-left sub-blocks of a and b. Then de�ne

H(a; b) = (b22 � a22)
�1(b11 � a11);

whenever b22 � a22 is invertible. We can reformulate the identi�cation result as follows:

�0 = H(a(�0); b0);

which shows that �0 is a special case of (3).

2.2.2 Example 2: Single-Index Matching Estimators of Treatment E¤ects on

the Treated

Among various estimators of treatment e¤ects used in the studies on program evaluations,

matching estimators have been widely studied and used. (See Dehejia and Wahba (1998) and

Heckman, Ichimura and Todd (1997, 1998) and references therein for matching methods in

general.) While many studies of econometric methodologies use nonparametric speci�cation

of the propensity score (e.g. Hahn (1998), Hirano, Imbens and Ridder (2003)), a single-index

restriction on the propensity score can be useful in avoiding curse of dimensionality.

When the propensity score is speci�ed by logit or probit assumptions, the propensity
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score is strictly increasing in the single-index. In general, when the propensity score satis�es

a single-index restriction and is a strictly increasing function of the single-index, identi�ca-

tion of the average treatment e¤ects on the treated through propensity score matching is

equivalent to the identi�cation through single-index matching, because the �-�eld generated

by the propensity score is the same as that generated by the single-index.

In the current example, we develop what this paper calls a single-index matching esti-

mator. The main merit of the single-index matching estimators is that the estimator does

not require a parametric distributional assumption on the propensity score, while avoiding

the curse of dimensionality. The distinctive feature of the estimator as a result of this pa-

per�s framework is that the single-index component is allowed to be estimable only at the

cube-root rate. Such a case is relevant when the assumption of independence between the

observed component and the unobserved component in the propensity score is relaxed into

the assumption of conditional median independence.

Let Y1 and Y0 be potential outcomes of treated and untreated individuals and Z 2 f0; 1g

the treatment status, where Z = 1 for the status of treatment and Z = 0 for the status

of non-treatment.5 The parameter of interest is �0 = E[Y1 � Y0jZ = 1]; i.e., the treatment

e¤ect on the treated. We assume that X is a vector of covariates in Rd and

Z = 1
�
X>�0 � "

	
;

where " denotes the unobserved factor that a¤ects the treatment status, and �0 is an unknown

parameter. De�ne U� = F�(X
>�), where F� is the CDF of X>� and is assumed to be

strictly increasing, and we write simply U0 = U�0. We also de�ne the propensity score

P (U�) = PfZ = 1jU�g.

Assumption SM0 : (i) E[Y0jU0; Z = 0] = E[Y0jU0; Z = 1]:

(ii) There exists � > 0 such that � � P (U0) � 1� �:

5The common notation for the treatment status is D, but the treatment status does not play the same
role as D in (1). Hence we choose a di¤erent notation, Z, here.
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(iii) Med("jX) = 0.

The �rst condition in Assumption SM0(i) is weaker than the unconfoundedness assump-

tion, i.e., the assumption of conditional independence between (Y1; Y0) and Z given U0, and as

noted by Heckman, Ichimura, and Todd (1997), this assumption together with Assumption

SM0(ii) su¢ ces for identi�cation of the average treatment e¤ect on the treated. Assump-

tion SM0(ii) requires that the propensity score is away from 0 and 1. The new feature of

the model is Assumption SM0(iii) which says that the conditional median of the observed

component in the propensity score is zero once X is conditioned on. This condition is much

weaker than the common assumption that " and X are independent.

Under Assumption SM0, we can identify �0 as follows:

�0 = E [Y1 � E[Y0jU0; Z = 0]jZ = 1] : (7)

It is not immediately seen that �0 can be written in the form of (3), because the conditioning

on Z = 0 in the inner conditional expectation is di¤erent from the conditioning on Z = 1 in

the outer conditional expectation. To write it in the form of (3), rewrite �0 as

E [Y Z]

PfZ = 1g �
1

PfZ = 1g � E
�
Z � E[Y (1� Z)jU0]

1� P (U0)

�
;

where Y � ZY1+(1�Z)Y0 is an observable quantity. De�neW = [Y (1�Z); Z]>, and write

��(U�) = E[W jU�]. Let

b0 =

264 E [Y Z] =PfZ = 1g
1=PfZ = 1g

375 , and a(�) = E [Z' (��(U�))] ;
where ' : R � (0; 1) ! R is de�ned to be '(x; z) = x=(1� z) for (x; z) 2 R � (0; 1). Note

that b0 does not depend on �: Let H : R�R2 ! R be de�ned as H(a; b) = b1� b2 � a, where

a 2 R and b = [b1; b2]> 2 R2. Then, we can write �0 = H (a(�0); b0) ; i.e., in the form of (3)
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with D there simply replaced by 1.

2.3 A Heuristic Summary of the Main Idea

As previously mentioned, the main contribution of this paper is to provide nontrivial su¢ -

cient conditions under which the �rst step estimator error of �̂ does not a¤ect the asymptotic

distribution of �̂, regardless of whether �̂ is
p
n-consistent or 3

p
n-consistent. The develop-

ment is based on the �nding due to Song (2012) that under regularity conditions that are to

be made precise later, the function a(�) de�ned in (2) is very smooth in � in a neighborhood

of �0. More speci�cally, under regularity conditions, there exist C > 0 and " 2 (0; 1=2] such

that for each � 2 (0; "];

sup
�2B(�0;�)

ka(�)� a(�0)k � C�2; (8)

where B(�0; �) denotes the �-ball around �0, i.e., B(�0; �) � f� 2 � : jj� � �0jj < �g. The

novel feature of the above bound lies in the fact that the exponent of � is 2 (not 1), which

says that the map a is very smooth in a neighborhood of �0.

To see how this result serves our purpose, we write

jj�̂ � ~�jj = jjH(â(�̂); b̂)�H(â(�0); b̂)jj � Cjjâ(�̂)� â(�0)jj+ oP (1);

by the continuous di¤erentiability of map H. As for the last term, observe that

â(�̂)� â(�0) = â(�̂)� a(�̂)� fâ(�0)� a(�0)g

+a(�̂)� a(�0)

� An +Bn; say.

As long as jj�̂ � �0jj = oP (1), the term An can be shown to be oP (1=
p
n) using the stan-

dard arguments of stochastic equicontinuity. As for Bn, the result in (8) implies that with
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probability approaching one,

jja(�̂)� a(�0)jj � sup
�2�:jj���0jj��n

ka(�)� a(�0)k � C�2n; for some C > 0; (9)

if jj�̂ � �0jj � �n with probability approaching one. If �̂ = �0 + OP (n
�1=3), we �nd that by

taking �n = n�1=3 log n, the left-end term of (9) is oP (1=
p
n). Therefore, we conclude that

jj�̂ � ~�jj = oP (1=
p
n):

This implies that if
p
n(~���0) has an asymptotic normal distribution, the quantity

p
n(�̂�

�0) has the same asymptotic normal distribution.

To see intuition behind (8), we �rst let d' = L = 1, ' be an identity map, and D = 1

for simplicity. Then for � in a neighborhood of �0, a(�)� a(�0) is written as

E [S � fE[W jU�]� E[W jU0]g]

= E [E[SjU�; U0] � fE[W jU�]� E[W jU�; U0]g]

+E [E[SjU�; U0] � fE[W jU�; U0]� E[W jU0]g]

= E [fE[SjU�; U0]� E[SjU�]g � fE[W jU�]� E[W jU�; U0]g]

+E [fE[SjU�; U0]� E[SjU0]g � fE[W jU�; U0]� E[W jU0]g] :

The last equality uses the law of iterated conditional expectations. Therefore, by Cauchy-

Schwarz inequality, we �nd that

ja(�)� a(�0)j �
p
E(E[SjU�; U0]� E[SjU�])2

p
E(E[W jU�]� E[W jU�; U0])2

+
p
E(E[SjU�; U0]� E[SjU0])2

p
E(E[W jU�; U0]� E[W jU0])2:
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Once we show that for some C > 0;

E(E[SjU�; U0]� E[SjU�])2 � Cjj� � �0jj2, (10)

and so on, we obtain the result of (8). However, �nding the bound in (10) is a nontrivial

task. (See Song (2012) for details.) 6

3 Inference and Asymptotic Theory

3.1 General Asymptotic Theory

Let us consider an estimation method of �̂. Instead of putting forth high level conditions,

we choose a speci�c estimator �̂ and provide low level conditions. Suppose that we are given

an estimator �̂ of �0 such that �̂ = �0 + OP (n
�1=3) (Assumption C2 below). Assume that

f(Xi;Wi; Si; Di)gni=1 is a random sample from the joint distribution of (X;W; S;D). Let

Ûk � 1
n

Pn
i=1 1fX>

i �̂ � X>
k �̂g and de�ne

�̂(Ûk) �
Pn

i=1DiWiKh(Ûi � Ûk)Pn
i=1DiKh(Ûi � Ûk)

;

as an estimator of �0(U0), where Kh(u) � K(u=h)=h; K : R ! R is a kernel function,

and h is a bandwidth parameter. The estimator is a symmetrized nearest neighborhood

(SNN) estimator. Symmetrized nearest neighborhood estimation is a variant of nearest

neighborhood estimation originated by Fix and Hodges (1951), and analyzed and expanded

by Stone (1977). Robinson (1987) introduced k-nearest neighborhood estimation in semi-

parametric models in the estimation of conditional heteroskedasticity of unknown form. The

symmetrized nearest neighborhood estimation that this paper uses was proposed by Yang

(1981) and further studied by Stute (1984).

6The heuristics here uses the assumption that ' is a linear map. When ' is nonlinear yet twice continu-
ously di¤erentiable, we can linearize it to obtain a similar bound. (See Song (2012) for details.)
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De�ne

â(�̂) � 1Pn
i=1Di

nX
i=1

DifSi � '(�̂(Ûi))g. (11)

The estimator â(�̂) is a sample analogue of a(�0), where the conditional expectations are

replaced by the nonparametric estimators and unconditional expectations by the sample

mean.

Suppose that we are given a consistent estimator b̂ of b0 (Assumption G1(iii) below).

Then, our estimator takes the following form:

�̂ = H(â(�̂); b̂): (12)

We make the following assumptions. The assumptions are divided into two groups. The �rst

group of assumptions (denoted by Assumptions C1-C3) are commonly assumed throughout

the examples when we discuss them later. On the other hand, the second group of assump-

tions (denoted by Assumptions G1-G2) are the ones for which su¢ cient conditions will be

provided later when we discuss the examples.

Assumption C1 : (i) For some " > 0, PfD = 1jU0 = ug > " for all u 2 [0; 1].

(ii) There exists " > 0 such that for each � 2 B(�0; "); (a) X>� is continuous and its

conditional density function givenD = 1 is bounded uniformly over � 2 B(�0; ") and bounded

away from zero on the interior of its support uniformly over � 2 B(�0; "), and (b) the set

fx0� : � 2 B(�0; "); x 2 Smg is an interval of �nite length for all 1 � m �M .

Assumption C2 : jj�̂ � �0jj = OP (n
�1=3):

Assumption C3 : (i) K(�) is bounded, nonnegative, symmetric, compact supported, twice

continuously di¤erentiable with bounded derivatives on the interior of the support, andR
K(t)dt = 1.

(ii) n1=2h3 + n�1=2h�2(� log h)! 0:
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Assumption C1(ii)(a) excludes the case where �0 = 0. Assumption C1(ii)(b) is satis�ed

when Sm is bounded and convex. We can weaken Assumption C1(ii) by replacing it with

certain tail conditions of X or X>� at the expense of a more complicated exposition. As-

sumption C2 allows �̂ to be either
p
n-consistent or 3

p
n-consistent. Assumption C3 concerns

the kernel and the bandwidth. Assumption C3(i) is satis�ed, for example, by a quartic

kernel: K(u) = (15=16)(1� u2)21fjuj � 1g:

Assumption G1 : (i) For p � 4; supx2SXE [jjW jjpjX = x] +supx2SXE [jjSjjpjX = x] <1:

(ii) (a) ' is twice continuously di¤erentiable on the interior of the support of E[W jX] with

derivatives bounded on the support of E[W jX], and (b) there exists � > 0 such that for all b 2

B(b0; �), H(�; b) is continuously di¤erentiable at a = a(�0) and the derivative @H(a; b)=@a is

continuous at (a(�0); b0).

(iii) b̂ = b0 + oP (1):

Assumption G2 : (i) For each m = 1; � � �;M; both E[SjX1 = �; (X2; D) = (xm; 1)] and

E[W jX1 = �; (X2; D) = (xm; 1)] are Lipschitz continuous.

(ii) E[W jU� = �] is twice continuously di¤erentiable with derivatives bounded uniformly over

� 2 B(�0; ") with some " > 0:

Assumption G1(i) requires moment conditions with p � 4. Assumption G1(ii) is easy to

check, because ' is explicitly known in many examples. Assumption G1(iii) requires that b̂

be a consistent estimator of b0. As we will see from the examples, a
p
n-consistent estimator

for b0 is typically available. The smoothness conditions in Assumptions G2(i) and (ii) are

often used in the literature of nonparametric estimation.

Theorem 1: Suppose that Assumptions C1�C3 and G1-G2 hold and that
p
n(~� � �)

d!

N(0; V ) for some positive de�nite matrix V . Then

p
n(�̂ � �)

d! N(0; V ):
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Remarks 1 : The asymptotic covariance matrix V in Theorem 1 is the same asymptotic

covariance matrix that one would have obtained had �0 been used instead of �̂. Therefore,

the estimation error in �̂ does not a¤ect the asymptotic distribution of �̂. When the nuisance

parameter estimator �̂ is
p
n-consistent, such a phenomenon has been observed to arise in

other contexts (e.g. Song (2009)). To the best of the author�s knowledge, there has not been

a literature that shows a similar phenomenon even when �̂ is n1=3-consistent.

2: The computation of V such that
p
n(~� � �)

d! N(0; V ) can be done using the standard

procedure. (e.g. Newey and McFadden (1994)). Section 3.2 below derives the asymptotic

covariance matrix V for the examples in Section 2.2. For the derivation, one does not need

to rely on the form (3). Writing �0 into the form (3) is done only to ensure that Theorem 1

is applicable.

3: The proof of Theorem 1 uses a Bahadur representation of sample linear functionals of

SNN estimators that is established in the appendix. In fact, the representation can also be

used to derive the asymptotic covariance matrix V , and is useful in various speci�cation tests

or estimation for semiparametric models.

4: Theorem 1 implies that there exists a simple bootstrap procedure for �̂ that is asymptoti-

cally valid, even if the �rst-step estimator �̂ follows cube-root asymptotics. This is interesting

given that nonparametric bootstrap fails for �̂. (Abrevaya and Huang (2005)). Since there is

no clear advantage of using this bootstrap over the asymptotic covariance matrix of Theorem

1, this paper omits the details.

3.2 Examples Revisited

In this section, we revisit the examples discussed in Section 2.2. In each example, we �rst

provide su¢ cient conditions that yield Assumptions G1-G2. (Recall that Assumptions C1-

C3 are made commonly in these examples.) Then we show how we construct an estimator
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of �0 in detail. Finally, we present the asymptotic distribution of �̂ along with the explicit

asymptotic covariance matrix formula.

3.2.1 Example 1: Sample Selection Models with Conditional Median Restric-

tions

In this example, Assumptions G1-G2 are translated into the following conditions.

Assumption SS1 : For p � 4; supx2SXE [jY jpjX = x] + supx2SXE [jjZjjpjX = x] <1.

Assumption SS2 : (i) For each m = 1; � � �;M; both E[Y jX1 = �; (X2; D) = (xm; 1)] and

E[ZjX1 = �; (X2; D) = (xm; 1)] are Lipschitz continuous.

(ii) E[Y jU� = �] and E[ZjU� = �] are twice continuously di¤erentiable with derivatives

bounded uniformly over � 2 B(�0; ") with some " > 0:

Since ' that constitutes a(�) is an identity map in this example, Assumption G1(ii)(a)

is already ful�lled by Assumptions SS1 and SS2(ii).

Let us consider an estimator of �0 in the sample selection models in Example 1. With

Ûk as de�ned previously, let

�̂Y (Ûk) �
Pn

i=1DiYiKh(Ûi � Ûk)Pn
i=1DiKh(Ûi � Ûk)

and �̂Z(Ûk) �
Pn

i=1DiZiKh(Ûi � Ûk)Pn
i=1DiKh(Ûi � Ûk)

. (13)

Using �̂Y (Ûk) and �̂Z(Ûk), we de�ne

ŜZZ � 1Pn
i=1Di

nX
i=1

(Zi � �̂Z(Ûi))(Zi � �̂Z(Ûi))
>Di and

ŜZY � 1Pn
i=1Di

nX
i=1

(Zi � �̂Z(Ûi))(Yi � �̂Y (Ûi))Di;

which are estimated versions of SZZ(�0) and SZY (�0). An estimator of �0 is given by

�̂ � Ŝ�1ZZ � ŜZY : (14)
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This is the estimator proposed by Robinson (1988), except that we have a single-index in

the conditional expectations. We also let ~� be �̂ except that �̂ is replaced by �0.

Suppose that Assumptions C1�C3 and SS1-SS2 hold and that
p
n(~� � �0)

d! N(0; VSS)

for some positive de�nite matrix VSS. Then by Theorem 1,

p
n(�̂ � �0)

d! N(0; VSS):

The computation of VSS can be done in a standard manner. Under regularity conditions, the

asymptotic variance VSS takes the following form: VSS = S�1ZZ(�0)
S
�1
ZZ(�0) with �

2(U0) �

V ar(vjU0; D = 1);


 � E
�
�2(U0)(Z � E[ZjD = 1; U0])(Z � E[ZjD = 1; U0])

>jD = 1
�
=P1:

The derivation can be obtained by using the Bahadur representation in the appendix (Lemma

B3).

3.2.2 Example 2: Single-Index Matching Estimators of Treatment E¤ects on

the Treated

We introduce translations of Assumptions G1-G2 in this example.

Assumption SM1 : For p � 4; supx2SXE [jY jpjX = x] <1:

Assumption SM2 :(i) For each m = 1; � � �;M; both PfZ = 1jX1 = �; X2 = xmg and

E[Y jX1 = �; X2 = xm] are Lipschitz continuous.

(ii) PfZ = 1jU� = �g and E[Y jU� = �] are twice continuously di¤erentiable with derivatives

bounded uniformly over � 2 B(�0; ") with some " > 0:

To construct an estimator of the average treatment e¤ect on the treated based on the
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single-index matching, we �rst de�ne

�̂(1�Z)Y (Ûk) �
Pn

i=1(1� Zi)YiKh(Ûi � Ûk)Pn
i=1Kh(Ûi � Ûk)

and

P̂ (Ûk) �
Pn

i=1 ZiKh(Ûi � Ûk)Pn
i=1Kh(Ûi � Ûk)

:

Then, the sample analogue principle suggests

�̂ =
1Pn
i=1 Zi

nX
i=1

Zi

(
Yi �

�̂(1�Z)Y (Ûk)

1� P̂ (Ûk)

)
:

If we de�ne

�̂(Ûk) =

Pn
i=1(1� Zi)YiKh(Ûi � Ûk)Pn
i=1(1� Zi)Kh(Ûi � Ûk)

;

we can rewrite the estimator as

�̂ =
1Pn
i=1 Zi

nX
i=1

ZifYi � �̂(Ûk)g:

This takes precisely the same form as the propensity score matching estimators of Heckman,

Ichimura, and Todd (1998), except that instead of propensity score matching, the estimator

uses single-index matching.

As before, we let ~� be �̂ except that �̂ is replaced by �0. Suppose that Assumptions

C1�C3 and SM1-SM2 hold and that
p
n(~� � �0)

d! N(0; VSM) for some positive de�nite

matrix VSM . Then, by Theorem 1,

p
n(�̂ � �0)

d! N(0; VSM):

Under regularity conditions, the asymptotic variance VSM takes the following form: with
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�d(U0) = E[Y jU0; Z = d] and Pd = PfZi = dg for d 2 f0; 1g;

VSM = E
�
(Y � �1(U0))

2 jZ = 1
�
=P1

+E
�
(Y � �0(U0))

2 P 2(U0)=(1� P (U0))
2jZ = 0

�
(1� P1)=P

2
1

+V ar (�1(U0)� �0(U0)jZ = 1) =P1:

4 A Monte Carlo Simulation Study

In this section, we present and discuss some Monte Carlo simulation results. We consider

the following data generating process. Let

Zi = U1i � (�1i=2)1 and Xi = U2i � �i=2;

where U1i is an i.i.d. random vector in R3 constituted by independent random variables with

uniform distribution on [0; 1], 1 is a 3 dimensional vector of ones, U2i and �i are random

vectors in Rk with entries equal to i.i.d. random variables of uniform distribution on [0; 1]:

The dimension k is chosen from f3; 6g: The random variable �1i is the �rst component of

�i: Then, the selection mechanism is de�ned as

Di = 1fX>
i �0 + "i � 0g;

where "i follows the distribution of Ti � '(X>
i �0) + ei, with ei � N(0; 1), and Ti and '(�) are

chosen as follows:

Speci�cation AN: Ti � N(0; 1); ' = 2�(z2 + jzj)

Speci�cation AT: Ti � t1; ' = 2�(z
2 + jzj);

Speci�cation BN: Ti � N(0; 1) + ei; ' = exp(z � 1)

Speci�cation BT: Ti � t1 + ei; ' = exp(z � 1);
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where t1 denotes the t-distribution with degree of freedom 1 and � denotes the standard

normal CDF.

Hence the selection mechanism has errors that are conditionally heteroskedastic, and in

the case of DGPs with AT and BT, heavy tailed. We de�ne the latent outcome Y �
i as follows:

Y �
i = Z>i �0 + vi;

where vi � (2� i + ei) � 2�
�
(X>

i �0)
2 + jX>

i �0j
�
and � i � N(0; 1) independent of the other

random variables. Therefore, vi in the outcome equation and "i in the selection equation are

correlated, so that the data generating process admits the sample selection bias. We set �0

to be the vector of 2�s and �0 = [2; 2; 2]
>: In the simulation studies we estimated �0 by using

the maximum score estimation to obtain �̂.

We compare the performances of the two estimators of �0, �̂(�̂) ("Plug-in �̂") and �̂(�0)

("Plug-in �0") in terms of mean absolute deviation (MAE) and mean squared error (MSE).

Bandwidths for the estimation of E[YijX>
i �0; Di = 1] and E[ZijX>

i �0; Di = 1] were chosen

separately using a least-squares cross-validation method. If the role of the sample selection

bias were already marginal, the estimation error e¤ect of �̂ would be small accordingly,

preventing us from discerning the negligibility of the estimation error e¤ect of �̂ from the

negligible sample selection bias. Hence, we also report the results from the estimation of �

that ignores the sample selection bias (w/o BC:Without (Sample Selection) Bias Correction).

Table 1 reports the average of MAEs and MSEs of estimators for the individual com-

ponents of �0. It shows that the performance of the estimators remains similar regardless

of whether �0 is used or �̂ is used. When the sample size is increased from 300 to 500, the

estimators perform better as expected. The negligibility of the e¤ect of the estimation error

in �̂ is not due to inherently weak sample selection bias, as it is evident when we compare

the results with those from the estimators that ignore the sample selection bias (w/o BC).
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Table 1: The Performance of the Estimators in Terms of MAE and RMSE (Speci�cation A)

k = 3 k = 6

Speci�cation Plug-in �0 Plug-in �̂ w/o BC Plug-in �0 Plug-in �̂ w/o BC
Spec. AN MAE 0.6911 0.6909 0.7837 0.6458 0.6453 0.6436

n = 300 RMSE 2.2533 2.2539 2.8485 1.9634 1.9621 1.9479
Spec. AT MAE 0.7345 0.7351 0.7729 0.6913 0.6918 0.6739

RMSE 2.5437 2.5457 2.7955 2.2408 2.2446 2.1316
Spec. AN MAE 0.5327 0.5328 0.6717 0.4965 0.4966 0.5122

n = 500 RMSE 1.3428 1.3432 2.0406 1.1615 1.1620 1.2270
Spec. AT MAE 0.5658 0.5654 0.6360 0.5308 0.5310 0.5316

RMSE 1.5154 1.5134 1.8833 1.3256 1.3263 1.3318
Spec. AN MAE 0.3766 0.3765 0.5765 0.3475 0.3475 0.3880

n = 1000 RMSE 0.6693 0.6696 1.4206 0.5707 0.5707 0.6993
Spec. AT MAE 0.3981 0.3980 0.5182 0.3734 0.3734 0.3982

RMSE 0.7455 0.7449 1.2094 0.6570 0.6572 0.7368

Table 2: The Performance of the Estimators in Terms of MAE and RMSE (Speci�cation B)

k = 3 k = 6

Speci�cation Plug-in �0 Plug-in �̂ w/o BC Plug-in �0 Plug-in �̂ w/o BC
Spec. BN MAE 0.6707 0.6710 1.4572 0.7017 0.7020 1.4565

n = 300 RMSE 2.1182 2.1211 8.0981 2.3237 2.3277 8.1755
Spec. BT MAE 0.7209 0.7212 1.2461 0.7563 0.7561 1.2164

RMSE 2.4474 2.4489 6.3876 2.7029 2.7050 6.2357
Spec. BN MAE 0.5260 0.5260 1.4355 0.5504 0.5515 1.4331

n = 500 RMSE 1.2997 1.2990 7.2972 1.4298 1.4350 7.3290
Spec. BT MAE 0.5649 0.5649 1.1998 0.5867 0.5870 1.1574

RMSE 1.5078 1.5069 5.5043 1.6318 1.6338 5.2330
Spec. BN MAE 0.3870 0.3869 1.4258 0.4174 0.4184 1.4317

n = 1000 RMSE 0.7040 0.7040 6.6726 0.8148 0.8190 6.7706
Spec. BT MAE 0.4053 0.4052 1.1746 0.4230 0.4235 1.1291

RMSE 0.7721 0.7709 4.7835 0.8444 0.8469 4.5057

In Tables 3 and 4, the �nite sample coverage probabilities of the con�dence sets based

on the asymptotic normal distribution are reported. These tables report only the coverage

probabilities of the �rst component of the estimators of �0. The performance of the remaining

components was similar. In Table 3, the results were obtained from Speci�cation A, and in

Table 4, from Speci�cation B. Recall that Speci�cation B is associated with a more severe

selection bias than Speci�cation A as we saw from Tables 1-2.
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Table 3: The Performance of the Con�dence Intervals (Speci�cation A)

k = 3 k = 6

Speci�cation Nom. Cov. Prob. Plug-in �0 Plug-in �̂ Plug-in �0 Plug-in �̂
99% 0.9877 0.9881 0.9875 0.9877

Spec. AN 95% 0.9449 0.9444 0.9487 0.9468
n = 300 90% 0.8938 0.8930 0.8972 0.8947

99% 0.9858 0.9866 0.9871 0.9861
Spec.AT 95% 0.9416 0.9398 0.9429 0.9427

90% 0.8866 0.8878 0.8900 0.8900
99% 0.9886 0.9891 0.9879 0.9880

Spec. AN 95% 0.9480 0.9484 0.9456 0.9453
n = 500 90% 0.8988 0.8980 0.8957 0.8978

99% 0.9859 0.9864 0.9878 0.9883
Spec. AT 95% 0.9445 0.9449 0.9466 0.9472

90% 0.8940 0.8950 0.8935 0.8958
99% 0.9891 0.9884 0.9909 0.9910

Spec. AN 95% 0.9463 0.9468 0.9513 0.9508
n = 1000 90% 0.8956 0.8964 0.9030 0.9031

99% 0.9858 0.9862 0.9898 0.9899
Spec. AT 95% 0.9435 0.9447 0.9488 0.9474

90% 0.8953 0.8969 0.8993 0.9005

Table 4: The Performance of the Con�dence Intervals (Speci�cation B)

k = 3 k = 6

Speci�cation Nom. Cov. Prob. Plug-in �0 Plug-in �̂ Plug-in �0 Plug-in �̂
99% 0.9832 0.9829 0.9824 0.9823

Spec. BN 95% 0.9334 0.9340 0.9339 0.9345
n = 300 90% 0.8852 0.8837 0.8777 0.8796

99% 0.9851 0.9853 0.9833 0.9827
Spec.BT 95% 0.9382 0.9388 0.9377 0.9384

90% 0.8898 0.8903 0.8844 0.8851
99% 0.9834 0.9833 0.9809 0.9805

Spec. BN 95% 0.9353 0.9357 0.9295 0.9289
n = 500 90% 0.8825 0.8841 0.8770 0.8744

99% 0.9844 0.9844 0.9828 0.9826
Spec. BT 95% 0.9399 0.9402 0.9360 0.9363

90% 0.8829 0.8837 0.8838 0.8815
99% 0.9797 0.9794 0.9765 0.9770

Spec. BN 95% 0.9264 0.9276 0.9156 0.9143
n = 1000 90% 0.8679 0.8680 0.8511 0.8505

99% 0.9859 0.9858 0.9833 0.9830
Spec. BT 95% 0.9364 0.9367 0.9323 0.9310

90% 0.8811 0.8820 0.8760 0.8750

First, observe that the performances between the estimator using true parameter �0 and

the estimator using its estimator �̂ is almost negligible in �nite samples, as expected from

the asymptotic theory. This is true regardless of whether we use three or six covariates. In
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Speci�cation B, the con�dence sets tend to undercover the true parameter, as compared to

Speci�cation A. Nevertheless, the di¤erence in coverage probabilities between the estimator

using �0 and the estimator using �̂ is still very negligible. Finally, the performances do not

show much di¤erence with regard to the heavy tailedness of the error distribution in the

selection equation, as seen from comparing results between Speci�cations AN and AT or

between Speci�cations BN and BT.

5 Empirical Application: Female Labor Supply from

NLSY79

In this section, we illustrate the proposal of this paper by estimating a simple female labor

supply model:

hi = �0 + log(wi)�1 + Z>2i�4 + "i and

Di = 1
�
X>
i �0 � �i

	
;

where hi denotes hours that the i-th female worker worked, wi her hourly wage, Z2i denotes

other demographic variables. The following table shows di¤erent speci�cations that this

study used.

Table 5 : Variables used for Z2i and Xi

Variables Used

Speci�cation I Z2i
nonwife income, age, schooling
# kids w/ age 0-5, # kids w/ age 6-18,

Xi
mother and father�s schooling
age, schooling

Speci�cation II Z2i
nonwife income, age, schooling
# kids w/ age 0-5, # kids w/ age 6-18,

Xi
mother and father�s schooling
age, schooling, and household income

Speci�cation III Z2i
nonwife income, age, schooling
# kids w/ age 0-5, # kids w/ age 6-18,

Xi
mother and father�s schooling
age, schooling, household income, and age&school interaction
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The data sets were taken from NLSY79 for the 1998 round. The data set used in this

study contains 960 female workers, after eliminating the individuals with missing values for

demographic variables used in this study. In particular, the data set excluded those with

missing values for household�s total income, because we cannot compute nonwife income or

nonlabor income from the data sets. The income variables are in 1998 dollars. The following

table o¤ers summary statistics of the variables, and also compares them before and after the

selection process.

Table 6 : Summary Statistics of Variables

Whole Sample (n = 1268) Selected Sample (n = 960)
mean std dev min max mean std dev min max

mother�s schooling 11.94 2.41 0 20 11.95 2.35 0 19
father�s schooling 12.25 3.13 0 20 12.29 3.11 1 20
wife�s labor incme 24066.3 20086.7 220 147970 24519.8 19927.9 220 147970
hsbd�s labor incme 50821.9 40895.6 52 212480 49236.1 38190.5 52 212480
hshld�s total incme 69603.0 45415.0 10 244343 70986.7 45085.1 700 244343
employment status 0.74 0.44 0 1 0.75 0.43 0 1
wife�s schooling 13.8 2.39 6 20 13.9 2.31 7 20
wife�s age 36.9 2.23 33 41 36.9 2.22 33 41
wife�s hours 1447.4 966.1 0 6708 1.464.1 948.1 0 5200
husband�s age 39.4 5.09 26 70 39.24 4.92 27 62

husband�s schooling 13.8 2.61 3 20 13.7 2.50 3 20
# kids w/ age 0-5 0.46 0.73 0 4 0.47 0.73 0 4
# kids w/ age 6-18 1.33 1.11 0 6 1.32 1.08 0 5

In this study, we focus on how the estimates of coe¢ cients in the outcome equation vary

across di¤erent speci�cations of Xi and di¤erent methods of estimating �0 in the partici-

pation equation. We estimated the model using three di¤erent estimation methods. The

�rst method is OLS, ignoring sample selection. The second method is Heckman�s two step

approach assuming the joint normality of the errors in the outcome and selection equations.

The third method employs a semiparametric approach through the formulation of partial

linear model and following the procedure of Robinson (1988). As for the third method,

this study considered two di¤erent methods of estimating the coe¢ cients to Xi : probit and

maximum score estimation.
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The results are shown in Tables 6-9. (The covariates in Zi and Xi were appropriately

rescaled to ensure numerical stability.) First, nonwife income and the number of young and

old children play a signi�cant role in determining the labor supply of female workers. This

result is robust through di¤erent model speci�cations, although the signi�cance of nonwife

income is somewhat reduced when one incorporates sample selection. The negative e¤ect

of the number of children is conspicuous, with the e¤ect of the number of young children

stronger than that of old children. In contrast, the signi�cant role that the female worker�s

age and schooling appear to play in the case of OLS or Heckman�s two step procedure with

the joint normality assumption disappears or is substantially reduced, when one moves to a

semiparametric model.

Finally, it is interesting to observe that within the framework of a semiparametric model,

the e¤ects of log wage and nonwife income on labor participation are shown to be more

signi�cant in the case of using maximum score estimation than in the case of using a probit

estimator �̂. This appears to be some evidence against the assumption that Xi and "i in the

selection equation are independent. While a formal testing procedure seems appropriate, a

direct test comparing the estimates are not available in the literature as far as the author is

concerned. In particular, the standard Hausman type test will not have an asymptotically

exact size because when the probit estimator and the maximum score estimator are both

consistent, the asymptotic distribution of
p
nf�̂(�̂probit)��̂(�̂mx:scr)g, �̂probit denoting a probit

estimator of �0 and �̂mx:scr a maximum score estimator, will be degenerate. The latter

degeneracy is a major implication of Theorem 1 in this paper.

27



Table 7: Estimation of Female Labor Participation (Speci�cation I)
(In the parentheses are standard errors.)

OLS Mill�s Ratio Semiparametric Model
�̂ w/ Probit �̂ w/Mx. Scr

Log Wage �37:500 �41:857 �46:764 �50:458
(40:890) (21:520) (60:550) (60:799)

Nonwife Income �0:0248 �0:0251 �0:0197 �0:0217
(0:0080) (0:0042) (0:0111) (0:0111)

Young Children �0:1491 �0:1558 �0:1748 �0:1761
(0:0424) (0:0223) (0:0390) (0:0395)

Old Children �0:1217 �0:1233 �0:1310 �0:1305
(0:0258) (0:0137) (0:0251) (0:0249)

Age 0:0466 0:0438 �0:0024 0:0097
(0:0046) (0:0030) (0:0131) (0:0163)

Schooling 0:0368 0:0382 0:0158 0:0227
(0:0120) (0:0078) (0:0145) (0:0228)

Table 8: Estimation of Female Labor Participation (Speci�cation II)
(In the parentheses are standard errors.)

OLS Mill�s Ratio Semiparametric Model
�̂ w/ Probit �̂ w/Mx. Scr

Log Wage �37:500 �37:800 �50:691 �212:93
(40:890) (2:9290) (59:971) (65:328)

Nonwife Income �0:0248 �0:0247 �0:0222 �0:0937
(0:0080) (0:0007) (0:0110) (0:0172)

Young Children �0:1491 �0:1500 �0:1724 �0:1543
(0:0424) (0:0030) (0:0385) (0:0374)

Old Children �0:1217 �0:1219 �0:1305 �0:1140
(0:0258) (0:0018) (0:0252) (0:0234)

Age 0:0466 0:0462 �0:0097 0:0199
(0:0046) (0:0004) (0:0131) (0:0123)

Schooling 0:0368 0:0369 0:0124 �0:0226
(0:0120) (0:0010) (0:0143) (0:0132)
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Table 9: Estimation of Female Labor Participation (Speci�cation III)
(In the parentheses are standard errors.)

OLS Mill�s Ratio Semiparametric Model
�̂ w/ Probit �̂ w/Mx. Scr

Log Wage �37:500 �49:653 �48:206 �145:471
(40:890) (83:915) (59:261) (61:158)

Nonwife Income �0:0248 �0:0218 �0:0226 �0:0689
(0:0080) (0:0245) (0:0110) (0:0137)

Young Children �0:1491 �0:1766 �0:1735 �0:1557
(0:0424) (0:0809) (0:0382) (0:0366)

Old Children �0:1217 �0:1301 �0:1291 �0:1176
(0:0258) (0:0477) (0:0250) (0:0241)

Age 0:0466 0:0079 �0:0056 0:0028
(0:0046) (0:0142) (0:0122) (0:0120)

Schooling 0:0368 0:0244 0:0163 �0:0112
(0:0120) (0:0387) (0:0144) (0:0133)

6 Conclusion

This paper focuses on semiparametric models where the identi�ed parameter involves condi-

tional expectations with a single-index as a conditioning variable. This paper o¤ers a set of

su¢ cient conditions under which the �rst step estimator of the single-index does not have a

�rst order impact on the asymptotic distribution of the second step estimator. The remark-

able aspect of the result is that the asymptotic negligibility of the �rst step estimator holds

even when the estimator follows cube-root asymptotics. This asymptotic negligibility is also

demonstrated through Monte Carlo simulation studies. The usefulness of this procedure is

illustrated by an empirical study of female labor supply using an NLSY79 data set.
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7 The Appendix

7.1 Proof of Theorem 1

Lemma A1: Suppose that Assumptions C1, G1(i)(ii), and G2(i) hold. Then, there exist

C > 0 and " > 0 such that for each � 2 (0; "];

sup
�2Rd:jj���0jj��

ka(�)� a(�0)k � C�2:

Proof: The result follows from Theorem 1 of Song (2012). See Example 1 there. �

Proof of Theorem 1: Without loss of generality, let K be [�1=2; 1=2]-supported. It

su¢ ces to focus on the case where H is R-valued. Let �̂� and Û�;i be �̂ and Ûi except that

�̂ is replaced by �, and let �� and U�;i be � and U0;i except that �0 is replaced by �, where

U0;i = F�0(X
>
i �0). First, observe that

â(�)� a(�) =
1Pn
i=1Di

nX
i=1

DiSi �
n
'(�̂�(Û�;i))� '(��(U�;i))

o
+

1Pn
i=1Di

nX
i=1

fDiSi � '(��(U�;i))� E [DiSi � '(��(U�;i))]g

+

�
1

1
n

Pn
i=1Di

� 1

PfDi = 1g

�
E [DiSi � '(��(U�;i))]

� A1n(�) + A2n(�) + A3n(�); say.

We write A1n(�) as

1Pn
i=1Di

nX
i=1

DiSi � '0(��(U�;i))
n
�̂�(Û�;i)� ��(U�;i)

o
+

1

2
Pn

i=1Di

nX
i=1

DiSi � '00(���(U�;i))
n
�̂�(Û�;i)� ��(U�;i)

o2
� B1n(�) +B2n(�), say,

where ���(U�;i) lies on the line segment between �̂�(Û�;i) and ��(U�;i). Let 1n;i = 1fjU0;i�1j >
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h=2g, and write B2n(�) as

1

2
Pn

i=1Di

nX
i=1

DiSi � '00(���(U�;i))
n
�̂�(Û�;i)� ��(U�;i)

o2
1n;i

+
1

2
Pn

i=1Di

nX
i=1

DiSi � '00(���(U�;i))
n
�̂�(Û�;i)� ��(U�;i)

o2
f1� 1n;ig

� C1n(�) + C2n(�), say.

For small " > 0 and a positive sequence cn > 0 such that 0 < cnn
1=4 ! 0 (see, e.g., the proof

of Lemma A3 of Song (2009)),

max
1�i�n

sup
�2B(�0;")

���Û�;i � U�;i

��� = OP (1=
p
n) and (15)

max
1�i�n

sup
�2B(�0;cn)

jU�;i � U0;ij = OP (cn):

By Assumption C3(ii), cnh�1 ! 0. As for C1n(�), we bound
����̂�(Û�;i)� ��(U�;i)

��� 1n;i by
(using (15))

sup
u2[h=2;1�h=2]

j�̂�(u)� ��(u)j+
�����(Û�;i)� ��(U�;i)

��� 1n;i
from some large n on. The �rst term is O(n�1=2h�1

p
log n) (e.g. see Lemma A4 of Song

(2009)), and the second term is OP (1=
p
n); both uniformly over 1 � i � n and over

� 2 B(�0; cn). The latter rate OP (1=
p
n) stems from (15), and that ��(�) is continuously

di¤erentiable with a bounded derivative (see Assumption G2(ii)). Since '00(�) is continu-

ous and bounded on the support of E[W jX;D = 1] (Assumptions C1(i) and G1(ii)(a)),

sup�2B(�0;") jC1n(�)j = OP (n
�1h�2(log n)). As for C2n(�), we bound sup�2B(�0;cn)j�̂�(Û�;i) �

��(U�;i)j(1 � 1n;i) = OP (h + n�1=2), uniformly over 1 � i � n. The rate OP (h) here is the

convergence rate at the boundary (e.g. see Lemma A4 of Song (2009)). Therefore, for some
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C > 0,

sup
�2B(�0;cn)

jC2n(�)j � C
1

n

nX
i=1

n
�̂�(Û�;i)� ��(U�;i)

o2
j1� 1n;ij

� C max
1�j�n

sup
�2B(�0;cn)

n
�̂�(Û�;j)� ��(U�;j)

o2
j1� 1n;jj

� 1
n

nX
i=1

j1� 1n;ij

= OP (h
2 + n�1) �OP (h) = oP (n

�1=2):

We conclude sup�2B(�0;cn) jA1n(�) � B1n(�)j = oP
�
n�1=2

�
: As for B1n(�), we apply Lemma

B3 below to deduce that with P1 � PfDi = 1g,

1

P1
� 1
n

nX
i=1

DiE [Si � '0(��(U�;i))jU�;i; Di = 1] f'(Wi)� ��(U�;i)g+ oP (1=
p
n),

uniformly over � 2 B(�0; cn). (With the help of Lemma B1 below, one can check that

Assumptions B1-B3 in Lemma B3 are satis�ed by the conditions of the theorem here.)

We turn to A3n(�), which we write as

E [Si � '(��(U�;i))jDi = 1] �
1

P1n

nX
i=1

fPfD = 1g �Dig+ oP (1=
p
n)

uniformly over � 2 B(�0; cn). Combining the results so far, we �nd that
p
nfâ(�)� a(�)g is

equal to

1

P1
p
n

nX
i=1

DiE [Si � '0(��(U�;i))jU�;i; Di = 1] f'(Wi)� ��(U�;i)g

+
1

P1
p
n

nX
i=1

fDiSi � '(��(U�;i))� E [DiSi � '(��(U�;i))]g

+E [Si � '(��(U�;i))jDi = 1] �
1

P1
p
n

nX
i=1

fP fD = 1g �Dig+ oP (1);

uniformly over � 2 B(�0; cn). From this uniform linear representation of
p
nfâ(�) � a(�)g;
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it is not hard to show that

sup
�2B(�0;cn)

j
p
nfâ(�)� a(�)gj = OP (1) and (16)

sup
�2B(�0;cn)

��pnfâ(�)� a(�)� (â(�0)� a(�0))g
�� = oP (1):

(For this, we can use Lemma B1 below to obtain an entropy bound for the class of functions

indexing the processes in the linear representation of
p
nfâ(�)�a(�)g. Details are omitted.)

Let H1(a; b) = @H(a; b)=@a, and let the sequence cn chosen above be such that jj�̂��0jj =

OP (cn): We write

p
n(�̂ � ~�) =

p
nfH(â(�̂); b̂)�H(â(�0); b̂)g

= H1(a(�0); b0)
>pnfâ(�̂)� â(�0)g+ oP (1)

= H1(a(�0); b0)
>pnfâ(�̂)� a(�̂)� â(�0) + a(�0)g

+H1(a(�0); b0)
>pnfa(�̂)� a(�0)g+ oP (1) � D1n +D2n, say.

The second equality uses the �rst statement of (16) and continuity of H1(�; �) (Assumption

G1(ii)(b)). By the second statement of (16), D1n = oP (1). As for D2n, we apply Lemma A1

to deduce that

jH1(a(�0); b0)
>pnfa(�̂)� a(�0)gj = OP (n

1=2 � c2n) = oP (1):

Thus we obtain the desired result. �

7.2 Bahadur Representation of Sample Linear Functionals of SNN

Estimators

In this section, we present a Bahadur representation of sample linear functionals of SNN

estimators that is uniform over function spaces. (The proofs are found in the supplemental
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note to this paper that is available from the author�s website.) In a di¤erent context, Stute

and Zhu (2005) obtained a related result that is not uniform.

Suppose that we are given a random sample f(Si;Wi; Xi)gni=1 drawn from the distribution

of a random vector (S;W;X) 2 RdS+1+dX : Let SS;SX and SW be the supports of S;X; andW

respectively. Let � be a class of R-valued functions on RdX with a generic element denoted

by �: We also let � and 	 be classes of real functions on R and RdS with generic elements

' and  and let ~' and ~ be their envelopes. Let Lp(P ); p � 1; be the space of Lp-bounded

functions: jjf jjp � f
R
jf(x)jpP (dx)g1=p < 1; and for a space of functions F � Lp(P ) for

p � 1; let N[](";F ; jj � jjp) denote the bracketing number of F with respect to the norm jj � jjp,

i.e., the smallest number r such that there exist f1; � � �; fr and �1; � � �;�r 2 Lp(P ) such that

jj�ijjp < " and for all f 2 F , there exists 1 � i � r with jjfi � f jjp < �i=2: Similarly, we

de�ne N[](";F ; jj � jj1) to be the bracketing number of F with respect to the sup norm jj � jj1,

where for any real map f on RdX ; we de�ne jjf jj1 = supz2RdX jf(z)j. For any norm jj � jj

which is equal to jj � jjp or jj � jj1, we de�ne N(";F ; jj � jj) to be the covering number of F , i.e.,

the smallest number of "-balls that cover F . Letting F�(�) be the CDF of �(X), we denote

U� � F�(�(X)): De�ne g';�(u) � E['(W )jU� = u] and g ;�(u) � E[ (S)jU� = u]:

Let Un;�;i � 1
n�1

Pn
j=1;j 6=i 1f�(Xj) � �(Xi)g and consider the estimator:

ĝ';�;i(u) �
1

(n� 1)f̂�;i(u)

nX
j=1;j 6=i

'(Wj)Kh (Un;�;j � u) ;

where f̂�;i(u) � (n� 1)�1
Pn

j=1;j 6=iKh(Un;�;j �u): The semiparametric process of focus takes

the following form:

�n(�; ';  ) �
1p
n

nX
i=1

 (Si) fĝ';�;i(Un;�;i)� g'(U�;i)g ;

with (�; ';  ) 2 �� ��	:

The main focus in this section is on establishing an asymptotic linear representation of
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�n(�; ';  ). The critical element in the proof is to bound the size of the class of conditional

expectation functions G � fg';�(�) : ('; �) 2 � � �g. We begin with the following lemma

that establishes the bracketing entropy bound for G with respect to jj � jjq; q � 1.

Lemma B1 : Suppose that the density f� of �(X) is bounded uniformly over � 2 �. Further-

more, assume that there exists an envelope ~' for � such that G� � supx2SX E[~'(W )jX =

x] <1; and that for some CL > 0;

sup
'2�

sup
�2�

jg';�(u1)� g';�(u2)j � CLju1 � u2j, for all u1; u2 2 [0; 1]:

Then for all " > 0; q � 1; and p � 1,

N[](C�"
1=(q+1);G; jj � jjq) � N[](";�; jj � jjp) �N[](";�; jj � jj1);

where C� � 1 + 8C�G� + CL +G�=2 and C� � sup�2� supv2R f�(v).

We are prepared to present the uniform Bahadur representation of �n(�; ';  ). Let

�n � f� 2 � : jj� � �0jj1 � cng, where 0 < cnn
1=4 ! 0. We let X = [X>

1 ; X
>
2 ]
>,

where X1 is a continuous random vector and X2 is a discrete random vector taking values

in a �nite set fx1; � � �; xMg. We make the following assumptions.

Assumption B1 : (i) For some C > 0; p � q > 4; b	 2 (0; q=(q � 1)); and b� 2 (0; q=f(q +

1)(q � 1)g);

logN[](";�; jj � jjp) < C"�b� and logN[](";	; jj � jjp) < C"�b	 ; for each " > 0;

and E[~'(W )p] + E[~ (S)p] + supx2SX E[~'(W )jX = x] + supx2SX E[
~ (W )jX = x] <1.

(ii) (a) For q > 4 in (i) and for some b� 2 (0; q=f(q + 1)(q � 1)g) and C > 0; logN[](";�; jj �

jj1) � C"�b� ; for each " > 0:

(b) For all � 2 �; the density f�(�) of �(X) is bounded uniformly over � 2 � and bounded
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away from zero on the interior of its support uniformly over � 2 �.

Assumption B2 : (i) K(�) is symmetric, nonnegative, compact supported, twice continu-

ously di¤erentiable with bounded derivatives, and
R
K(t)dt = 1.

(ii) n1=2h3 + n�1=2h�2(� log h)! 0 as n!1.

Assumption B3 : E['(W )jU� = �] is twice continuously di¤erentiable with derivatives

bounded uniformly over (�; ') 2 B(�0; ")� � with some " > 0:

The following lemma o¤ers a uniform representation of �n:

Lemma B2 : Suppose that Assumptions B1-B4 hold. Then,

sup
(�;'; )2�n���	

������n(�; ';  )� 1p
n

nX
i=1

g ;�(U�;i)f'(Wi)� g';�(U�;i)g
����� = oP (1).

Let Di 2 f0; 1g be a binary random variable and for d 2 f0; 1g, de�ne g';�;d(u) �

E['(Wi)jU�;i = u;Di = d] and g ;�;d(u) � E[ (Si)jU�;i = u;Di = d]: Consider the estimator:

ĝ';�;d(Un;�;i) �
1

(n� 1)f̂�;d(Un;�;i)

nX
j=1;j 6=i

'(Wj)1fDj = dgKh (Un;�;j � Un;�;i) ;

where f̂�;d(Un;�;i) � (n� 1)�1
Pn

j=1;j 6=i 1fDj = dgKh(Un;�;j � Un;�;i): Similarly as before, we

de�ne

�n;d(�; ';  ) �
p
nPn

i=1Di

nX
i=1

 (Si)Di fĝ';�;d(Un;�;i)� g';�;d(U�;i)g ;

with (�; ';  ) 2 �� ��	: The following lemma presents variants of Lemma B2.

Lemma B3 : Suppose that Assumptions B1-B3 hold, and let Pd � PfD = dg, and "';�;d;i �

'(Wi)� g';�;d(U�;i), d 2 f0; 1g:

(i) If there exists " > 0 such that PfDi = 1jU�;i = ug � " for all (u; �) 2 [0; 1]� �; then

sup
(�;'; )2�n���	

������n;1(�; ';  )� 1p
nP1

nX
i=1

Dig ;�;1(U�;i)"';�;1;i

����� = oP (1).
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(ii) If there exists " > 0 such that PfDi = 1jU�;i = ug 2 ["; 1� "] for all (u; �) 2 [0; 1]� �;

then

sup
(�;'; )2�n���	

������n;0(�; ';  )� 1p
nP1

nX
i=1

(1�Di)P (U�;i)g ;�;1(U�;i)

1� P (U�;i)
"';�;0;i

����� = oP (1):
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