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Abstract

Many existing methods of simulated likelihood for discrete choice models re-

quire additive errors that have normal or extreme value distributions, with the

prominent exception of the original simulated frequency method of Lerman and

Manski (1981). This paper proposes a new method of simulated likelihood that

is free from simulation bias for each �nite number of simulation, and yet �exible

enough to accommodate various model speci�cations beyond those of additive

normal or logit errors. The method is �exible in the sense that it applies to

almost any discrete choice model where individual choices can be simulated. The

method begins with the likelihood function involving simulated frequencies and

�nds a transform of the likelihood function that identi�es the true parameter

for each �nite simulation number. The transform is explicit, containing no un-

knowns that demand an additional step of estimation. The estimator achieves

the e¢ ciency of MLE as the simulation number increases fast enough. This paper

presents and discusses results from Monte Carlo simulation studies of the new

method.
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1 Introduction

Discrete choice models have long been used in a wide range of empirical �elds of economics.

While a discrete choice model typically speci�es the data generating process up to a para-

metric family of distributions, maximum likelihood estimation is infeasible in practice except

for simple models because the explicit evaluation of the likelihood is not possible. Since the

seminal work of Lerman and Manski (1981), the approach of simulation-based inference has

been increasingly instrumental for overcoming this di¢ culty, providing the researcher with a

wider spectrum of �exibility in modeling. (See Hajivassiliou and Ruud (1994), Stern (1997),

Gouriéroux and Monfort (1997), and Train (2003) for a review of the literature and references

therein.)

Most developments of methods of simulated likelihood have been made with a require-

ment that the original method of Lerman and Manski (1981) was free from: the assumption

of additive normal or logit errors in the latent processes. For example, while the method of

Stern (1992) and the method of GHK simulator (Geweke (1989), Hajivassiliou (1990) and

Keane (1993)) are computationally e¢ cient, these methods rely on the assumption that the

random utilities involve additive normal errors. Hajivassiliou (1990) and Hajivassiliou and

McFadden (1998) proposed a di¤erent method of simulated likelihood that uses simulated

scores to construct simulated moment conditions and proved e¢ ciency of the estimators. In

particular Hajivassiliou and McFadden (1998) suggested three methods of maximum simu-

lated scores (named MSS-SAR, MSS-SRC, and MSS-GRS in their paper). These methods

also require that the random utilities have additive multivariate normal errors. Another

increasingly popular class of discrete choice models include mixed multinomial logit models

(MMLM) (Ben-Akiva, et. al. (1997) and McFadden and Train (2000) and see references

therein). The MMLMs o¤er a �exible way of modeling heterogeneity through random coef-

�cient speci�cations and yet requires the presence of additive logit errors.

Many structural econometric models used in labor economics and industrial organiza-

tion do not admit such simple modeling of random utilities. In these models, unobserved

heterogeneity in individual decision making often lies at the center of econometric model-

ing. Depending on the way one models the role of heterogeneity, one can easily encounter a

structural model for which aforementioned simulation methods do not apply. (See Keane and

Wolpin (1994), Keane and Wolpin (1997). etc.) In these situations, the original simulated

frequency method of Lerman and Manski or their smoothed variants tend to emerge as the

sole feasible solution. As is well-documented, however, the simulated frequency method of

Lerman and Manski poses several di¢ culties such as discontinuity of the sample objective

function, the zero probability problem, and the simulation bias due to the use of only a �nite
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number of simulations.

This paper proposes a newmethod of simulated likelihood (MSL from here on) for discrete

choices. Our method does not require additive normal or logit speci�cation of random utilities

and �exibly applies to all the models that the procedure of Lerman and Manski applies to. At

the same time, the method is free from the zero-probability problem and does not accompany

simulation bias for each �nite simulation number. (See Lee (1995) for the asymptotic bias

analysis of simulated discrete choice models and for a bias adjustment method.) The method

is easy to implement, accompanying almost no additional computational cost beyond that of

the simulated frequency method of Lerman and Manski. To the best of our knowledge, our

method is the �rst simulated likelihood method that does not su¤er from simulation bias

for �nite simulation numbers and yet allows for �exible modeling beyond that of normal or

logit additive errors.

Our method is built on the main �nding of this paper that there exists a simple and

explicit transform of a simulated likelihood function whose maximization delivers a consistent

estimator even with a �nite simulation number. The transform is algebraically explicit,

depending on no unknowns. Furthermore, the use of the transform does not require any

restrictions on the speci�cation of the random utilities, and hence �exibly applies to many

discrete choice models that have a nonlinear, nonnormal form of heterogeneity. We call

this new method transformed simulated frequencies (TSF) method. Our approach, however,

shares one drawback of other simulation methods that use simulated frequencies, such as

MSL of Lerman and Manski (1981) or methods of simulated moments of McFadden (1989):

the sample objective function is discontinuous in parameters. The comparison of our method

with other existing ones is summarized in Table 1.

Table 1: Comparison of Simulated MLE Methods

Zero Prob. Prblm. Sample Object. Func. Addit. Normal/Logit Speci�cation Sim. Bias

Our Method (TSF) No Discontinuous Not Required No Bias

Lerman-Manski Yes Discontinuous Not Required Bias

Stern (1992) No Smooth Required (Normal) Bias

GHK No Smooth Required (Normal) Bias

MSS - SRC/GRS No Smooth Required (Normal) Bias

MSS - SAR No Discontinuous Required (Normal) No Bias

Mixed Multinomial Logit No Smooth Required (Logit) Bias

In this paper, we formally present conditions for identi�cation and derive the asymptotic

theory for the estimator in both the cases of simulation numbers �xed and increasing with
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the sample size. Our exposition is made through easily veri�able, high-level conditions

to emphasize the �exibility of our approach. The conditions require only weak regularity

conditions for the stochastic link between the decision variables and the observed covariates.

We also demonstrate how our framework can also be adapted to the case where only the

cohort-level aggregate data are available under certain conditions. This set-up is relevant to

some empirical studies in industrial organization.

Here is the summary of the asymptotic properties of the estimators based on the TSF

method. When the simulation number is �xed and the sample size n increases, the estimator

is consistent at the rate of 3
p
n, like the maximum score estimator (Manski (1975) and Kim

and Pollard (1990)). In the case of an increasing number of simulations, we establish that the

estimator is
p
n-consistent and asymptotically normal as the simulation number increases

to in�nity at a rate faster than
p
n: Under this same condition, the estimator achieves the

asymptotic e¢ ciency of MLE.

To illustrate the usefulness of our approach, we performed Monte Carlo simulation studies

based on two types of schooling choice models which involve heterogeneity in discount factor

and ability. More speci�cally, the discount factor is assumed to be correlated with other

observed individual characteristics and also an unobserved characteristic. In the second type

of models, we assume time-varying heterogeneity so that the econometric model is a dynamic

discrete choice model. The simulation methods considered in this study are, Lerman and

Manski�s MSL and its smoothed version, because these are the methods that are applicable

in these models. Our estimator mostly dominates Lerman and Manski�s simulation method

and smoothed versions regardless of the simulation number. The domination is prominent

especially when the simulation number is small and the sample size is large.

The remainder of this paper is organized as follows. In Section 2, we de�ne the class of

discrete choice models, discuss MSL, and o¤er a preview of our method. In Section 3, we

present the main results of this paper which formally establish identi�cation and consistency

of the proposed estimator. It is also shown that the estimator is asymptotically normal

when the simulation number goes to in�nity fast enough. In Section 4, we present and

discuss results from Monte Carlo simulation studies. Section 5 concludes. All the technical

proofs are relegated to the appendix.
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2 Discrete Choice Models and TSF

2.1 Methods of Simulated Likelihoods

Suppose that a binary decision variable, Dij 2 f0; 1g, of an agent i choosing the j-th choice,
is stochastically linked with an observed covariate vector Xi as follows:

Dij = �j(Xi; �i; �0); (1)

where Xi = (Xi1; � � �; XiJ)> represents a vector of observed covariates, �i = (�i1; � � �; �iJ)>

a vector of unobserved variables, and �0 2 � � Rd the parameter to be estimated. The

number J denotes the number of the choices the agent encounters and n the number of the

agents in the data set. For example, �j can be speci�ed as follows,

�j(Xi; �i; �0) = 1

�
uj(Xi; �i; �0) � max

k 6=j;1�k�J
uk(Xi; �i; �0)

�
; (2)

where the function uj(Xi; �i; �) is a random utility (McFadden (1974)).

The conditional choice probability of the i-th agent choosing the j-th option is de�ned

by

pj(Xi; �0) = P fDij = 1jXig :

The choice probability is obtained by "integrating out" the unobserved variable �i conditional

on the observed covariate Xi: It is interpreted as the probability of the j-th choice being

made by an agent i with a covariate Xi: Given the choice probabilities pj(Xi; �); it is natural

to form the log-likelihood of a random sample fDi; Xig as follows:

ln(�) =
1

n

nX
i=1

JX
j=1

Dij log pj(Xi; �):

So far as pj(x; �) can be evaluated, maximum likelihood estimation is straightforward. (e.g.

Amemiya (1985).) However, the choice probability is often hard to evaluate, in particular

when the number of choices is large and one wants to admit �exibility in specifying the joint

distribution of �i:

Methods of simulated likelihood substitute a simulated choice probability for the choice

probability to construct a simulated log-likelihood,

l�n;R(�) =
1

n

nX
i=1

JX
j=1

Dij log p
�
jR(Xi; �): (3)
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The number R represents the repetition number of simulated stochastic variables. A simu-

lated maximum likelihood estimator is de�ned as a maximizer of the simulated log-likelihood

function,

�̂
�
n;R � argmax

�2�
l�n;R(�):

When R increases with the sample size fast enough, it is known that for most choice proba-

bility simulators in the literature, the resulting estimator is consistent.

The original method of Lerman and Manski (1981) uses simulated frequency in construct-

ing p�jR(Xi; �). More speci�cally, suppose thatR number of stochastic errors ��i;r; r = 1; ���; R;
are drawn from the known distribution F of �i. We let �j(Xi; �

�
i;r; �); r = 1; � � �; R; (taking

values of 0 or 1) denote simulated choices for each value of �: The simulated frequency of

each choice j at simulation number R is de�ned to be

mjR(Xi; �
�
i ; �) =

RX
r=1

�j(Xi; �
�
i;r; �)

where ��i = (�
�
i;1; � � �; ��i;R)> is a random sample from the distribution F of �i: The number

mjR(Xi; �
�
i ; �) represents the number of incidences that the j-th choice is made by an agent

i who has covariates Xi and simulated stochastic errors ��i . From now on, we write brie�y

mij(�) = mjR(Xi; �
�
i ; �); (4)

and mi(�) = (m1i(�); � � �;mJi(�))
>: Then the simulated choice probability is de�ned to be

p�jR(Xi; �) =
mij(�)

R
: (5)

Plugging this into (3), one obtains the MSL estimator of Lerman and Manski.

This simulated frequency method of Lerman and Manski has been known to su¤er from

several drawbacks. Among which are the zero probability problem, discontinuity of the sam-

ple objective function in the parameters and simulation bias. First, the zero probability

problem refers to the fact that for small R and large n, some of p�jR(Xi; �) is likely to assume

a zero value, causing a log-of-zero problem in the estimation. Second, the procedure involves

a sample objective function that is discontinuous in the parameters. Finally, simulation bias

occurs because the choice probability pj(Xi; �) is di¤erent from p�jR(Xi; �). Many develop-

ments since Lerman and Manski (1981) have focused on overcoming the �rst two problems,

i.e., zero probability problem and the problem of discontinuous objective functions (e.g.

GHK method, MSS, and MMNL modeling mentioned in the introduction).
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Nevertheless, it is important to note that the original method of Lerman and Manski

(1981) can be applied in almost any discrete choice model where one can simulate the indi-

vidual choices. For example, the method does not require that the random utilities have a

certain form additive in normal or logit errors, making contrast with later developments in

the literature. For researchers who use structural models that do not satisfy such require-

ments are often left with the method of Lerman and Manski, along with its disadvantages.

This paper�s proposal is an alternative that retains the modeling �exibility of the origi-

nal procedure of Lerman and Manski, and yet is free from the two major disadvantages

of Lerman and Manski�s method: the zero probability problem and simulation bias. The

�exibility of the method comes from the fact that like Lerman and Manski�s method, this

paper�s method also applies to almost any discrete choice model where one can obtain the

simulated frequencies of individual choices. The price to pay for this �exibility is that the

sample objective function in our method, like that of Lerman and Manski, is discontinuous

in the parameter.

2.2 Transformed Simulated Frequency (TSF)-Based Method

Our method begins �rst by attempting to overcome the problem of simulation bias of Lerman

and Manski�s simulated frequency method. Certainly, the fact that the simulated choice

probabilities are unbiased estimators of the true choice probabilities does not help due to

the presence of logarithm in (3). Instead of the logarithmic function, this paper proposes an

alternative function that leads to an estimator entirely free from the simulation bias for each

�nite simulation number, as long as the sample size n is large enough. More speci�cally, for

each �xed R, this paper develops a transform TR;j(�) of simulated frequencies, j = 1; 2; � � �; J;
R = 2; � � �; such that

�0 = argmax
�2�

JX
j=1

E [DijTR;j(mi(�))] ; (6)

i.e., the population objective function identi�es �0 for each R = 2; � � �. Then for each R; an
estimator of �0 is naturally obtained by maximizing its sample analogue:

�̂ = argmax
�2�

1

n

nX
i=1

JX
j=1

DijTR;j(mi(�)): (7)
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A transform that satis�es (6) under regular conditions turns out to be of the following form:

for each j = 1; 2; � � �; J; and R = 2; 3; � � �;

TR;j(m) = �
R�mj�1X
s=0

1

R� s +
1

R

JX
k=1;k 6=j

1fmk > 0g; m = (m1; � � �;mJ)
>; (8)

where mj�s are nonnegative integers such that
PJ

j=1mj = R. The remarkable aspect of the

transform TR;j(�) is that the transform does not depend on any unknown aspects of the data
generating process. The transform depends only on J and R which are known. This means

that we do not have to estimate the transform TR;j when one solves (7). We call TR;j(mi(�))

a transformed simulated frequency (TSF ).

The main advantage of the TSF-based method comes from the fact that it relies only

on the elementary method of simulated frequencies, and hence does not require a particular

structure of random utilities. Furthermore, the TSF-based method is free from the zero

probability problem by design. In other words, when the sample size is large, using only

a �nite simulation number does not cause a zero probability problem, in contrast to the

simulated frequency method of Lerman and Manski. Some simulation results to be presented

in the next subsection illustrate this point.

2.3 Illustration

To illustrate how the transform TR;j works, let us consider the following simple simulation

example. We consider a binary choice model where the conditional choice probability of the

�rst choice given X 2 R is speci�ed as

p(X; �0) =
1

1 + exp ((10 + �0)X)
;

where X is drawn from the uniform distribution on [�1; 1] and the true parameter �0 is set
to be zero.

Figure 1 shows three population objective functions against di¤erent values of � with
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di¤erent simulation numbers R:

QTSFR (�) =
JX
j=1

E [DijTR;j(mi(�))] : (TSF)

QL�MR (�) =
JX
j=1

E

�
Dij log

�
mij(�)

R

��
: (Lerman and Manski)

QMLE(�) =
JX
j=1

E [Dij log (pj(Xi; �))] : (MLE).

Each panel plots the three population objective functions over di¤erent simulation num-

bers R. Even when R = 2, the maximizers of QTSFR (�) and QMLE(�) coincide, and this

coincidence is maintained as R increases. When R is large, both the objective functions

QTSFR (�) and QMLE(�) coincide for all the values of �. This makes contrast with the objec-

tive function of Lerman and Manski. When R is small, the objective function of Lerman and

Manski�s is away from the true value �0 = 0. This re�ects the well-known fact that the MSL

estimator of Lerman and Manski is inconsistent for a �nite R. Only when R becomes large,

Lerman and Manski�s objective function becomes close to the true MLE objective function.

Unlike Lerman and Manski�s method, the approach of TSF does not su¤er from the zero-

probability problem. With each �nite sample size n and �nite simulation number R, TSF

TR;j(mi(�)) always assumes a �nite number regardless of the realizations of the simulated

frequency mi(�). Hence the �nite sample objective function is well de�ned regardless of

the sample size and the simulation number. To illuminate this point, Figure 2 plots log(p),

E log(mi(�0)=R), and ETR;j(mi(�0)) against p, the choice probability, where the expected

value is over the distribution of simulated errors when R is �nite. Here the simulated

frequencies mi(�0) are generated according to the given value of the choice probability p.

Certainly, in the case of Lerman and Manski, the zero-probability problem is severe when

the simulation number is small, as shown by steeply falling curves as we move p close to

zero. In contrast, the expected TSF does not su¤er from this zero-probability problem.

Furthermore, the expected TSF becomes close to log(p) more quickly than the expected

logarithm of simulated probabilities as the simulation number increases.
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Figure 1: Population Objective Functions: The objective function of TSF-based MSL has
the same maximizer as that of MLE for each simulation number.
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Figure 2: Value of Log of Simulated Probabilities (Lerman and Manski): The plots are
against the given true choice probability p. The expected value of TSF is bounded from
below when p is close to zero, whereas the expected value of log of simulated probabilities
falls to �1.
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3 Main Results

3.1 Identi�cation

In this section, we provide the main result of this paper that the use of TSF in (8) identi�es

�0 for each �nite simulation number R. Let mij(�) be as de�ned in (4) and �̂ be as de�ned

in (7). We introduce the following regularity conditions. Let X be the support of Xi:

Assumption 1 : (i) (a) � is compact with a nonempty interior containing �0; and (b) for

all (�; x) 2 ��X ; pj(x; �) belongs to SJ 2 fp 2 [0; 1]J : �Jj pj = 1g.
(ii) For all � 2 � such that � 6= �0; there exists j 2 f1; � � �; Jg such that Pfpj(Xi; �0) 6=
pj(Xi; �)g > 0.
(iii) For some � > 0, 0 < "p < inf�2B(�0;�) infx2X pj(x; �); j = 1; � � �; J; for some "p > 0:
(iv) (�i)

n
i=1 and (�

�
i;r)

n
i=1 are distributionally identical and (�

�
i;r)

n
i=1 is i.i.d. across r = 1; 2; � �

�; R.

Condition (i) requires that the choice probability function p(x; �) is well-de�ned for all

� 2 � and Lipschitz continuous in � 2 �. Condition (ii) is a condition used to identify �0 from
the identi�cation of choice probabilities. Condition (iii) requires that the choice probabilities

be bounded away from zero, and implies that pj(x; �0) < 1�"p for each j = 1; ���; J: Condition
(iv) says that (��i;r)

n
i=1 is independently and identically drawn from the distribution of (�i)

n
i=1.

The following theorem is the main result of this paper.

Theorem 1 (Identification) : Suppose that Assumption 1 holds. Then for each � > 0;

and for each R = 2; 3; � � �;

JX
j=1

E [DijTR;j(mi(�0))] > max
�2�nB(�0;�)

JX
j=1

E [DijTR;j(mi(�))] ;

where B(�0; �) = f� 2 � : jj� � �0jj < �g:

The identi�cation result in Theorem 1 tells us that in contrast to the use of logarithm, the

use of TR;j leads to identi�cation of �0 for each �nite R = 2; 3; � � : This fact forms the basis
on which we develop an MSL estimator that is consistent even if we have a �nite simulation

number R.
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3.2 A Heuristic Exposition on the Discovery of TSF

In this section, we explain how the transform (8) is discovered. Let NR = f0; 1; 2; � � �; Rg and
de�ne

NR;J =

(
(m1; � � �;mJ) : mj 2 NR; j = 1; � � �; J; and

JX
j=1

mj = R

)
:

The set NR;J denotes the space of J-tuples where simulated frequencies mi(�) realize. Also

we write the conditional choice probability pi(�) = p(Xi; �) for brevity. To �nd the right

map TR;j, we �rst focus on some necessary conditions that such a map should satisfy. Given

a generic map Tj(�) : NR;J ! R+; j = 1; � � �; J , and R = 2; 3; � � �; we introduce a function
�R(p; p0;T ) : SJ � SJ ! R; with T = (T1; � � �; TJ), as follows:

�R(p; p0;T ) =
JX
j=1

pj0

Z
Tj(M)dFR;p(M);

where FR;p is the CDF of the multinomial distribution on NR;J with parameter (R; p): The
function �R is uniquely determined once R and the transform T are chosen, and it does not

depend on any other speci�cs of the data generating process of (Di; Xi).

Using �R, we rewrite

JX
j=1

E [DijTj(mi(�))] = E [�R(pi(�); pi(�0);T )] : (9)

The main idea of this paper is that we extract conditions for �R such that

�0 = argmax
�2�

E [�R(pi(�); pi(�0);T )] : (10)

Invoking the interchangeability of the derivative and the expectation, we write the �rst

order condition for (10) as

@

@�
E [�R(pi(�); pi(�0);T )] j�=�0 =

JX
j=1

E

�
�j(pi(�0); pi(�0);T )

@pj(Xi; �0)

@�

�
= 0, (11)

where for each j = 1; 2; � � �; J;

�j(p; p0;T ) =
@�R(p; p0;T )

@pj
: (12)

Since the choice probabilities pj(x; �) sum up to one for all x and �, di¤erentiability of pj(x; �)
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at each � implies
JX
j=1

@pj(x; �)

@�
= 0: (13)

This means that the �rst order condition in (11) immediately follows if �j(p; p;T ) is the

same across j�s for all p 2 SJ , i.e., for each p 2 SJ ;

�j(p; p;T ) = �k(p; p;T ); for all j; k = 1; 2; � � �; J: (14)

The condition in (14) has an important merit of not depending on any aspects of the data

generating process other than what is already fully known, i.e., R and J . It remains to

search for T such that (14) is satis�ed.

We �rst write out

�R(p; p0;T ) =
JX
j=1

pj0
X

m2NR;J

Tj(m)pR(m; p); (15)

where pR(�; p) is the probability mass function of FR;p which is given by

pR(m; p) =

�
R

m1; � � �;mJ

�
pm1
1 � � � pmJ

J :

From (15), �R(p; p0;T ) is a weighted sum of pR(m; p) over m 2 NR;J : Hence for each k; we
can write �k(p0; p0;T ) also as a weighted sum of pR(m; p0) by rearranging the terms. More

speci�cally, suppose that J = 2, and take the following form of transform, Tj(m) = ~T (mj)

for a certain map ~T on f0; 1; � � �; Rg. Then we can write from (12):

�1(p0; p0;T ) =

2X
j=1

pj0
X

m2NR;2

~T (mj)

 
R

m1;m2

!
m1p

m1�1
10 pm2

20

=
X

m2NR;2

c1(m1;m2)p
m1
10 p

m2
20

�2(p0; p0;T ) =

2X
j=1

pj0
X

m2NR;2

~T (mj)

 
R

m1;m2

!
m2p

m1
10 p

m2�1
20

=
X

m2NR;2

c2(m1;m2)p
m1
10 p

m2
20 ;
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where, by setting ~T (�1) = 0,

c1(m1;m2) = ~T (m1)

 
R

m1;m2

!
m1 + ~T (m2 � 1)

 
R

m1 + 1;m2 � 1

!
(m1 + 1)

=

 
R

m1;m2

!h
~T (m1)m1 + ~T (m2 � 1)m2

i
and

c2(m1;m2) = ~T (m2)

 
R

m1;m2

!
m2 + ~T (m1 � 1)

 
R

m1 � 1;m2 + 1

!
(m2 + 1)

=

 
R

m1;m2

!h
~T (m2)m2 + ~T (m1 � 1)m1

i
:

From (14), we impose on ~T the condition that for all m1;m2 such that m1 +m2 = R;

c1(m1;m2) = c2(m1;m2)

or

m1 fT (m1)� T (m1 � 1)g = m2 fT (m2)� T (m2 � 1)g : (16)

Now suppose that T satis�es that T (R) = T (R� 1); and

T (m1)� T (m1 � 1) =
a

m1

;m1 = 1; 2; � � �; R� 1; (17)

for some a > 0. Then this transform T should satisfy the equations in (16). Starting from

an arbitrary initial value T (R); we can recursively recover the values of T (m1) for each

m1 2 f0; 1; 2; � � �; Rg from (17). The resulting transform T takes the following form: for

each m1 = 0; 1; 2; � � �; R� 1;

T (m1) = �
R�m1�1X
s=1

a

R� s + T (R)

= �
R�m1�1X
s=0

a

R� s +
a � 1fm1 = 0g

R
+ T (R);

where we take the summation
P�1

s=0 to be zero. By setting T (R) = 0 and a = 1, we obtain

the formula in (8) for the case of J = 2: For J � 3; the derivation of T from (16) follows

similar arguments but is more involved. The solution for the case of a general J is given in

the following algebraic result.

Lemma 1: Transform vector T = (T1; � � �; TJ) satis�es (14), if for each j = 1; � � �; J and
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R = 2; 3; � � �; Tj(m) = TR;j(m), where

TR;j(m) = �
R�mj�1X
s=0

1

R� s +
PJ

k=1;k 6=j 1fmk > 0g
R

: (18)

Lemma 1 is a pure algebraic result that does not involve any unknown speci�cs of the

data generating process in the model. While the existence of such an explicit transform

is novel in our view, the transform is based on the condition (14) that is only a necessary

condition for (10). Now the su¢ cient second order condition for the optimization problem

in (10) stems from the result of Lemma 2 below. Given p 2 SJ , we write ~p = (p1; � � �; pJ�1)>.
We de�ne

~�R(~p; p0;TR) = �R((p1; � � �; pJ�1; 1� �J�1j=1 pj); p0;TR): (19)

Hence ~�R(~p; p0;TR) is �R(p; p0;TR) with the imposition of the constraint �Jj=1pj = 1.

Lemma 2: Let TR = (TR;1; � � �; TR;J) with TR;j given by (18). Then for any a = (a1; � �
�; aJ�1)> 2 RJ�1;

a>

 
@2~�R(~p; p0;TR)

@~p@~p>

!
a � �2"

 
J�1X
j=1

a2j

!
where " > 0 is such that pj0 2 ["; 1� "]; for all j = 1; � � �; J:

Lemma 2 says that the function ~�R(~p; p0;TR) for all ~p = (p1; � � �; pJ�1)> with p 2 SJ
is globally strictly concave in ~p if p0 is such that for some " > 0, pj0 2 ["; 1 � "]; for all
j = 1; � � �; J: Combined with Lemma 1, the result of Lemma 2 shows that �R(p; p0;TR)
(under constraint �Jj=1pj = 1) is uniquely maximized at p = p0. Formal proofs of Lemmas 1

and 2 are algebraically involved and provided in the appendix.

It may not be immediately clear how the choice of (18) is related to MLE with su¢ ciently

large R: To see this connection, note �rst that the simulated frequencies mij(�)=R !P

pij(�) 2 (0; 1) with R ! 1; by the law of large numbers, where pij(�) = pj(Xi; �). Also,

note that

0 � 1

R

JX
k=1;k 6=j

1fmk > 0g �
J � 1
R

! 0

as R!1. Finally, observe that for large R;

�
R�mij(�)�1X

s=0

1

R� s = �
RX
s=0

1fs=R � 1�mij(�)=R� 1=Rg
1� s=R � log(pij(�)):

This latter convergence is immediate as the sum on the left-hand side is a Riemann sum of
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Figure 3: The Comparison of TSF and Logarithmic Function. The solid line depicts
TR;j(bRpc) against p 2 (0; 1) in the case of J = 2 and R = 20 and the dashed line depicts
log(p), where bRpc denotes the greatest integer that is not larger than Rp: As R increases,
TR;j(bRpc) becomes closer to log(p).

�
R 1�mij(�)=R�1=R
0

(1=(1� u))du and mij(�)=R � pij(�) for large R. Therefore,

E[DijTR;j(mij(�))] � E[Dij log pij(�)];

for large R. Hence the TSF population objective function is close to that of MLE for large

R. That the TSF approximates the logarithmic function is clearly seen in Figure 3.

3.3 Asymptotic Properties

In this section we investigate the asymptotic properties of the estimator �̂ de�ned in (7).

The asymptotic properties of �̂ are developed for two separate cases: the case with R �xed

and the case with R tending to in�nity jointly with the sample size n. We introduce the

following assumptions.

Assumption 2 : (i) f(Di; Xi; �i)gni=1 is i.i.d. from a common distribution and f�igni=1 and
fXigni=1 are independent.
(ii) There exists C > 0 such that supx2XE[sup~�2� sup�2B(~�;") j�j(x; �i; ~�)��j(x; �i; �)j2] � C",
for any " > 0:

(iii) (a) For each j 2 f1; � � �; Jg, pj(x; �) is bounded away from zero uniformly over x 2 X
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and � 2 �, and (b) there exists C > 0 such that

JX
j=1

E
�
(pj(Xi; �)� pj(Xi; �0))

2
�
� Cjj� � �0jj2;

for all � 2 �.
(iv) There exists � > 0 such that for each x in the support of Xi and for each j 2 f1; � �
�; Jg; pj(x; �) is twice continuously di¤erentiable in � 2 B(�0; �) with derivatives bounded
uniformly over � 2 B(�0; �).

Condition (ii) controls the manner the random decision rule �j(Xi; �i; �) depends on � and

(Xi; �i): The condition requires that the decision rule � is locally uniformly L2-continuous in

� (e.g. Chen, Linton, and van Keilegom (2003)). This condition is a very useful high level

condition that can be used to establish the stochastic equicontinuity of an empirical process

involving a discontinuous function, and �exibly admits a wide class of speci�cations of �:

See Example 1 below for lower level conditions in the case of a random utility framework.

Condition (iii)(a) ensures that log pj(x; �) is well de�ned for all the values of � 2 � and x 2 X .
For example, see the fourth condition in Assumption 1 of Lee (1995) for a similar condition.

One may weaken this condition by introducing a trimming sequence in the estimator as

in Klein and Spady (1993). Condition (b) is a regularity condition that is used to ensure
p
n-consistency of MLE. Condition (iv) requires the smoothness of the conditional choice

probabilities in the parameter � local around �0.

Example 1: We consider a static random utility model. Suppose that the utility of agent

i with covariates Xi and stochastic errors �i when she makes the j-th choice is given by

uj(Xi; �ij; �): Then she makes the j-th choice when

�j(Xi; �i; �) = uj(Xi; �ij; �)� max
1�k�J;k 6=j

uk(Xi; �ik; �)

is greater than zero. In this case, the decision rule �j is de�ned by

�j(Xi; �i; �) = 1 f�j(Xi; �i; �) > 0g :

Suppose that for each � 2 �; and for each x in the support of X; and for j = 1; 2; � � �; J;���uj(Xi; �ij; �)� uj(Xi; �ij;
~�)
��� � Cjj� � ~�jj:

Then the condition of Assumption 2(ii) holds. �
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The following theorem establishes the rate of convergence for the TSF-MLE estimator �̂

for �nite R.

Theorem 2 (The Rate of Convergence for Fixed R) : Suppose that Assumptions

1-2 hold. Then for each �xed R � 2; we have

n1=3(�̂ � �0) = OP (1):

Theorem 2 tells us that the TSF-based estimator becomes more accurate as the sample

size becomes large, even when the simulation number is �nite. In fact, the estimator �̂

follows the cube-root asymptotics of Kim and Pollard (1990) with �xed R and n ! 1.
The cube-root asymptotics occurs precisely in the same way it occurs in Manski�s maximum

score estimation. When R tends to in�nity slightly faster than
p
n, not only is the

p
n-rate

of convergence restored, but also the estimator achieves the e¢ ciency of MLE.

Theorem 3 (Asymptotic Normality) : Suppose that Assumptions 1-2 hold. As n;R!
1 jointly, with

p
n=R! 0;

p
n(�̂ � �0)!d N(0; V );

where V = 
�1 and


 = E

24 JX
j=1

Dij
@

@�
log pj(Xi; �0)

! 
JX
j=1

Dij
@

@�
log pj(Xi; �0)

!>35 :
The rate condition

p
n=R ! 0 is typically used in the simulated likelihood literature. (See

Gouriéroux and Monfort (1991) and Stern (1997).)

When R is small, the asymptotic distribution of �̂ is not normal, and hence one cannot

use the usual standard error formula of MLE. This fact applies commonly to all the simulated

likelihood based estimators in the literature to our best knowledge. It appears to us that the

computation of a con�dence set with a small simulation number is still an open problem both

in theory and in practice. One may suggest using subsampling that is known to work for an

estimator that follows cube-root asymptotics (Delgado, Rodríguez-Poo, and Wolf (2001)).

However, in order for the computation of a con�dence set to be e¤ective, it should not take

long; otherwise, it would be better to use the time to simply increase the simulation number

and resort to asymptotic normal approximation. This is why we believe the subsampling

approach in our situation is not a desirable option.

Needless to say, the �nite R asymptotics does not suggest choosing a small R over a large

R. It is always better to use a large simulation number as far as the computation cost is
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not too large. Therefore, the choice of R is by no means an issue of delicacy like bandwidth

choice in nonparametric estimation. In the latter case, bandwidth should be chosen to be

not too small and not too large relative to the sample size in order to ensure consistency of

the estimator. On the other hand, choice of the simulation number R does not a¤ect the

consistency of the TSF-based estimator, and it is always better to use larger R for e¢ ciency.

Example 2: Cohort-Level Aggregate Data: Suppose that we have K number of

cohorts and n(k) number of agents in the k-th cohort. The individual decision variable

Dij(k) corresponding to the agent i in cohort k choosing the j-th choice is de�ned as a

binary variable such that

Dij(k) = �j(X(k); �ij(k); �); when the j-th choice is made by the agent i in cohort k:

Note that the observed variableX(k) is only a cohort-level aggregate covariate. The variables

Dij(k) and �ij(k) represent the unobserved micro variables for each individual. De�ne

Dj(k) =
1

n(k)

n(k)X
i=1

Dij(k)

and D(k) = (D1(k); � � �; DJ(k))
>: The variable Dj(k) indicates a proportion of agents in

cohort k that have chosen the j-th choice. The econometrician observes only the cohort-

level aggregate data fD(k); X(k)gKk=1: The (infeasible) log-likelihood of the micro data after
normalizing by n(k) is equal to

KX
k=1

JX
j=1

1

n(k)

n(k)X
i=1

Dij(k) logP fDij(k) = 1jX(k); �g :

When the conditional distribution of the stochastic error �ij(k) given X(k) is identical for

each individual i; the conditional probability P fDij(k) = 1jX(k); �g is identical for all the
individuals in the k-th cohort. This is the case when f�ij(k) : i = 1; � � �; n(k); k = 1; � � �; Kg
is i.i.d. and independent of fX(k) : k = 1; � � �; Kg: In this case, we can write the cohort-level
likelihood as

KX
k=1

JX
j=1

Dj(k) logP fDij(k) = 1jX(k); �g :

This is the log-likelihood using only the observable cohort characteristics and the proportion

of agents in each cohort that made certain decisions. Let F be the fully known marginal

distribution of (�i1(k); � � �; �iJ(k)): Then, one draws R random sample from F to obtain
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f��r(k)gRr=1 where ��r(k) = (��r1(k); � � �; ��rJ(k)): We de�ne the simulated frequency

mjR(k; �) =
1

R

RX
r=1

�j(X(k); �
�
r;j(k); �):

Then using the transform that we propose here, we can construct an objective function as

follows

l�K;R(�) =
1

K

KX
k=1

JX
j=1

Dj(k)TR;j(mR(k; �)):

Note that

E [Dj(k)jX(k)] = P fDij(k) = 1jX(k)g :

Hence one can check su¢ cient conditions with this choice probability. The results of Theo-

rems 1-3 carry over to this case as long as the data fD(k); X(k)gKk=1 are cohort-wise i.i.d.

4 Monte Carlo Study

We performed a Monte Carlo simulation study based on three di¤erent models. The �rst

model is a simple multinomial logit model where we can evaluate the choice probability ex-

plicitly and compare simulation-based estimators with MLE. The second model is a dynamic

schooling choice model where the unobserved heterogeneity in the payo¤ functions is time

invariant. In this case, the model can be written as a static discrete choice model. The third

model is a dynamic schooling model where unobserved heterogeneity in the payo¤ functions

is time-varying. In this case, one cannot reduce the dynamic model to a static discrete choice

model.

4.1 Multinomial Logit Models

We consider the following standard logit models, where we can explicitly compare the true

MLE, the Lerman and Manski�s simulated frequency method, and our transformed simulated

frequency method. The choice probability is speci�ed as follows:

PfDi1 = 1jXig =
1

1 + exp(X1i�1) + exp(X2i�2)
,

PfDi2 = 1jXig =
exp(X1i�1)

1 + exp(X1i�1) + exp(X2i�2)
; and

PfDi3 = 1jXig =
exp(X2i�2)

1 + exp(X1i�1) + exp(X2i�2)
:
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As for the distribution of (X1i; X2i)
>, the study considered the following three di¤erent speci-

�cations. Let Vi �Uniform[0; 1]; Zi � N(0; 1); B1i �Binomial(2; 0:3), B2i �Binomial(2; 0:5),
and Wi = Z1i + (B3i � 1=2)=4; where B3i �Bernoulli(0:3) and Z1i � N(0; 1). The random
variables Vi; Zi; Z1i; B1i; B2i; and B3i were drawn independently. Using these random vari-

ables, we speci�ed X1i and X2i as follows:

Speci�cation A: X1i = Z1i + Vi

X2i = Z2i + Vi

Speci�cation B: X1i = �(Z1i + Vi)� 1 + Vi
X2i = 2U1i � 4U22i + Vi

Speci�cation C: X1i = �(Z1i=2 + (B1i=2� 1)=4)� 1=2 +Wi

X2i = Zi=2 + �(B2i=2� 1)=4 +Wi)� 1=2:

The Monte Carlo simulation number was taken to be 5000.

Figure 4 reports the average of the mean absolute deviations of �̂1 and �̂2. Both in the

cases of the sample size equal to 300 and 1000, the TSF dominates the Lerman and Manski�s

simulated frequency method when the simulation number is small ranging from 10 to 100.

When the sample size is 300, this order of dominance is slightly reversed when the simulation

number is larger, although both converging to the mean absolute deviation of the MLE.

However, when the sample size is 1000, the estimator from the TSF method dominates that

of the Lerman and Manski�s method uniformly over all the simulation numbers considered.

As expected, the dominance is prominent when the simulation number is small. This is

because the TSF method delivers a consistent estimator even for a small simulation number

while the Lerman and Manski�s simulated frequency method does not.

4.2 Schooling Choice with Time Invariant Unobserved Hetero-

geneity

4.2.1 The Data Generating Process

In this section, we present and discuss results from a Monte Carlo simulation study based

on a model of schooling choice. The model involves observed ability a¤ecting each agent�s

labor market outcome, and unobserved heterogeneity in discount factor and preference. See

Willis and Rosen (1979) and Keane and Wolpin (1997) for structural models of education

with unobserved heterogeneity in the preferences.

Suppose that people make schooling decisions at the age 16 endowed with 10 years of

education. They can choose among the 4 alternatives: 1) to drop out of high school and
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Figure 4: Average Mean Absolute Deviation of Estimators of �1 and �2
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start working right away, 2) to graduate from high school attaining 12 years of education,

3) to graduate a 2-year college with 14 years of education, and 4) to graduate from college

with 16 years of education. After �nishing their respective schooling, they work until age 65

and there is no labor supply decision. Therefore, the number of periods in the model is 50

periods.

People are assumed to be heterogeneous in 1) two observed measures of ability (X1 and

X2) which a¤ect their labor market income, 2) unobserved discount factor and 3) unobserved

random utility value of schooling. Labor market income is determined by individuals�ability

and years of schooling and is assumed to follow the Mincer-type speci�cation:

wt = exp (�0 + �1X1 + �2X2 + �3E + "w) ;

where E is the years of education taking values of 10, 12, 14, and 16 and "w is normal, i.i.d.,

across individuals and periods with standard deviation of �w. Once an individual enters the

labor market and starts working, going back to school is not permitted in the model.

In each period t, the utility is given by Uw;t if the individual works, and Us;t if he attends

school. Also, we assume that the individual observes the labor income shock only after he

enters the labor market and, therefore, the expected value of the wage only enters the utility

function. This set-up yields the following two utilities from entering the labor market and

from school:

Uw;t = E (wtjX1; X2; Et) = exp

�
�0 + �1X1 + �2X2 + �3Et +

1

2
�2w

�
Us;t = 11fin high schoolg+ 21fin two-year collegeg+ 31fin four-year collegeg+ "s;

where Et denotes the years of education received up to t, so that

Et+1 = Et + 1fschooling is chosen at tg:

Here 1 is the average utility of attending high school (we assume that there is no tuition for

attending high school), 2 the average utility of attending two year college including tuition

cost, 3 the average utility of attending four year college including tuition cost, "s is mean

zero and normally distributed individual speci�c random e¤ect on schooling utility which

is independent across individuals, but is �xed over time for each individual. The standard

deviation of "s is denoted by �s:

We assume that the discount factor � is heterogeneous across people and is correlated
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with an observed covariate X3. It is speci�ed as

� =
1

1 + exp("� + �0 + �1X3)
; (20)

where "� is normally distributed with mean 0 and standard deviation �� and does not change

over time for each individual. The errors "w; "s; and "� are independent.

Let E be the total amount of schooling and U(E = a) be the discounted utility from

schooling choice E = a at the beginning of one�s life cycle. Given that working is an absorbing

state, we can represent this multi period dynamic programming model as a 4-choice static

model with the following random utilities:

U(E = 10) =

50X
t=1

�t�1e�0+�1X1+�2X2+�3�10+
1
2
�2w

U (E = 12) =
2X
t=1

�t�1 (1 + "s) +
50X
t=3

�t�1e�0+�1X1+�2X2+�3�12+
1
2
�2w

U (E = 14) =
2X
t=1

�t�1 (1 + "s) +
4X
t=3

�t�1 (2 + "s)

+
50X
t=5

�t�1e�0+�1X1+�2X2+�3�14+
1
2
�2w

U (E = 16) =
2X
t=1

�t�1 (1 + "s) +
6X
t=3

�t�1 (3 + "s)

+
50X
t=7

�t�1e�0+�1X1+�2X2+�3�16+
1
2
�2w :

Given the model structure, we expect people with higher ability X1 and X2; higher discount

factor � and higher utility value of schooling "s to attain a higher level of schooling.

We assume that the econometrician observes the ability measures X1 and X2; the school-

ing outcome, and characteristics X3 that a¤ect discount factor. Discount factor � and the

utility value of schooling "s are not observed. For simplicity, we assume that the parameters

in the wage equation are known and focus only on the parameters in the schooling utility

and the parameters in the discount factor. Hence the parameters of interest in this exercise

are as follows:

schooling utility parameters : 1; 2; 3; �s and

discount factor parameters : �0; �1; ��:
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For comparison with our TSF-MLE, we considered MSL estimator following Lerman

and Manski (1981)�s simulated frequency method, and its smoothed version (McFadden

(1989)). The Lerman and Manski �s simulated frequency method uses simulated frequencies

to compute simulated choice probabilities. To prevent the zero-probability problem, we

substituted 0:5=R for simulated probabilities that turned out to be zero. The second kind is

a smoothed MSL estimator which is computed by using the following smoothed simulated

choice probability:
1

R

RX
r=1

exp(Uj;r;t=�)

�Jj=1 exp(Uj;r;t=�)
: (21)

Here the parameter � is a smoothing parameter, larger values indicating more smoothing,

and Uj;r;t denotes the simulated value function at t of choice j at the r-th simulation. The

smoothing parameter chosen from f0:1; 0:01g performed relatively better than other choices.
Note that except for the simulated frequency method of Lerman and Manski (1981) or

its smoothed version, we cannot apply the existing simulation methods that require the

presence of additive normal or logit errors in the random utility due to nonlinear unobserved

heterogeneity in discount factor.

The sample size was chosen among f100; 200; 500; 1000g and the simulation number from
f10; 20; 50; 100g: When the simulation number was equal to or greater than 100; the com-
parison was not much informative as most estimators perform well in our data generating

process. The Monte-Carlo simulation number was set to be 1000: The parameter values are

chosen as follows. As for wage parameters, �0 = 8, �1 = 1, �2 = 1; �3 = 0:07; and �w = 0:3.

As for the schooling utilities, 1 = 0; 2 = �5000; 3 = �20; 000; and �s = 5000: And

�nally, as for discount factors, �0 = �0:25 and �1 = 0:2:

4.2.2 The Results

The results are reported in Tables 5-8. In Table 5 we compare the overall simulation errors

in terms of the log-likelihood evaluation of the simulation-based estimator using the true

log-likelihood ln(�): This number is bounded by ln(�̂MLE) with �̂MLE denoting the MLE of

�0: As the number is higher, the simulation-based estimator su¤ers from a smaller overall

simulation error. First, note that the performance of the Lerman and Manski�s simulated

frequency method is di¤erent from its smoothed version. The simulation results show that

the use of smoothing does not necessarily improve the performance, and sometimes, even

worsen the quality of the estimator.
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Table 5: True Log Likelihood Evaluated at the Estimators

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE -857.99 -853.07 -848.21 -845.89

n = 300 Lerman-Manski -912.13 -859.81 -848.93 -849.82

Smoothed Lerman-Manski (� = 0:1) -905.51 -871.45 -849.19 -845.93

Smoothed Lerman-Manski (� = 0:01) -903.98 -871.36 -849.19 -846.00

TSF-MLE -855.51 -852.52 -850.57 -849.78

n = 1000 Lerman-Manski -907.59 -858.35 -851.15 -849.82

Smoothed Lerman-Manski (� = 0:1) -937.18 -906.90 -856.37 -850.81

Smoothed Lerman-Manski (� = 0:01) -935.56 -906.91 -856.39 -850.85

TSF-MLE -853.35 -852.44 -851.85 -851.57

n = 5000 Lerman-Manski -905.72 -856.25 -852.12 -851.58

Smoothed Lerman-Manski (� = 0:1) -962.27 -949.84 -872.51 -855.93

Smoothed Lerman-Manski (� = 0:01) -960.47 -948.46 -872.59 -855.99

Table 6: MAE of Estimated 1

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 0.038 0.036 0.031 0.031

n = 300 Lerman-Manski 0.086 0.041 0.030 0.030

Smoothed Lerman-Manski (� = 0:1) 0.068 0.043 0.027 0.029

Smoothed Lerman-Manski (� = 0:01) 0.067 0.042 0.027 0.029

TSF-MLE 0.026 0.023 0.020 0.019

n = 1000 Lerman-Manski 0.080 0.029 0.019 0.018

Smoothed Lerman-Manski (� = 0:1) 0.098 0.083 0.023 0.018

Smoothed Lerman-Manski (� = 0:01) 0.097 0.082 0.024 0.017

TSF-MLE 0.016 0.015 0.012 0.012

n = 5000 Lerman-Manski 0.086 0.021 0.011 0.011

Smoothed Lerman-Manski (� = 0:1) 0.121 0.123 0.046 0.018

Smoothed Lerman-Manski (� = 0:01) 0.121 0.121 0.047 0.017
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Table 7: MAE of Estimated 2.

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 0.059 0.052 0.042 0.038

n = 300 Lerman-Manski 0.080 0.058 0.044 0.038

Smoothed Lerman-Manski (� = 0:1) 0.110 0.082 0.045 0.036

Smoothed Lerman-Manski (� = 0:01) 0.110 0.083 0.045 0.037

TSF-MLE 0.039 0.032 0.025 0.022

n = 1000 Lerman-Manski 0.067 0.043 0.026 0.023

Smoothed Lerman-Manski (� = 0:1) 0.084 0.084 0.051 0.028

Smoothed Lerman-Manski (� = 0:01) 0.084 0.085 0.051 0.027

TSF-MLE 0.022 0.018 0.014 0.012

n = 5000 Lerman-Manski 0.049 0.030 0.015 0.012

Smoothed Lerman-Manski (� = 0:1) 0.042 0.042 0.086 0.046

Smoothed Lerman-Manski (� = 0:01) 0.045 0.041 0.085 0.046

Table 8: MAE of Estimated 3.

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 0.040 0.040 0.037 0.036

n = 300 Lerman-Manski 0.081 0.046 0.037 0.036

Smoothed Lerman-Manski (� = 0:1) 0.053 0.042 0.032 0.034

Smoothed Lerman-Manski (� = 0:01) 0.051 0.042 0.033 0.033

TSF-MLE 0.029 0.026 0.023 0.022

n = 1000 Lerman-Manski 0.078 0.034 0.024 0.022

Smoothed Lerman-Manski (� = 0:1) 0.080 0.055 0.027 0.020

Smoothed Lerman-Manski (� = 0:01) 0.080 0.056 0.026 0.020

TSF-MLE 0.019 0.015 0.012 0.012

n = 5000 Lerman-Manski 0.088 0.028 0.013 0.011

Smoothed Lerman-Manski (� = 0:1) 0.129 0.104 0.036 0.022

Smoothed Lerman-Manski (� = 0:01) 0.128 0.105 0.036 0.022

When the sample size is small, the performance of Lerman and Manski�s simulated fre-

quency method and its smoothed version becomes comparable to our methods. However,

when the sample size is large, the improved performance of our estimator becomes prominent

over that of the competing procedures. This con�rms our theoretical result that our estima-

tor is consistent even when the simulation number is small, but the Lerman and Manski�s

procedures do not possess this property.
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A similar pattern of performance comparison is obtained in terms of mean absolute

errors (MAE) of individual estimators, as shown in Tables 6-8. While not reported here, we

observed a similar pattern of performance for other parameters.

Lastly, in Table 9, we report a sample of computing time for each method. Overall, it

is easily seen that as one increases n and R, the computation time increases. This suggests

that an estimator that maintains good quality for a smaller simulation number R is also

computationally more convenient. The computing times for the TSF method and Lerman

and Manski�s simulated frequency method turned out to be similar, except when R = 100

and n = 100 or 200. In our simulation study, the smoothed version of Lerman and Manski�s

method does not show computational e¢ ciency.

Table 9: Computing Time for Obtaining a Point Estimate (in Median Seconds from 1000

Simulations)

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 2 4 8 16

n = 100 Lerman-Manski 2 6 7 9

Smoothed Lerman-Manski (� = 0:1) 4 3 6 14

Smoothed Lerman-Manski (� = 0:01) 3 7 7 27

TSF-MLE 4 11 11 18

n = 200 Lerman-Manski 5 8 10 13

Smoothed Lerman-Manski (� = 0:1) 7 12 11 21

Smoothed Lerman-Manski (� = 0:01) 8 15 11 23

TSF-MLE 9 9 17 32

n = 500 Lerman-Manski 10 14 16 31

Smoothed Lerman-Manski (� = 0:1) 18 16 26 51

Smoothed Lerman-Manski (� = 0:01) 20 24 25 54

TSF-MLE 12 15 32 65

n = 1000 Lerman-Manski 13 15 30 62

Smoothed Lerman-Manski (� = 0:1) 20 28 57 105

Smoothed Lerman-Manski (� = 0:01) 32 43 56 109

29



4.3 Schooling Choice with Time-Varying Unobserved Heterogene-

ity

4.3.1 The Data Generating Process

The schooling choice model considered here is the same as the previous model except that

the utility of schooling involves an idiosyncratic shock each period which is observed by

the individual before he makes a choice but is not observed by the econometrician. More

speci�cally, the utility from schooling at period t is given by

Ust(Et) = 0 + 11fEt � 4g+ "s;t;

where "s;t is the idiosyncratic shock. Here 0 is utility of schooling in the �rst 4 years of

schooling and 1 is the additional utility of schooling, potentially associated with the tuition

cost of college in which case 1 < 0:

The decision rule for an individual is written in a standard dynamic programming frame-

work. Given that leaving schooling is an absorbing state, we look at the decisions at t who

have continued to school up to t� 1 with E = t� 1. The value of attending school and the
value of working at education level E and at period t are given by

Vs (t; E) = Ust(E) + �E [max fVs (t+ 1; E + 1) ; Vw (E + 1)g jX;E; "�]

Vw (t; E) = Uw;t(E) +
T�tX
�=1

��Uw;t(E);

where "� is the error term in (20) and X = (X1; X2; X3)
>: Here

Uw;t(E) = E (wtjX1; X2; E) = exp

�
�0 + �1X1 + �2X2 + �3E +

1

2
�2w

�
:

Individuals will attend school if Vs (t; E) > Vw (t; E).

While the expected value function Vs (t; E) depends not only on the observable variables

of X�s, but also on the unobservable component of "�; the choice probability of education

requires integration over "�. In this situation, the method of smoothed simulated frequencies

such as (21) is quite cumbersome, because one then needs to smooth choice probabilities of

the binary decision on schooling or work from t = 0 to t = E, as well as the probability

of leaving school at t = E + 1. On the other hand, the method of TSF and Lerman and

Manski�s simulated frequencies is computationally e¢ cient, because one can directly count

the number of simulated outcomes that match the given amount of schooling observed for

each individual.
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The simulation was performed as follows. First, we drew realizations from the distribu-

tions of "� and X that were set to be time-invariant. Then, for each simulated period, we

drew realizations from the distribution of "s;t, and calculated simulated versions of Vs (t; E)

and Vw (t; E) : These simulated versions of value functions as well as the given levels of X�s

and "� constitute individual decision rules. Following these decision rules, we simulated in-

dividual work/schooling choices and saved the results. We performed the same steps now

beginning with another set of realizations from the distributions of "� and X. By repeating

this process, we obtained simulated frequencies of each individual�s choice corresponding to

di¤erent values of X�s and "�. Using these simulated frequencies, we performed simulated

maximum likelihood estimation in two di¤erent ways: one using our TSF-based method and

the other following Lerman and Manski�s simulated frequency method. Note that there are

11 discrete choices (E = 0 to E = 10) which come from the binary choices between work and

school at each point of time over the life cycle. (Recall that in this model, once an individual

decides to work, she cannot come back to school for the rest of her life.)

The parameters used in the simulation study are as follows. As for schooling parameters,

0 = 10; 000; 1 = �10; 000; and �s = 5; 000. Regarding observable characteristics vector
X; it is speci�ed as follows.0B@ X1

X2

X3

1CA =

0B@ 1 0 0
1p
2

1p
2

0
1
2

�1
2

1p
2

1CA
0B@ �1

�2

�3

1CA ;
where ��s are i.i.d. standard normal.

In the actual simulation, we �x all the wage parameters, and estimate the six of the

schooling parameters and discount factor parameters. The likelihood values based on the

estimators and the mean absolute deviations from the true parameters are reported.

4.3.2 The Results

The results are reported in Tables 10-16. The performance of TSF-MLE overall performs

better than that of Lerman and Manski�s simulated frequency method. In terms of true

log-likelihood evaluated at the estimators, the estimator based on TSF-MLE is closer to the

true MLE than the estimator of Lerman and Manski�s simulated frequency method (Table

10). Also the MAEs of parameter estimates from TSF-MLE are mostly smaller than those

from Lerman and Manski�s simulated frequency method.
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Table 10: True Log Likelihood Evaluated at the Estimators

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE -1695.69 -1690.51 -1685.33 -1682.72

n = 300 Lerman-Manski -1829.93 -1711.97 -1686.86 -1686.24

TSF-MLE -1692.47 -1690.45 -1687.17 -1685.97

n = 1000 Lerman-Manski -1837.39 -1713.67 -1688.82 -1686.24

TSF-MLE -1689.55 -1688.54 -1687.55 -1687.12

n = 5000 Lerman-Manski -1840.09 -1713.68 -1689.38 -1687.36

Table 11: MAE of Estimated �0

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 0.0307 0.0283 0.0249 0.0234

n = 300 Lerman-Manski 0.0580 0.0396 0.0274 0.0235

TSF-MLE 0.0198 0.0184 0.0159 0.0156

n = 1000 Lerman-Manski 0.0562 0.0344 0.0208 0.0159

TSF-MLE 0.0124 0.0111 0.0099 0.0088

n = 5000 Lerman-Manski 0.0600 0.0341 0.0169 0.0107

Table 12: MAE of Estimated �1

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 0.0331 0.0304 0.0278 0.0243

n = 300 Lerman-Manski 0.0959 0.0548 0.0326 0.0249

TSF-MLE 0.0207 0.0197 0.0167 0.0157

n = 1000 Lerman-Manski 0.1042 0.0513 0.0231 0.0167

TSF-MLE 0.0132 0.0114 0.0099 0.0088

n = 5000 Lerman-Manski 0.1087 0.0482 0.0170 0.0104

Table 13: MAE of Estimated ��

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 0.0107 0.0107 0.0105 0.0102

n = 300 Lerman-Manski 0.0110 0.0097 0.0095 0.0098

TSF-MLE 0.0097 0.0099 0.0091 0.0095

n = 1000 Lerman-Manski 0.0093 0.0079 0.0078 0.0078

TSF-MLE 0.0090 0.0085 0.0080 0.0075

n = 5000 Lerman-Manski 0.0083 0.0068 0.0057 0.0058
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Table 14: MAE of Estimated 0

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 286.15 269.50 251.72 241.27

n = 300 Lerman-Manski 908.56 378.80 298.93 268.83

TSF-MLE 228.25 220.92 201.30 200.21

n = 1000 Lerman-Manski 1159.10 347.30 287.80 239.13

TSF-MLE 161.32 156.11 151.45 144.59

n = 5000 Lerman-Manski 1652.87 406.66 305.05 219.30

Table 15: MAE of Estimated 1

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 279.91 242.48 221.05 222.13

n = 300 Lerman-Manski 1427.69 471.45 251.70 232.17

TSF-MLE 210.76 194.12 179.55 179.12

n = 1000 Lerman-Manski 1632.24 450.25 229.41 192.51

TSF-MLE 145.05 135.32 139.53 131.75

n = 5000 Lerman-Manski 2094.36 497.22 237.65 168.65

Table 16: MAE of Estimated �s

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 823.64 764.97 645.38 592.98

n = 300 Lerman-Manski 1493.10 839.97 569.71 560.06

TSF-MLE 633.43 579.57 448.05 390.52

n = 1000 Lerman-Manski 1709.34 863.23 382.59 371.73

TSF-MLE 398.67 337.53 262.41 211.04

n = 5000 Lerman-Manski 1797.97 961.55 256.57 192.67

In Table 17, we report the computing time taken for this simulation study. The computing

time is substantially longer than that from the previous dynamic schooling model. This again

emphasizes the fact that using a smaller simulation number in the case of a large sample size

is computationally more convenient. The computing times for the TSF method and Lerman

and Manski�s method are overall similar. This a¢ rms our claim that using TSF does not

cause much additional computational cost beyond that of Lerman and Manski.
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Table 17: Computing Time for Obtaining a Point Estimate (in Seconds on Average from 1000

Simulations)

Sample Size Simulation Methods R = 10 R = 20 R = 50 R = 100

TSF-MLE 85.6 107.9 193.6 306.3

n = 300 Lerman-Manski 102.7 134.7 242.4 302.2

TSF-MLE 199.4 252.9 438.0 759.1

n = 1000 Lerman-Manski 268.8 331.6 465.7 762.4

TSF-MLE 839.6 1066.8 1902.1 3296.2

n = 5000 Lerman-Manski 969.1 1187.4 1959.3 3387.8

5 Conclusion

In this paper we propose an alternative method of MSL for discrete choice models that

is applicable in various speci�cations of random utilities. While the method is as easy

to apply as Lerman and Manski�s simulated frequency method, it is also free from the

issue of zero simulated choice probabilities and the issue of simulation bias. Furthermore,

when the simulation number is large, the estimator is bound to achieve the e¢ ciency of the

infeasible MLE. This advantage is demonstrated both through the asymptotic result that

shows consistency of the estimator with a �nite simulation number and through various

Monte Carlo simulation results.

6 Appendix: Proofs of the Results

Throughout the proofs, the notation C denotes a constant that can take di¤erent values in di¤erent places.

Proof of Lemma 1 : Let T = (T1; � � �; TJ) be given collection of maps Tj : NR;J ! R; j = 1; � � �; J; such
that for each j = 1; 2; � � �; J;

Tj(m) = ~T (mj ;m�j); (22)

for a �xed map ~T : NR;J ! R, where m�j = (m1; � � �;m�j�1;m�j+1; � � �;mJ). Using this map, we write

�R(p; p0;T ) =
JX
j=1

pj0
X

m2NR;J

Tj (m)

 
R

m1; � � �;mJ

!
p1
m1 � � � pJmJ :
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Note that the derivative of �R with respect to pk at p = p0 is

�k(p0; p0;T ) =
@

@pk
�R(p; p0;T )jp=p0

=
JX
j=1

pj0
X

m2NR;J

~T (mj ;m�j)

 
R

m1; � � �;mJ

!
mkp

m1
10 p

m2
20 � � � p

mk�1
k0 � � � pmJ

J0

=
X

m2NR;J

ck(m1; � � �;mJ)p
m1
10 � � � p

mJ

J0 ;

where ck(m1; � � �;mJ) are coe¢ cients of p
m1
10 � � � p

mJ

J0 . For brevity, put p = p0 so that we write �1(p) �
�1(p; p; fTR;jg) as

�1(p) =
JX
j=1

X
m2NR;J

~T (mj ;m�j)

 
R

m1; � � �;mJ

!
m1p

m1�1
1 pm2

2 :::p
mj�1
j�1 p

mj+1
j p

mj+1

j+1 � � � pmJ

J :

Then it su¢ ces to show that cj(m1; � � �;mJ) is the same for all j = 1; � � �; J; or, without loss of generality,
that

c1(m1; � � �;mJ) = c2(m1; � � �;mJ):

First observe that c2 (m1;m2; � � �;mJ) = c1 (m2;m1; � � �;mJ) by the form of ~T in (22) and �R: Hence it

su¢ ces to show that

c1 (m1;m2; � � �;mJ) = c1 (m2;m1; � � �;mJ) : (23)

To show this, �rst note that

c1(m1; � � �;mJ) = ~T (m1;m�1)

 
R

m1; � � �;mJ

!
m1 + UR (24)

where

UR =
JX
j=2

~T (m1 + 1;m2; � � �;mj�1;mj � 1;mj+1; � � �;mJ)

�
 

R

m1 + 1;m2; � � �;mj�1;mj � 1;mj+1; � � �;mJ

!
(m1 + 1) :

The relation in (24) holds for any (m1; � � �;mJ) 2 NR;J and we can simply extend the domain of ~T (mj ;m�j)

to negative numbers by taking ~T (mj ;m�j) = 0 if mj < 0: By noting 
R

m1 + 1;m2; � � �;mj�1;mj � 1;mj+1; � � �;mJ

!
(m1 + 1) =

 
R

m1; � � �;mJ

!
mj ;

we write the coe¢ cient c1(m1; � � �;mJ) in (24) as 
R

m1; � � �;mJ

!24m1
~T (m1;m�1) +

X
j 6=1

mj
~T (mj � 1;m1 + 1;m2; � � �;mj�1;mj+1; � � �;mJ)

35 (25)
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and similarly, write c1(m2;m1;m3; � � �;mJ) as 
R

m1; � � �;mJ

!24m2
~T (m2;m�2) +

X
j 6=2

mj
~T (mj � 1;m1 + 1;m2; � � �;mj�1;mj+1; � � �;mJ)

35 (26)

Since the factor in front of the above brackets in (25) and (26) are the same, it su¢ ces for (23) to show that

m1
~T (m1;m�1) +

X
j 6=1

mj
~T (mj � 1;m1 + 1;m2; � � �;mj�1;mj+1; � � �;mJ)

= m2
~T (m2;m�2) +

X
j 6=2

mj
~T (mj � 1;m2 + 1;m1; ; � � �;mj�1;mj+1; � � �;mJ) :

By rearranging terms on both sides of the second equality, we obtain

m1

h
~T (m1;m2; � � �;mJ)� ~T (m1 � 1;m2 + 1;m3; � � �;mJ)

i
(27)

+
JX
j=3

mj

h
~T (mj � 1;m1 + 1;m2; � � �;mJ)� ~T (mj � 1;m2 + 1;m1; � � �;mJ)

i
= m2

h
~T (m2;m1;m3; � � �;mJ)� ~T (m2 � 1;m1 + 1;m3; � � �;mJ)

i
:

Therefore, the proof is complete once we show that the above equality is satis�ed by our choice of (36).

One can check this equality immediately by considering each case: m1 = m2 = 0 and m1;m2 > 0 and

m1 > 0; m2 = 0 and �nally m1 = 0; m2 > 0: However, here we take a di¤erent route, showing how the form

of (36) was discovered. In the proof we generate su¢ cient conditions for the equality in (27). Then these

su¢ cient conditions lead to the solution of (36).

Without loss of generality, we assume m1 � m2 and m3 � m4 � � � � � mJ : If m1 = m2 = 0, the equality

in (27) is trivially satis�ed.

Case 1) m1;m2 > 0: Then, the condition (27) is satis�ed if

m1

h
~T (m1;m2; � � �;mJ)� ~T (m1 � 1;m2 + 1;m3; � � �;mJ)

i
= 1; (28)

and
~T (mj � 1;m1 + 1;m2; � � �;mJ)� ~T (mj � 1;m2 + 1;m1; � � �;mJ) = 0: (29)

Restriction (29) implies that ~T (m1;m2; :::;mJ) depends on (m2; ���;mJ) only through �(m2; ���;mJ); the

number of non-zero elements from the non-choices fm2; :::;mJg. To see this, choose (m0
2; � � �;m0

J) such that

�(m0
2; � � �;m0

J) = �(m2; � � �;mJ): Then, we can show that

~T (m1;m2; :::;mJ) = ~T (m1;m
0
2; :::;m

0
J) ;

by repeating the process in (29) with adding and subtracting by 1 between two non-zero members from

fm2; :::;mJg.
Therefore we write

~T (m1;m2; :::;mJ) = ~T (m1; � (m2; :::;mJ));

where � denotes the number of non-zero elements in the non-choice set. Using the observation in (29), (28)
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can be re-written as

m1

h
~T (m1; � (m2; � � �;mJ))� ~T (m1 � 1; � (m2 + 1;m3; � � �;mJ))

i
= 1; (30)

and note that � (m2; � � �;mJ) = � (m2 + 1;m3; � � �;mJ) : Hence we extract one condition for ~T that leads to

(30):
~T (m; �)� ~T (m� 1; �) = 1

m
for all possible m: (31)

Case 2) m1 > 0 and m2 = 0: If further, m3 = 0 then m1 is simply R: In this case,

m1

h
~T (m1;m2; � � �;mJ)� ~T (m1 � 1;m2 + 1;m3; � � �;mJ)

i
(32)

= R
h
~T (R;m2 = 0; � � �;mJ = 0)� ~T (R� 1;m2 + 1;m3 = 0; � � �;mJ = 0)

i
= 0

or
~T (R; 0) = ~T (R� 1; 1) : (33)

If on the other hand m3 > 0; we have from (14)

m1

h
~T (m1;m2; � � �;mJ)� ~T (m1 � 1;m2 + 1;m3; � � �;mJ)

i
+

JX
j=3

mj

h
~T (mj � 1;m1 + 1;m2; � � �;mJ)� ~T (mj � 1;m2 + 1;m1; � � �;mJ)

i
= 0:

By subtracting and adding back ~T (m1 � 1;m2;m3 + 1; � � �;mJ) ; we can write the above equation as

m1

h
~T (m1;m2;m3; � � �;mJ)� ~T (m1 � 1;m2;m3 + 1; � � �;mJ)

i
(34)

= m1

h
~T (m1 � 1;m2 + 1;m3; � � �;mJ)� ~T (m1 � 1;m2;m3 + 1; � � �;mJ)

i
+

JX
j=3

mj

h
~T (mj � 1;m2 + 1;m1; � � �;mJ)� ~T (mj � 1;m1 + 1;m2; � � �;mJ)

i

Note that the left hand side in (34) is 1 by (30) and the di¤erence in the number of non-zero elements

in ~T for each di¤erence term on the right-hand side is exactly 1. For example, � (m2 + 1;m3; � � �;mJ) =

� (m2;m3 + 1; � � �;mJ) + 1 and � (m2 + 1;m1; � � �;mJ) = � (m1 + 1;m2; � � �;mJ) + 1: Therefore, if

~T (m; �)� ~T (m; � � 1) = c

for some c independent of m and �, (34) is satis�ed. In this case, (34) becomes

1 =
JX
j=1

cmj = cR or c =
1

R
:

Therefore, we extract a condition for (34):

~T (m; �)� ~T (m; � � 1) = 1

R
(35)
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for all m and �: To summarize, conditions (31), (33), and (35) are su¢ cient for (27).

Now, if we de�ne

~T (mj ;m�j) = �
R�mj�1X
s=0

1

R� s +
�(m�j)

R
; (36)

this choice of ~T satis�es conditions (31), (33), and (35), and hence the equation (27) follows, completing the

proof. On the other hand, it is also worth noting that the conditions (31), (33), and (35) for ~T also lead to

the form of (36) up to an a¢ ne transform. This is the way the transform TR is determined.

Proof of Lemma 2 : We �rst consider the case of J = 3. Recall

�R (p; p0;TR) =
JX
j=1

pj0
X

m2NR;3

 
R

m1;m2;m3

!
TR;j (m1;m2;m3) p

m1
1 pm2

2 pm3
3

where TR;j (m1;m2;m3) = ~T (mj ;m�j) with ~T as de�ned in (36). Recall that �j denotes the derivative of

�R(p; p0; fTR;jg) with respect to pj ; so that

�1 � �3 =
JX
j=1

pj0
X

m2NR;3

 
R

m1;m2;m3

!
TR;j (m1;m2;m3)

�
�
m1p

m1�1
1 pm2

2 pm3
3 1fm1 > 0g �m3p

m1
1 pm2

2 pm3�1
3 1fm3 > 0g

	
:

By relabeling the terms (m3 as m3 + 1 and m1 as m1 � 1),

�3 =
JX
j=1

pj0
X

m2NR;3

 
R

m1 � 1;m2;m3 + 1

!
TR;j (m1 � 1;m2;m3 + 1) (m3 + 1)p

m1�1
1 pm2

2 pm3
3 1fm1 > 0g

=
JX
j=1

pj0
X

m2NR;3

 
R

m1;m2;m3

!
TR;j (m1 � 1;m2;m3 + 1)m1p

m1�1
1 pm2

2 pm3
3 1fm1 > 0g:

Hence the di¤erence �1 � �3 is equal to
P

m2NR;3 BR(m)p
m1�1
1 pm2

2 pm3
3 ; where

BR(m) =
3X
j=1

pj0

 
R

m1;m2;m3

!
fTR;j (m1;m2;m3)� TR;j (m1 � 1;m2;m3 + 1)gm11fm1 > 0g

However, by the de�nition of TR;j ; we have

m1 [TR;j (m1;m2;m3)� TR;j (m1 � 1;m2;m3 + 1)]

= m1 � 1fj = 1g
�
1

m1
� 1fm3 = 0g

R

�
+m1 � 1fj = 2g

�
1fm1 = 1g

R
� 1fm3 = 0g

R

�
+m1 � 1fj = 3g

�
�1

m3 + 1
+
1fm1 = 1g

R

�
:
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Plugging this back into BR(m) we obtain

BR(m) = p10

 
R

m1;m2;m3

!h
1� 1fm3 = 0g

m1

R

i
+p20

 
R� 1

m1 � 1;m2;m3

!
[1fm1 = 1g � 1fm3 = 0g]

+p30

 
R

m1 � 1;m2;m3 + 1

!�
�1 + 1fm1 = 1g

m3 + 1

R

�
:

Now, write the summand in �1 � �3:

BR(m)p
m1�1
1 pm2

2 pm3
3 =

(
p10
p1

 
R

m1;m2;m3

!
pm1
1 pm2

2 pm3
3 � p10

 
R� 1

m1 � 1;m2; 0

!
pm1�1
1 pm2

2

)
I(m1 > 0)

+p20

 
R� 1

0;m2;m3

!
pm2
2 pm3

3 � p20

 
R� 1

m1 � 1;m2; 0

!
pm1�1
1 pm2

2 I(m1 > 0)

�p30
p3

 
R

m1 � 1;m2;m3 + 1

!
pm1�1
1 pm2

2 pm3+1
3 I(m1 > 0) + p30

 
R� 1

0;m2;m3

!
pm2
2 pm3

3 :

Summing the above over m 2 NR;3 and rearranging the terms, we obtain that �1 � �3 is equal to

p10
p1

241� X
m2NR;3

 
R

0;m2;m3

!
pm2
2 pm3

3

35� p10 (p1 + p2)R�1 + p20 (p2 + p3)R�1 � p20 (p1 + p2)R�1
�p30
p3

241� X
m2NR;3

 
R

m1 � 1;m2; 0

!
pm1�1
1 pm2

2

35+ p30 (p2 + p3)R�1
or

p10

�
1

p1

�
1� (p2 + p3)R

�
� (p1 + p2)R�1

�
+ p20

h
(p2 + p3)

R�1 � (p1 + p2)R�1
i

�p30
�
1

p3

�
1� (p1 + p2)R

�
� (p2 + p3)R�1

�
:

Using the fact that p1 + p2 + p3 = 1 and p10 + p20 + p30 = 1; we �nd that the above becomes,

p10
p1

h
1� (1� p1)R

i
+ (1� p10) (1� p1)R�1

�p30
p3

h
1� (1� p3)R

i
� (1� p30) (1� p3)R�1

=
p10
p1
+

�
1� p10

p1

�
(1� p1)R�1 �

p30
p3
�
�
1� p30

p3

�
(1� p3)R�1 :

We de�ne �ij = @�i=@pj : Then @ (�1 � �3) =@p1 is equal to

�11 � �31 = �
p10
p21
+
p10
p21
(1� p1)R�1 �

�
1� p10

p1

�
(R� 1) (1� p1)R�2
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and by symmetry, @ (�3 � �1) =@p3 is equal to

�33 � �31 = �
p30
p23
+
p30
p23
(1� p3)R�1 �

�
1� p30

p3

�
(R� 1) (1� p3)R�2 :

We also obtain that @ (�1 � �3) =@p2 = �12 � �32 = 0: Likewise, from

�2 � �3 =
p20
p2
+

�
1� p20

p2

�
(1� p2)R�1 �

p30
p3
�
�
1� p30

p3

�
(1� p3)R�1 ;

we obtain

�22 � �32 = �p20
p22
+
p20
p22
(1� p2)R�1 �

�
1� p20

p2

�
(R� 1) (1� p2)R�2 ;

�33 � �32 = �p30
p23
+
p30
p23
(1� p3)R�1 �

�
1� p30

p3

�
(R� 1) (1� p3)R�2 ; and

�21 � �31 = 0:

Note also that �13 � �33 = �23 � �33: We write

�R(p; p0;TR) = �R((p1; p2; p3); p0;TR)

= �R((p1; p2; 1� p1 � p2); p0;TR)
= ~�R(~p; p0;TR):

Viewing this as a function of (p1; p2), we �nd that its Hessian matrix is given by

H3 �
 
�11 � �31 � (�13 � �33) �21 � �31 � (�23 � �33)
�12 � �32 � (�13 � �33) �22 � �32 � (�23 � �33)

!
(37)

=

 
�11 � �31 �21 � �31
�12 � �32 �22 � �32

!
�
 
�13 � �33 �13 � �33
�13 � �33 �13 � �33

!

=

 
�11 � �31 0

0 �22 � �32

!
� (�13 � �33)

 
1 1

1 1

!
:

Note that �11 � �31 is only a function of p10 and p1. We want to show

�11 � �31 = �p10
p21
+
p10
p21
(1� p1)R�1 �

�
1� p10

p1

�
(R� 1) (1� p1)R�2 (38)

=
p10
p21
h(R)� (R� 1)(1� p1)R�2;

where h(R) = (1� p1)R�1 + p1(R� 1)(1� p1)R�2 � 1. We rewrite

h(R) = e(R�2) log(1�p1) (1 + (R� 2)p1)� 1:
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Now the �rst order derivative of h(R) is given by

h0(R) = e(R�2) log(1�p1)flog(1� p1)(1 + (R� 2)p1) + p1g
� e(R�2) log(1�p1)flog(1� p1) + p1g � 0

when R � 2, because log(1� p1)+ p1 � 0 for p1 2 [0; 1]. Therefore, h(R) is decreasing in R. In view of (38),
this implies that

�11 � �31 � max
�
p10
p21
h(2)� 1; p10

p21
h(3)

�
= maxf�1;�p10g � �p10 � �":

Similarly, �22 � �32 � �" and �33 � �13 � �". Therefore, from (37),

a>H3a � �2"

0@J�1X
j=1

a2j

1A :
Consider the case J > 3. First, we get

�j � �k =
pj0
pj
+

�
1� pj0

pj

�
(1� pj)R�1 �

pk0
pk

�
�
1� pk0

pk

�
(1� pk)R�1 ;

for all j; k = 1; 2; :::; J: Then it su¢ ces to check the negative de�niteness of the matrix0BBB@
�11 � �J1 0 ::: 0

0 �22 � �J2 ::: 0

::: ::: ::: :::

0 0 ::: �J�1;J�1 � �J;J�1

1CCCA� (�1J � �JJ)
0BBB@

1 1 ::: 1

1 1 ::: 1

::: ::: ::: :::

1 1 ::: 1

1CCCA :

And as before, it su¢ ces to show that �11 � �J1 < 0 for all p1 and p10; because then, by symmetry,

�jj � �J;j < 0 for all j = 1; 2; :::; J � 1. This can be proved exactly in the same way as before.

Proof of Theorem 1 : Take � 2 � such that jj� � �0jj > �, for some � > 0. Then

P fjjpi(�)� pi(�0)jj > 0g > 0:

Now, we focus on E [�R(pi(�); pi(�0);TR)]. We write ~pi(�) = (p1(Xi; �); � � �; pJ�1(Xi; �))> and ~�j =

@ ~�R(~p; p0;TR)=@~pj ; where ~�R is de�ned in (19). Then

E[�R(pi(�); pi(�0);TR)]�E [�R(pi(�0); pi(�0);TR)]
= E[~�R(~pi(�); pi(�0);TR)]�E[~�R(~pi(�0); pi(�0);TR)]:

By the mean value theorem, the last di¤erence is written as

J�1X
j=1

E
h
~�j(~pi(�0); pi(�0);TR)(~pj(Xi; �)� ~pj(Xi; �0))

i

+E

"
(~pi(�)� ~pi(�0))>

 
@2~�R(p

�
i ; pi(�0);TR)

@p@p>

!
(~pi(�)� ~pi(�0))

#
;
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where p�i lies on the line segment connecting ~pi(�) and ~pi(�0). The �rst term is zero because for all 1 � j < J;

~�j(~pi(�0); pi(�0);TR) = �j(pi(�0); pi(�0);TR)� �J(pi(�0); pi(�0);TR) = 0

and with the transform TR, it is shown in Lemma 1 that (11) is satis�ed. By Lemma 2, we have

E

"
(~pi(�)� ~pi(�0))>

 
@2~�R(p

�
i ; pi(�0);TR)

@p@p>

!
(~pi(�)� ~pi(�0))

#

�

0@J�1X
j=1

E
�
(~pij(�)� ~pij(�0))2

�1A "p:
The last term is positive because Pf~pij(�) 6= ~pij(�0)g > 0:

The proofs of Theorems 2-3 below require the following preliminary results. De�ne for � 2 �;

T �ij(�) � TR(m�
ij(�);m

�
�ij(�)) and �ij(�) � T �ij(�)� T �ij(�0): (39)

Lemma A1: Suppose that Assumptions 1 and 2 hold. Then there exists C > 0 that does not depend on R

such that for any � > 0;

inf
�2�nB(�0;�)

El�n;R(�)�El�n;R(�0) � C�2: (40)

Proof: From (9) and from the proof of Theorem 1, it is satis�ed that

inf
�2�nB(�0;�)

El�n;R(�)�El�n;R(�0) � inf
�2�nB(�0;�)

0@J�1X
j=1

E
�
(~pij(�)� ~pij(�0))2

�1AC"p;
where ~pi(�) = (p1(Xi; �); � � �; pJ�1(Xi; �))> and "p > 0 is the constant in Assumption 1(iii). The desired

result follows by applying Assumption 2(iii)(b) to the above expectation. �

Proof of Theorem 2 : We �rst show the consistency of the estimator. Given the identi�cation result in

Theorem 1, it su¢ ces for consistency to show that for each " > 0,

limsupn!1P

�
sup
�2�

��l�n;R(�)� lR(�)�� > "� = 0; (41)

where lR(�) = El�n;R(�): Since � is compact, for each � > 0, we have a �nite, say, C��d number of �-balls

centered at �m; m = 1; � � �;M�, which cover �, where C > 0 is a �xed constant and M� = C��d. First,

bound

P

�
sup
�2�

��l�n;R(�)� lR(�)�� > "� � An;R(") +Bn;R(");
where

An;R(") = P

(
sup
~�2�

sup
�2B(~�;�)

���l�n;R(�)� lR(�)� fl�n;R(~�)� lR(~�)g��� > "

2

)
and

Bn;R(") = P

�
max

1�m�M�

��l�n;R(�m)� lR(�m)�� > "

2

�
:
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As for An;R("), let ~T be as in (36) and write l�n;R(�) as

1

n

nX
i=1

JX
j=1

Dij ~T (m
�
ij(�);m

�
�ij(�))

= � 1
n

nX
i=1

JX
j=1

Dij

"
R�1X
s=0

1fs=R � 1�mjR(Xi; �
�
i ; �)=R� 1=Rg

R� s

#
+
1

n

nX
i=1

JX
j=1

Dij
�(m�

�ij(�))

R
:

Since mjR(Xi; �
�
i ; �) is an integer,

jl�n;R(�)� l�n;R(~�)j �
CR

n

nX
i=1

JX
j=1

1

(�����mjR(Xi; �
�
i ; �)

R
� mjR(Xi; �

�
i ;
~�)

R

����� � 1

R

)
;

where C > 0 does not depend on R. Therefore, for each ~� 2 �;

P

(
sup
~�2�

sup
�2B(~�;�)

���l�n;R(�)� lR(�)� fl�n;R(~�)� lR(~�)g��� > "

2

)

� 2JP

(
sup
~�2�

sup
�2B(~�;�)

sup
1�j�J

R

n

nX
i=1

1

(�����mjR(Xi; �
�
i ; �)

R
� mjR(Xi; �

�
i ;
~�)

R

����� � 1

R

)
� "

CJ

)

� 2CRJ2

"
P

(
sup
~�2�

sup
�2B(~�;�)

sup
1�j�J

�����mjR(Xi; �
�
i ; �)

R
� mjR(Xi; �

�
i ;
~�)

R

����� � 1

R

)
;

for some C > 0 that does not depend on R. The second inequality uses Markov�s inequality. By Assumption

2(ii), the last probability is bounded by

sup
x2X

RX
r=1

E

"
sup
~�2�

sup
�2B(~�;�)

����j(x; ��i;r; ~�)� �j(x; ��i;r; �)���
#
� CR�1=2;

for some C > 0. Hence by sending � ! 0, we obtain that limsupn!1An;R(") = 0.

As for Bn;R("), we bound it by

M� max
1�m�M�

P
n��l�n;R(�m)� lR(�m)�� > "

2

o
(42)

� M� max
1�m�M�

4

"2
E
h�
l�n;R(�m)� lR(�m)

�2i � max
1�m�M�

4M�

n"2
E
�
DijT

2
R;j(mi(�m))

�
� CM�R

2

n"2
:

The last bound vanishes as n ! 1 (while R is �xed.) Hence we have established (41). This completes the

proof of the consistency of �̂:

Now we turn to the rate of convergence. Since we have Lemma A1, in view of Theorem 3.2.5 of van der

Vaart and Wellner (1996), it su¢ ces for the completion of the proof to investigate the continuity modulus of

the process
p
nfl�n;R(�)�El�n;R(�)g: Given our de�nition of ~T , the objective function l�n;R(�) can be rewritten

as
1

n

nX
i=1

JX
j=1

�j(Xi; �i; �0)hR(p
�
jR(Xi; �); �(m

�
�ij(�)));

where hR(p; �) = � 1
R

PR�1
m=0 1f1 �m=R > pg=(1 � (m=R)) + �=R: In the meanwhile, for each �1 2 � and
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for � > 0;

E

"
sup

�:jj���1jj��

��hR(p�jR(Xi; �); �(m�
�ij(�)))� hR(p�jR(Xi; �1); �(m�

�ij(�1)))
��2# (43)

� CR � P
(

sup
�:jj���1jj��

sup
2�r�R

���j(Xi; ��i;r; �)� �j(Xi; ��i;r; �1)�� � 1
)

� CR �E
"

sup
�:jj���1jj��

sup
2�r�R

���j(Xi; ��i;r; �)� �j(Xi; ��i;r; �1)��2
#
� CR�;

by Assumption 2(ii). Let us de�ne j(D;X; �; �) = DhR(mj(X; �; �)=R; �(m�j(X; �; �))) and G� = f(�; �; �; �) :
� 2 B(�0; �)g: Let G� be an envelope of G�. By the maximal inequality in terms of the bracketing entropy
(e.g. Pollard (1989), van der Vaart (1996)), we have

E

"
sup

�2B(�0;�)

p
n
��l�n;R(�)� l�n;R(�0)�El�n;R(�) +El�n;R(�0)��

#

� C

Z 1

0

q
1 + logN[]("jjG�jj2;G�; jj � jj2)d"jjG�jj2

= C

Z jjG�jj2

0

q
1 + logN[](";G�; jj � jj2)d";

for some C > 0. From the proof of Theorem 3 in Chen, Linton, and van Keilegom (2003) and the result of

(43), the last integral is bounded by

Z jjG�jj2

0

p
1 + logN((C"=jjG�jj2)2;�; jj � jj)d" (44)

= jjG�jj2
Z 1

0

p
1 + logN((C")2;�; jj � jj)d" � CjjG�jj2:

By the result of (43), we can take G� such that jjG�jj2 � C�1=2; and conclude that the continuity modulus
of l�n;R(�) in � turns out to be O(�

1=2): Now, by Theorem 3.2.5 of van der Vaart and Wellner (1996), the rate

of convergence rn for �̂ satis�es r
2�1=2
n �

p
n: Hence rn � n1=3; yielding the desired result of the theorem. �

Lemma A2 : Suppose that Assumptions 1 and 2 hold. Then for each " > 0, we have

sup
x2X

P

�
sup
�2�

����mjR(x; �)

R
� pj(x; �)

���� > "� � C"2dRd exp ��"2R� ;
for some C > 0 that does not depend on R or n.

Proof : Fix x in the support X of Xi. De�ne Fx = f�j(x; �; �) : � 2 �g and let jjf jj2 =
qR

fdP�, where

P� is the distribution of �i. Then by Assumption 2(ii) and from the proof of Theorem 3 in Chen, Linton,

and van Keilegom (2003), for all " > 0;

N[]("jjFxjj2;Fx; jj � jj2) � N((C"jjFxjj2)2;�; jj � jj) � C"�2djjFxjj�2d2 ;

where Fx is an envelope of Fx. We can take Fx to be a constant function at 1. Hence the above bound does
not depend on x in the support of Xi. The desired bound of the lemma now follows from Theorem 2.14.9 of
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van der Vaart and Wellner (1996). �

Lemma A3: For any p 2 (0; 1), there exists C > 0 that does not depend on R or p such that������
R�Rp�1X
s=0

1

R� s � log
�
p+R�1

������ � C

(p+R�1)2R
and

sup
p;p02(";1�")

�������
R�Rp�1X
s=0

1

R� s +
R�Rp0�1X

s=0

1

R� s �
�
log
�
p+R�1

�
� log

�
p0 +R�1

�	������ � Cjp� p0j
(minfp; p0g+R�1)2R:

Proof: As for the �rst statement, note that when m 2 f0; 1; � � �; Rg,

�
R�Rp�1X
s=0

1

R� s = �
1

R

RX
s=0

1fs=R � 1� p� 1=Rg
1� s=R :

The last sum is a Riemann sum. From the error bound for the Riemann sum approximation of an integral

(e.g. Kythe and Schäferkrotter (2005, p.46)), we have������ 1R
RX
s=0

1fs=R � 1� p� 1=Rg
1� s=R +

Z 1�p�1=R

0

1

1� udu
����� � C

(p+R�1)2R
:

As for the second statement, we obtain similarly the following bound:������ 1R
RX
s=0

1fs=R � 1� p� 1=Rg � 1fs=R � 1� p0 � 1=Rg
1� s=R +

Z 1�p�1=R

1�p0�1=R

1

1� udu
����� � Cjp� p0j

(minfp; p0g+R�1)2R:

�

Lemma A4: Suppose that Assumptions 1 and 2 hold. Then for any � > 0;

E

"
sup

�2B(�0;�)

p
n
��l�n;R(�)� l�n;R(�0)�El�n;R(�) +El�n;R(�0)��

#
� CvR(�);

where C > 0 is a constant that does not depend on R, and

vR(�) �
r
�

R
+ � +

Rd=2+1

exp(CR)
: (45)

Proof: Let p�ij(�) = p
�
jR(Xi; �) where p

�
jR(Xi; �) is de�ned in (5), and

~T �ij(�) � log(p�ij(�) +R�1)� log(p�ij(�0) +R�1):
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Fix small C0 > 0 such that

sup
x2X

P

8<:
JX
j=1

pij(�) 2 (C0; 1� C0) for all � 2 � jXi = x

9=; = 1 and (46)

sup
x2X

P

8<:sup�2�

JX
j=1

��p�ij(�)� pij(�)�� > C0=2 jXi = x
9=; � CRd exp(�CR);

for some C > 0 that does not depend on R or n. Such constants exist by Assumption 2(iii)(a) and Lemma

A2. We �x R� and n� such that for all R > R�, C0=2 +R�1 � C0.
De�ne

1R(x; �) = 1

8<:
JX
j=1

��p�jR(x; �)� pj(x; �)�� � C0
2

9=; : (47)

Recalling �ij(�) de�ned in (39), we �nd that

E
h
sup�2B(�0;�)j�ij(�)j

2
i
� 2

Z
E

"
sup

�2B(�0;�)
j�ij(�)j21R(x; �)jXi = x

#
dFX(x) (48)

+CR2
Z
E

"
sup

�2B(�0;�)
(1� 1R(x; �)) jXi = x

#
dFX(x):

By (46), the last term is bounded by CRd+2 exp(�CR) for some C > 0: As for the �rst integral, using

Lemma A3, we bound the integral byZ
E
h
sup�2B(�0;�)j ~T

�
ij(�)j21R(x; �)jXi = x

i
dFX(x) +

C�

(C0=2 +R�1)2R
; (49)

for some C > 0. By applying the mean value theorem for the logarithmic function, the above integral is

bounded by

C

C0=2 +R�1
�E
h
sup�2B(�0;�)jp

�
ij(�)� p�ij(�0)j2

i
� 2C

C0
�E
h
sup�2B(�0;�)jp

�
ij(�)� pij(�)� fp�ij(�0)� pij(�0)gj2

i
+
2C

C0
�E
h
sup�2B(�0;�)jpij(�)� pij(�0)j

2
i
:

The last expectation is bounded by C�2 for some C > 0 by Assumption 2(iv). Conditional on Xi = x,p
Rfp�ij(�) � pij(�)g is an empirical process indexed by � 2 B(�0; �). We use Theorem 2.14.5 of van der

Vaart and Wellner (1996) to deduce that

sup
x2X

E
h
sup�2B(�0;�)(p

�
ij(�)� pij(�)� fp�ij(�0)� pij(�0)g)2jXi = x

i
� 2

�
sup
x2X

E
h
sup�2B(�0;�)

��p�ij(�)� pij(�)� fp�ij(�0)� pij(�0)g�� jXi = xi�2 + C�R ;

because we can take an envelope of the functions indexing the empirical process p�ij(�)� pij(�)� fp�ij(�0)�
pij(�0)g whose L2-norm is bounded by C�1=2 for some C > 0 using Assumption 2(ii). As for the leading term,
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utilizing the same envelope with L2-norm bounded by C�1=2 and the arguments in the proof of Theorem 3

of Chen, Linton, and van Keilegom (2003), we �nd that

sup
x2X

E
h
sup�2B(�0;�)jp

�
ij(�)� pij(�)� fp�ij(�0)� pij(�0)gjjXi = x

i
(50)

� C1p
R

Z C
p
�

0

q
1 + logN(("=fC

p
�g)2;�; jj � jj)d" � C2

r
�

R
;

for some constants C1; C2 > 0, using Assumption 2(ii) and the maximal inequality. Therefore, for some

C > 0; Z
E

�
sup�2B(�0;�)

���Dij ~T �ij(�)���2 1R(x; �)jXi = x� dFX(x) � C � �R + �2
�
:

Subsuming the last term in (49) above into C� in the above bound, we conclude that

r
E
h
sup�2B(�0;�)j�ij(�)j2

i
� C

(r
�

R
+ � +

Rd=2+1

exp(CR)

)
;

for some C > 0. This bound reveals an L2-bound for an envelope for the class of functions indexing the

empirical process, 1p
n

Pn
i=1f�ij(�) � E�ij(�)g. Since we can obtain the same result replacing �0 2 � by

any arbitrary � 2 �, the bound also reveals the local uniform L2-continuity condition for this process. Using
the maximal inequality and following the proof of Theorem 3 of Chen, Linton, and van Keilegom (2003) as

in (44), we deduce that

E

24sup�2B(�0;�)
������ 1pn

nX
i=1

JX
j=1

�
Dij ~T

�
ij(�)�E[Dij ~T �ij(�)]

�������
35

� C1

Z C1vR(�)

0

p
1� C1 log("=C1vR(�))d" � C1vR(�)

Z C1

0

p
1� C1 log "d" � C2vR(�);

for some constants C1; C2 > 0. �

Proof of Theorem 3 : De�ne �ln;R(�) = 1
n

Pn
i=1

PJ
j=1Dij log(p

�
ij(�) + 1=R). Let p

�
ij(�) = mij(�)=R and

mij(�) is the simulated frequency with simulation number R. First, we show that �̂ is consistent. For this,

it su¢ ces to show that

sup
�2�

��l�n;R(�)� l(�)�� = oP (1); (51)

where l(�) = Eln(�) and ln(�) = 1
n

Pn
i=1

PJ
j=1Dij log pj(Xi; �). For each " > 0, we write

P

�
sup
�2�

��l�n;R(�)� l(�)�� > "� � P

�
sup
�2�

��l�n;R(�)� �ln;R(�)�� > "

3

�
(52)

+P

�
sup
�2�

���ln;R(�)� ln(�)�� > "

3

�
+ P

�
sup
�2�

jln(�)� l(�)j >
"

3

�
:

We take C0 > 0 and 1R(x; �) as in (46) and (47). As for the �rst leading probability,

P

�
sup
�2�

��l�n;R(�)� �ln;R(�)�� > "

3

�
� 3

"
E

�
sup
�2�

��l�n;R(�)� �ln;R(�)��� :
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Similarly as in (48), we bound the last expectation by

JX
j=1

Z
E

�
sup
�2�

����TR;j(m�
ij(�))� log

�
m�
ij(�) + 1

R

����� 1R(x; �)jXi = x� dFX(x) + CRd+1

exp(CR)
;

for some C > 0. The last term certainly vanishes as R ! 1. By Lemma A2, the �rst term is bounded by

CR�1 which again vanishes as R!1.
We turn to the second probability on the right hand side of (52). We bound the second probability in

(52) by

3

"

JX
j=1

E

�
sup
�2�

����log�m�
ij(�) + 1

R

�
� log(pij(�))

�����

� 3

"

JX
j=1

Z
E

�
sup
�2�

����log�m�
ij(�) + 1

R

�
� log(pij(�))

���� 1R(x; �)jXi = x� dFX(x)
+
3 logR

"

JX
j=1

Z
E

�
sup
�2�

(1� 1R(x; �)) jXi = x
�
dFX(x):

By (46), the last term is bounded by CRd(logR) exp(�CR) for some constant C > 0, and hence vanishes

as R!1. On the other hand, the leading term is bounded by

C � sup
x2X

E

�
sup
�2�

��fp�ij(�) + 1=Rg � pij(�)�� jXi = x� (53)

= C � sup
x2X

Z 1

0

P

�
sup
�2�

��fp�ij(�) + 1=Rg � pij(�)�� > vjXi = x� dv
� C

Z 1

0

v2dRd exp
�
�v2R

�
dv =

Cp
R

Z 1

0

v2d exp
�
�v2

�
dv;

by Lemma A2 and by change of variables. The last integral vanishes as R ! 1. We conclude that the
second probability on the right hand side of (52) vanishes as R!1:

Consider the third probability on the right hand side of (52). One can easily show that this probability

vanishes by the uniform law of large numbers applied to f 1n
Pn

i=1

PJ
j=1Dij log pj(Xi; �) : � 2 �g, using

Assumption 2. Hence we have established (51), and the estimator �̂ is consistent.

Now, we show that �̂ is
p
n-consistent. We follow the proof of Theorem 3.2.5 of van der Vaart and Wellner

(1996). First, take a sequence rn = n1=2 and partition � into "shells" Rj;n = f� : 2j�1 < rnjj� � �0jj � 2jg
with j ranging over integers. For any �;M > 0; we have

P
n
rnjj�̂ � �0jj > 2M

o
�

X
j�M
2j��rn

P

�
inf

�2Rj;n

l�n;R(�)� l�n;R(�0) � 0
�
+ P

n
2jj�̂ � �0jj � �

o
: (54)

The second probability on the right-hand side vanishes because �̂ is consistent. For each � 2 Rj;n; we have

El�n;R(�)�El�n;R(�0) �
C22j�2

r2n
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by Lemma A1. By using Lemma A4, the sum of probabilities on the right-hand side in (54) is bounded by

X
j�M
2j��rn

P

(
sup
�2Rj;n

jl�n;R(�)�El�n;R(�)� l�n;R(�0) +El�n;R(�)j �
C22j�2

r2n

)
(55)

� C
X
j�M
2j��rn

C
p
n

22j�2
vR

�
2j�1p
n

�
:

Using (45), we obtain that for j such that 2j � �rn,

vR

�
2j�1p
n

�
� C

�
2j=2�1=2

n1=4
p
R
+
2j�1p
n

�
;

for some C > 0 from some large n on. Therefore, the last sum in (55) vanishes as n!1 and then M !1,
and

p
n-consistency of the estimator �̂ follows.

It remains to show that �̂ has the same asymptotic linear representation as that of the MLE. Let

�qR(Wi; �) =
PJ

j=1Dij log p
�
ij(�), qR(Wi; �) =

PJ
j=1DijTR;j(mij(�)), and q(Wi; �) =

PJ
j=1Dij log pj(Xi; �).

For u 2 Rd, let

Zn;R(u) =

nX
i=1

qR(Wi; �0 + u=
p
n)�

nX
i=1

qR(Wi; �0),

�Zn;R(u) =

nX
i=1

�qR(Wi; �0 + u=
p
n)�

nX
i=1

�qR(Wi; �0); and

Zn(u) =
nX
i=1

q(Wi; �0 + u=
p
n)�

nX
i=1

q(Wi; �0):

Note that for any compact U , uniformly over u 2 U;

Zn(u) =
u>p
n

nX
i=1

@q(Wi; �0)

@�
+
1

2
u>
@2E [q(Wi; �0)]

@�@�>
u+ oP (1):

Therefore, it su¢ ces to show that for any �xed compact set U ,

supu2U
��Zn;R(u)� �Zn;R(u)

�� = oP (1) and (56)

supu2U
�� �Zn;R(u)� Zn(u)�� = oP (1);

because we have already established the
p
n-consistency of �̂ and, after sending n;R!1, we can choose U

arbitrarily large.

We take C0 > 0 and 1R(x; �) as in (46) and (47). We write simply 1iR = 1R(Xi; �0). Using Lemmas A2
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and A3 and following the arguments in (48), we can write

nX
i=1

JX
j=1

Dij
�
TR;j(mij(�0 + u=

p
n))� TR;j(mij(�0))

	
=

nX
i=1

JX
j=1

Dij
�
TR;j(mij(�0 + u=

p
n))� TR;j(mij(�0))

	
1iR + oP (1)

=
nX
i=1

JX
j=1

Dij
�
log(mij(�0 + u=

p
n)=R)� log(mij(�0)=R)

	
1iR + oP (1);

where oP (1) is uniform over u 2 U . The last equality follows from Lemma A4 by bounding the expected

absolute value of the di¤erence in the sum involving TR;j and the sum involving log by

Cn

R
sup
x2X

E
�
jp�ij(�0 + u=

p
n)� p�ij(�0)jjXi = x

�
� Cn

R
sup
x2X

E
�
j�p�ij(u)��pij(u)jjXi = x

�
+
Cn

R
sup
x2X

E [j�pij(u)jjXi = x]

� Cn

R
p
Rn1=4

+
Cn

R
p
n
! 0;

as n;R !1 with
p
n=R ! 0, where �p�ij(u) = p

�
ij(�0 + u=

p
n)� p�ij(�0) and �pij(u) = pij(�0 + u=

p
n)�

pij(�0). Hence the �rst statement of (56) follows.

As for the second statement, de�ne

��qR(Wi;u=
p
n) � �qR(Wi; �0 + u=

p
n)� �qR(Wi; �0)

�q(Wi;u=
p
n) � q(Wi; �0 + u=

p
n)� q(Wi; �0); and

���qR(Wi;u=
p
n) � ��qR(Wi;u=

p
n)��q(Wi;u=

p
n):

Using Lemma A2 and following the arguments in (48), we write

�Zn;R(u)� Zn(u) =
nX
i=1

���qR(Wi;u=
p
n) (57)

=
nX
i=1

���qR(Wi;u=
p
n)1iR +OP (nR

d+1 exp(�CR)):

Since
p
n=R ! 0, the last term vanishes as n ! 1. As for the leading sum above, by expanding the

logarithm in ���qR(Wi;u=
p
n), we �nd that

p
n���qR(Wi;u=

p
n)1iR =

p
nfp�ij(�0 + u=

p
n)� pij(�0 + u=

p
n)g

pij(�0)
1iR (58)

�
p
nfp�ij(�0)� pij(�0)g

pij(�0)
1iR +R1;i;n(u);
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for some remainder term R1;i;n(u). Accordingly, we write the leading sum in (57) as

1p
n

nX
i=1

p
n��p�ij(u)

pij(�0)
1iR +

1p
n

nX
i=1

fR1;i;n(u)�E [R1;i;n(u)]g+
p
nE [R1;i;n(u)] ; (59)

where ��p�ij(u) = �p
�
ij(u)��pij(u). As for the leading sum, note that

p
n��p�ij(u) =

p
n

R

RX
r=1

(�j;r(Xi;u)�E[�j;r(Xi;u)jXi]) ; (60)

where �j;r(Xi;u) = �j(Xi; ��i;r; �0 + u=
p
n)� �j(Xi; ��i;r; �0). Using Assumption 2(ii), we �nd thats
sup
x2X

E

�
sup
u2U

j�j;r(Xi;u)j2 jXi = x
�

� C

n1=4
andvuutsup

x2X
E

"
sup

v2(0;")
j�j;r(Xi;u+ v)� �j;r(Xi;u)j2 jXi = x

#
� C"1=2

n1=4
;

and by Theorem 2.14.5 of van der Vaart and Wellner (1996), also thats
sup
x2X

E

�
sup
u2U

��pn��p�ij(u)��2 jXi = x�
� C1 sup

x2X
E

�
sup
u2U

��pn��p�ij(u)�� jXi = x�+ C1
p
n

n1=4
p
R
� C2

p
n

n1=4
p
R
;

for some constants C1; C2 > 0. The last equality follows from the maximal inequality and the arguments

similar to (50). Similarly, we also have for any " > 0 and any u 2 U ,vuutsup
x2X

E

"
sup

v2(0;")

��pn��p�ij(u+ v)�pn��p�ij(u)��2 jXi = x
#

� C1 sup
x2X

E

"
sup

v2(0;")

��pn��p�ij(u+ v)�pn��p�ij(u)�� jXi = x
#
+
C1
p
n"

n1=4
p
R
� C2

p
n"

n1=4
p
R
;

for some constants C1; C2 > 0. This gives the local uniform L2-continuity of the functions indexing the

leading empirical process in (59). Hence we have

E

"
sup
u2U

����� 1pn
nX
i=1

p
n��p�ij(u)

pij(�0)

�����
#
� C

p
n log n

n1=4
p
R

=
Cn1=4 log np

R
! 0;

as
p
n=R! 0 as n;R!1.
As for the second and the third sums in (59), we follow a similar arguments to show that it is of smaller

order than the leading sum (59). Details are omitted.
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