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This note contains the technical proofs of the results in the paper titled "Semiparametric

Models with Single-Index Nuisance Parameters."

1 Bahadur Representation of Sample Linear Function-

als of SNN Estimators

In this section, we present a Bahadur representation of sample linear functionals of SNN
estimators that is uniform over function spaces. (The proofs are found at the end of the
paper.) In a different context, Stute and Zhu (2005) obtained a related result that is not
uniform.

Suppose that we are given a random sample {(S;, W;, X;)}* , drawn from the distribution
of a random vector (S, W, X) € Rés*t1+dx Let Sg, Sx and Sy be the supports of S, X, and W
respectively. Let A be a class of R-valued functions on R4 with a generic element denoted
by A. We also let ® and ¥ be classes of real functions on R and R with generic elements
@ and 1) and let ¢ and 171 be their envelopes. Let L,(P), p > 1, be the space of L,-bounded
functions: ||f||, = {[|f(2)|PP(dz)}*/? < oo, and for a space of functions F C L,(P) for
p>1,let Ny(e, F,||-||,) denote the bracketing number of F with respect to the norm || - ||,

i.e., the smallest number 7 such that there exist fi,---, f, and Ay, ---, A, € L,(P) such that
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|Aill, < € and for all f € F, there exists 1 < i < r with ||f; — f||, < A;/2. Similarly, we
define Nyj(e, F, || -||o) to be the bracketing number of F with respect to the sup norm ||-||o,
where for any real map f on R we define || f||c = sup,cgrax |f(2)]- For any norm || - ||
which is equal to || - ||, or ||+ ||, We define N (e, F,||-||) to be the covering number of F, i.e.,
the smallest number of e-balls that cover F. Letting F)(-) be the CDF of A\(X), we denote
Ux = FA(A(X)). Define gy, (u) = E[p(W)|Uy = u] and gy x(u) = E[¢(S)|Ux = u].

Let Uy, = -5 > i1z HA(XG) < A(X5)} and consider the estimator:

n

1
g ,,\ﬂ-(u) =" QO(W)K}L (Un’)\,' - u) ,
’ (n—1)fri(u) j%;éi ’ ’
where fy;(u) = (n—1)"" > i1z Kn(Unj — u). The semiparametric process of focus takes

the following form:

n

Va(A 9, 0) = % > (S {Goni(Unni) = 90(Uxi)}

i=1

with (A, p,9) € A x & x V.

The main focus in this section is on establishing an asymptotic linear representation of
Vn(A, @,1). The critical element in the proof is to bound the size of the class of conditional
expectation functions G = {g, () : (p,A) € & x A}. We begin with the following lemma

that establishes the bracketing entropy bound for G with respect to || - ||, ¢ > 1.

LEMMA B1 : Suppose that the density fy of AN(X) is bounded uniformly over A\ € A. Further-
more, assume that there exists an envelope @ for ® such that Ge = sup,cs, E[p(W)|X =

x| < 00, and that for some Cp, > 0,

sup sup |gyx(u1) — gor(u2)| < Cplug — us|, for all uy,us € [0, 1].
ped AEA



Then for all e >0,q>1, and p > 1,
N[}(O‘I’gl/(q+1)’g7 || ’ ||Q) < Nu(g,@’ || ’ ||p) -N[](S,A, || ’ ||OO)7

where Cp =1+ 8CAGo + CL + G /2 and Cp = sup,c, sup,cr fr(v).

PrROOF OF LEMMA B1 : For each n € (0,1], we define g,»,(u) = E[p(W)Q,(U\ — u)],
where @Q,(u) = Q(u/n)/n, and Q(u) = 1{u € [-1/2,1/2]}. For each n € (0,1], we let
Gy = {9gorn(-) : (p,A) € ® x A}. First, we show that for all n € (0, 1], and for all € > 0 and
p=1,

Ni((1+8CaGa) - /1, Gy, || - lloo) < Ny(e, @[] - [1p) - Nyle, As[] - [loo)- (1)

Fix n € (0,1], ¢ > 0, and p > 1, and choose two sets of brackets {goj,Agj}évjl and
{/\j,Aij}jyzAl that constitute e-brackets for ® and A, with respect to || - ||, and || - ||
respectively, where No = Nj(e,®,|| - |[,) and Ny = Ny(e, A, || - ||). Define gji,(u) =
E [¢;(W)Qy(Ux, — u)]. For any g, », € Gy, we can choose the pairs (¢;, Ag ;) and (A, Ap )

such that

IN

lp(w) — @;(w)| Ag j(w), for all w € Sy and

IANz) — Me(x)] < Apx(z), for all z € Sx

and ||Ag ||, < e and ||Aa k|l < €. Note that for u € [0, 1],

9o an(W) = gikn(w)] < E[Ag;(W)-[Qy(Ux — u)]

+E[o(W) - [Qy(Ux — u) = Qy(Ux, —u)]].

Certainly, E [Ag ;(W) - |Q,(Ux — u)|] < E[Ag;(W)] /0. As for the second term, let A, =



|Ux — U,, | and bound it by

1
EG(b “P{n/2 = A, S|UN—ul <n/2+ A}

8
ECAGchAA,kHooa

IN

because Ay \, < 4Ch||Ank|loo- Take Ajy p(u) = E[Ag ;(W)] /0 + 8CAGa||Apk||o/n (a con-
stant function), so that |[Ajxn|le < (14 8CxGo)e/n. Hence take {gjk,mAjkm}g;f;]fA to be
(1 + 8C\Go)e/n-brackets of G,, affirming (1).

We turn to G. For any (¢, \) € ® x A, we obtain that for u € [0, 1],

9o n(1) = goa ()] < [E[{gpa(Ur) = gon(w)} - @y(Ux — )]
+[E (9o (u{Qy(Ux = u) = 1}]]

< CL77+G<I> . ’E[QW(UA —u) — 1” < CL77+G<1> -bn(u),

where b,(u) = 1 (1{u e (1-n/2,1]} + 1{u € [0,7/2)}). The second inequality follows by
change of variables applied to the leading term. The last inequality follows because for all

n € (0,1],

1-BQ,@ -0l = 1= [ 1flo—ul < n/2)ae

_ '1_1

/ dv
N Ju—n/2,u+n/2]N[0,1]

< by, (u).

Fix ¢ > 0 and ¢ > 1. We select n = /(@) and take ((1 + 8CyGg)e/n)-brackets
{gjk,n,Ajk,n}jY,fj{A that cover G, (with respect to || - ||) with No = Nj(e,®,|| - ||,) and

Ny = Ny(e, A, || - ||os). We define

Ajkyn(u) = Ajkm(u) + OL77 + G:;p . bn(u)



Then, certainly,

1Aglly < (1+8CxGa)e/n+Crn+Ga - [[byl,

< (1+8Cy\Gs)e/n+ (CpL + Go/2)nM1.

Therefore, the set {g; k., Ajk777};-\’[]§;]¥/\ forms the set of Cpel/(F-brackets for G with respect

to || - ||;- This gives the desired entropy bound for G. B

We are prepared to present the uniform Bahadur representation of v, (X, ¢, ). Let
Ay = {) €A |]A— Nl < e}, where 0 < c,n'/* — 0. We let X = [X], X]]T,
where X is a continuous random vector and X5 is a discrete random vector taking values

in a finite set {z1,- - -, x5 }. We make the following assumptions.

AssuMmPTION B1 : (i) For some C' >0, p > ¢q >4, by € (0,q/(¢ — 1)), and bg € (0,¢/{(q¢ +
(g —1)}),

log Ny(e, @, || - ||,) < Ce™"® and log Ny(e, ¥, || - ||,) < Ce™"*, for each e > 0,

and E[p(W)?] + E[)(S)] + sup,es, E[p(W)|X = 1] + sup,cs, E[R(W)|X = 2] < cc.

(ii) (a) For ¢ > 4 in (i) and for some by € (0,¢/{(¢+1)(¢ —1)}) and C > 0, log Nj(e, A, || -
l|oo) < Ce~ for each ¢ > 0.

(b) For all A € A, the density fy(-) of A(X) is bounded uniformly over A € A and bounded

away from zero on the interior of its support uniformly over A € A.

AssumpPTION B2 : (i) K(-) is symmetric, nonnegative, compact supported, twice continu-
ously differentiable with bounded derivatives, and [ K (t)dt = 1.

(ii) n'/2h3 + n~Y2h=2(~logh) — 0 as n — oo.

AssuMPTION B3 : E[p(W)|Uy, = -] is twice continuously differentiable with derivatives

bounded uniformly over (A, ¢) € B(\g;e) x ® with some £ > 0.



The following lemma offers a uniform representation of v,,.

LEMMA B2 : Suppose that Assumptions B1-B4 hold. Then,

sup V(X @, 0) — % Zgz/),)\(UA,i){(p(Wi) — 9o (Uni)}| = op(1).

(Ao, ) EAR X P X T

PrOOF OF LEMMA B2: To make the flow of the arguments more visible, the proof proceeds
by making certain claims and proving them at the end of the proof. Without loss of generality,
assume that the support of K is contained in [—1, 1]. Throughout the proofs, the notation
E; indicates conditional expectation given (W, S;, X;).

Let py, (1) = (n—1)~" Z?:l,j;éi Kn(Un =) (W), &1 (u f[ w/h,(1—u) /RN[=1,1] K (v)dv,
and

APY(\) = Gur(Uxi){e(Wi) = gon(Uni)}-
We write g(p,)\,i(Un,)\,i) - ggo,A(UA,i) as

f)¢7A7i(Un,A,Z) G A (U, Z)f i{(Uxi)
£1n<U)\71) .
Poni(Unri) = 9o (Uni) fri(Uni)l (€10 (Uni) = fri(Unni)

f)\z( nAz)gln(U/\z)
= Ri(\¢) + Ri(\ ).

Rli()\7 (p) =

+

Put m = (A, ¢,¢) and IT,, = A,, x & x ¥, and write

1 n
va(m) = 7= D V(S)RIA ) Zw DREO @) = iy (m) + 1y (), 7 € T
i=1
First, we show the following;:

C1: sup,cy, |1 (m)| = op(1).



We turn to 72 (), which we write as

(n—1)vn Z Z ¢n7A7iA%AviiKij + (n—1)vn Z Z ¢"7A7iA<P»>\aij{Kn,ij - Kij}

i=1 j=1,j#i i=1 j=1,j#i

= Rln(ﬂ-) + R2n(ﬂ-)7 say,

where ¥,y ; = ¥(8i) /€1, (Uni), Dpris = ¢W5) = gon(Uni), K i = Kn(Unxy — Unai) and
K} = Ky(Uy; — Us;). We will now show that

SUP e, | Ran ()| —p 0. (2)

Let 6} = Upxi —Ux; and d j; = 5? — 6?2 and write R, (7) as

1 n n . 1 n n ) Y
—(n — 1)\/5 Z Z ¢n,,\,iAso«\,inh,ijd/\,ji + 2(77, ——1)\/5 Z Z 77Z)n,>\,iA<P7>\7ijd)\,jiKh,ij

i=1 j=1,j#i i=1 j=1,j#i

= Aln(ﬂ-) + AQn(T‘-)a say,

where Kj, ,; = h 720K (t)/0t at t = (Ux; — Uy;)/h and

Kl/

hyij

= h_382K(t)/8t2 |t:tij

with t;; = {(1 — a;;)(Ux; — Ux;) + aij(Unri — Unxj) }/h, for some a;; € [0,1]. Later we will

show the following:
C2: Supﬂ'EHn|A2TL(7[—)’ = OP(1)~
We turn to Ay, (7m) which we write as

1 n n )
mz Z GniBo i K7, 407 (3)

i=1 j=1j#i

1 n n . \
—mz Z ¢n,A,iAw7>\7inh,ij5i

i=1 j=1,j#i

= Bi,(m) + Bau(7), say.

7



Write By, (7) as

1 |1
n—lzl%

Z Z wnAzAﬂaAUKhz ] (Un,)vj - U/\,j) = ClTL(Tr) + CQH(W)v say.
7’L —1 \/_ =1 j=1,j#1 !

Z {¢n,A,iAW,A7inl’z,ij —E; [@/Jn,,\,iAsM,in/,z,ij” (UnA,j - UAJ)
1 isﬁj

i=

As for Cy,(7), we show the following later.

C3: sup,cp, |Cin(m)| = 0op(1).

We deduce a similar result for By, (7), so that we write

Aln(ﬂ—) - ’I’L 1 \/— Z Z Z/}71)\ZA<,0>\’UI<h 'Lj] (Un,)\,j - UAJ) (4)

= 1] 1]#2

(n—l \/—Z Z E ¢TL)\1ASO/\UKhz]} (Un/\z UA1>+0P()

j=1i=1,i#j
= Din(m) — Dop(m) + op(1), say.

Now, we show that Dy, (7m) and Ds,(m) cancel out asymptotically. As for Dy, (7), using
Hoeffding’s decomposition and taking care of the degenerate U-process (e.g. see C3 and its

proof below),

n_l \/_Z Z / wn/\zAW)\lJ h2ji| (1{U)\z§u1}—U1)d’U,1+Op<1)

=1 j=1,j#i

uniformly over = € II,,. Similarly, as for Ds,(7), we can write it as

(n— 1 \/_Z Z / wn}\zA@AUK}mg} (1{UA3 < U1}—u1)du1—|—op( )

7=1i=1,i#j

uniformly over = € II,. Note that E [, , ;Ap K], ”] does not depend on a particular

A\,

choice of the pair (4, 7) as long as ¢ # j. Hence Di,(m) = Dan(7) 4+ 0p(1), uniformly over

7 € 11, and that sup, .y |Ai,(7)| = op(1), which, together with (C2), completes the proof

8



of (2).

It remains to show that

well,

We define ¢ ,; = 1 A%,\MKZ-)‘J» and write Ry, () as

1,0
(n_ll)\/ﬁzn: 2”: Gnij-
i=1 j=1,j#i
Let pg,ij = q;{,ij —E; [q;:,ij] —E; [qg,ij] + E[qg,ij] and define
() = m i i Prij:
i=1 j=1,ji

Then, {u,(r) : € II,,} is a degenerate U-process on II,,. We write (6) as

1

i=1 j=1j#i

We will later show the following two claims.

C4: sup,, \/Lﬁ ZL{EZ[QLJ] - E[QZZJ]H = op(1).

C5: sup,cq, |un(m)| = op(1).

We conclude from these claims that uniformly over 7 € II,,,

1 n n T
mz Z qz@j = %;EJ[(]’ZM]‘}‘OP(:[)

i=1 j=1,j#i

Then the proof of Lemma B2 is completed by showing the following.

C6: sup,,

sup Ry (m) — L D g {ep(Wi) = goa(Uni)}| = op(1).
Vn 4

o 2 (Bl + Bl — Bl + ).

L0 (Bila] = 9ua U 1eW) = goa(Ua)})| = op(1).

Proof of C1: From the proof of Lemma A3 of Song (2009) (by replacing A with Fy o A

9



there), it follows that
MAX) <i<nSUPAAS WD erix [Frri(A(2)) = FA(A(@))] = Op(n™'72), (8)

where F, ,;(\) = ﬁZ?:L#il{)\(Xj) < A}. We bound max;<;<, sup)\eA|f,\Z( Unri) —
gln(UA,i” by

max sup sup
1<z<n )\GA ’U,E[O 1]

= Op(n Y2 '/=logh) + Op(n Y2h™Y) = Op(n~Y2h"1\/—logh),

i) = €30 (0)] + ax sup €1, (Unng) = (03] (9)

T,TL)\

using (29) of Song (2009). Hence, uniformly over 1 < i < n and over A € A,

‘Z)ga,)\z( nAz) f)\z( n)\l)ggo)\(U)\z)|
< Nhoni(Unni) = E1n(Uni) gon(Uni) + 190 (Uni)l|€1n (Uni) = fri(Unni)|

|p<p)\z( nAl) §1n<UAz>gsO>\<U)\z)|+OP _1/2h \ — log

As for the leading term, we apply (23) of Song (2009) and Assumption B3 to deduce that

uniformly over 1 < i < n and over (), ) € A x D,

1Poi(Unni) = 10 (Uni) 9o n(Uni)|(1 = 1n0) = Op(h) and

Poni(Unni) = €1 (Uni)gon(Uni)|Lnpi = Op(h* +n~?h71\/—logh),

where 1, x; = 1 {|1 — U,»;| > h}. Also, observe that (e.g. see arguments after (29) of Song
(2009))
&1,(w) > 1/2 for all u € [0,1]. (10)

10



Therefore, we bound {Tan(ﬂ)’ by

Ol w1 . A
71 [P 0,i(Unxi) = 9o n(Un )10 (Ux)] (€15, (Uni) = fri(Unni))| L
=1
Cy e .
+ [Pp i (Unni) = 9o a(Un )1, (Ux ) (€1, (Uni) — fA,z'(Un,A,i))’ (1= Tuni),

=1

for some Cy,Cy > 0, uniformly over 7 € II,, with large probability. From (9), the first term
is equal to Op(n~*h=2(—logh)) = op(n~*/?) uniformly over 1 < i < n. As for the second

term, it is bounded with large probability by

1 n
Cn~Y2p=1\/~logh - - > 1{]1 = Upsl < Ch} = Op(n~"?y/~logh) = op(n™"/?),
=1

for some C' > 0 with large probability. Hence (C1) is established.

Proof of C2: Let A;; = (W) + sup,cs, E[@(W;)|X; = z]. Since max; <; j<n Supyey d3 j; =

Op(n™') by (8), with large probability, we bound |As, ()| by the absolute value of

Y Z% (985 |7~ B [ i) + B [,A, 1, ]] . 1)

Using the standard U statistics theory, we bound the leading term by

% ZZ;: (El [{m&j \Kﬁlu}] —E [{ﬂi&j ‘KZZJ}D‘

—+ + OP(l).

% 2"; (Ej [{%Aij ‘K;L/l]ﬂ —E wi&j ‘K;L/”u)

The expected value of the sum above is bounded by

%\/VCLT’ (Ez [@LlAZJ {K;L/Z]}]) + %\/Var (Ej [@LzAw |Kilz,z]‘]> = O(”_lh_5/2) = 0(1)7

n
K hij

so that the leading term of (11) is o(1). On the other hand, \/TEE [QZZAM

| = otm1r2n2) =

11



o(1).

Proof of C3: Let K'(u) = (0K (u)/0u)l{u € (0,1)}. Then K'(-/h) is uniformly bounded
and bounded variation. Let Ky = {K'((u — o(:))/h) : (o,u) € T x [0,1]}, where T =
{(FxoA)(z) : A € A}. Also, let Wy = {¢,,,(0(:)) : 0 € T}. Take p > 4 as in Assumption B1.
By Lemma A1l of Song (2009) and Assumptions B1(ii) and B3(iv),

log Ny(e, K [l - |l,) < log N(Ce,Z,]| - [Joo) + C/e < Ce™ and (12)

log Ny(e, Wa || -[l,) < log N(Ce, T, || - ||) + O/ < G,

for some C' > 0. Let £, ,(S;, Xi) = ¥, ;K ((u — Uyx;)/h). We bound sup, .y, [Crn(m)| <
h72G1n : ‘/171 + h72G2n : ‘/2717 where

1
Vn = sup = gﬂ' u(SM Xl) - Egﬂ' U(S“ XZ) and
! (m,u)€Il, x[0,1] \/ﬁ zz:; ( 7 | )
Von = swp | 2": (& (Sis Xi)gon (Uni) — E&, (S, Xi)goa (Uni)) |
(W,u)ennx[ovl] \/ﬁ =1 7 |

where G, = supyey, = >0y (W;)|67] and Gz, = supyey, Iy 0. Define 7y =
{&rul) o (mou) € Iy x [0,1]} and Fy = {&; () (gpn 0 02)() : (m,u) € 1L, x [0, 1]}
Then, F; C (¥/Wy) - Kia and Fy C (U/Wh) - K1 - 'H, where

H={(gonr00x)(): (p,A) € D xA}.

By Assumption B1(i) and Lemma B1, log Ny(e, H, || - ||,) < Ce~(@+D{beVea}  Combining
this with (12), the entropy bound for ¥ in Assumption B1(i), (12), and the fact that

SUp,cs, E [@(S)|X = x} < o0 and sup,cs E [@p(W)|X = x| < oo, we find that

log Ny(e, Fu, ]| - |2) < Ce~tbavbaVea} and log Ny(e, Fo, || - ||2) < COe~(boVi(a+1){baVba}])

12



From (10), we take an envelope of Fy as &, (s, ) = 2¢(s)||K’||s and an envelope of F; as
£4(5,) = 25(5)|| K|l - 5D 5, B [p(W)|X = a]. Certainly, [I€,l, < 00 and | Eyll, < o0 by
Assumption B1(i). Using the maximal inequality of Pollard (1989)% and using the fact that
by V [(q + 1){bs V by }] < 2 (Assumptions B1(i) and B1(ii)(a)), we find that

‘/171 = Op(l) and ‘/Qn = Op(l)

By the fact that maxi<j<, supycy, [03] = Op(n~"/2), we also deduce that Gy, = Op(n~1/?)

and Gy, = Op(n~/?). The desired result follows because Op(n~'/2h=2) = op(1).

Proof of C4: Observe that E;[q] ;] is equal to (. (S5;, X;), where for 7 € IL,,

C(S0 X = % / (9o (1) — gor(Una) V(0 — Uy )

Define F3 = {(,.(+,-) : m € II,,}. Take p > 4 as in Assumption B1l. Then, similarly as in the

proof of (C3), we can show that
log NH (57 f37 || . Hq) S Cg—(bq;\/[(q+1){b<pVbA}]) (13)
for some C' > 0. With o,(x) = (F)\ o \)(x), we take

((s,) = 2 (s) sup

(go A)EPXA

/ {90 (0) — gpa(0A(2))}En(u — 0x(2))du

as an envelope of F3. Observe that E[((S;, X;)?] is bounded by

4 sup B [§ ()|X—x]-/01 sup Uol{gw(m—gw(tl)}Kh(tQ—tl)dhrdtl. (14)

€Sy (p,\)ePXA

2The result is replicated in Theorem A.2 of van der Vaart (1996).

13



By change of variables, the integral inside the bracket becomes

/ {gap,k(tl + th) - g%)\(tl)}Kﬁg)dtQ.
[—t1/h,(1—t1)/R]N[—1,1]

After tedious algebra (using the symmetry of K), we can show that the outside integral
n (14) is O(h3). Therefore, ||C||; = O(h*?) as n — oo. Applying this and the maximal

inequality of Pollard (1989),

E

Ch3/?
sup <c [ iV A b
0

7T€Hn

7= Y (Bilds,) - Bl )

for some C' > 0. By (13), the last term is of order O(h3/2>*{1=CeVila+DibeVialD)/2h, /—Togh).

Since by V [(¢ + 1){bs V ba}] < 2, we obtain the wanted result.

Proof of C5: Let us define J, = {hq"(-,-) : = € I}, where ¢"(Z;, Z;) = G ijy Zi =
(Si, Wi, Xi), and g ;; is defined prior to (6). Take ¢ > 4 as in Assumption Bl. Using
similar arguments as in (C3), we can show that for some C' > 0, log Ny(e, T |l - la) <
Ce=eVilatD{baVvoal)) for all € > 0. By Assumption B1, (by V [(¢+1){bs Vba}])(1—1/q) < 1.

Then, from the proof of C3,
! ~ (1-1/q) !
/ {log Ny(e, T || - Hq)} de < C/ V(@D aVhaN(1-1/0) go < o
0 0

for some C' > 0. Furthermore, as in the proof of C3, we can take an envelope of 7, that is

L,-bounded. By Theorem 1 of Turki-Moalla (1998), p.878, for some small € > 0,

h sup |u,(7)| = Op(n1/2—(1—1/q)+e) — Op(n_1/2+1/q+5).
mell,

Therefore, sup,.cyy. [uin ()| = Op(n=V/2+Yatp=1) = op(1) by taking small € > 0 and using

Assumption B2(ii) and the fact that ¢ > 4. Hence the proof is complete.

14



Proof of C6: For i # j, we write

% 2 (B1a55] = 90O (75) = 92a(Uhs)})

- %g (Eﬂ' qun‘j - mgw,A(Um)W(WJ) - g‘P’*(UA’j)}ﬂ)

-E K%)} x % égw,A(UA,j){SO(Wj) — e (Un;j)}

Ey,(m) — Eagp (), say.

We focus on Fy,, first. Note that

E | sup (Ej ) — Jur(Ox ) {e(W;) — gw,A(Um)})j (15)

well, fln(UA,”L)

2

1
= /SUP {/ An,w(tl,t27y)dt1} dFy(y,t2),
WEHn 0

where f -dFy, denotes the integration with respect to the joint distribution of (W;, U, ;) and

Apr(ti,t2,9) (Gua(E{P(Y) = gpa(t1) } KRt — t2) — gpa(ta){p(y) — gpn(ta)}) -

1
N gln(tl)

After some tedious algebra, we can show that the last term in (15) is O(h®) (see the proof
of C4). Therefore, suprem, | E1n(7)| = op(1).

We turn to Es,. It is not hard to see that for all A € A,,,

o () =2 (e )] oo

The first equality follows because U, ; follows a uniform distribution on [0, 1]. Furthermore,
we have

sup
well,

1 n
NG > (guaUx){e(W;) — gw(UA,j)})‘ = Op(1),
j=1
using bracketing entropy conditions for ¥, ®, and A,,, Lemma B1, and the maximal inequality
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of Pollard (1989). Therefore, we find that sup,em, |Ean(7)] = op(1). B

Let D; € {0,1} be a binary random variable and for d € {0,1}, define g, q(u) =
E[o(W)|Ux; = u, D; = d] and gy »4(u) = E[(S;)|Ux; = u, D; = d]. Consider the estimator:
1 n

- W)U D; = d} K (Unxj — Uni)
(n = 1) fra(Unai) jg;#

Gord(Unnri) =

where f,\,d(Un,,\,i) =(n-1)"1 Z;’:Lj# {D; = d} K,(Up,x,j — Upxi). Similarly as before, we

define
N .
Und(A, g, 0) = nL Y(Si)Di{Gpo0d(Unri) — 9ornda(Uni)},
Z D =1

i=1 i T

with (A, p,1) € A x & x U. The following lemma presents variants of Lemma B2.

LEMMA B3 : Suppose that Assumptions B1-B3 hold, and let Py = P{D = d}, and €, 4, =
o(Wi) = gora(Us,i), d € {0,1}.
(i) If there exists € > 0 such that P{D; = 1|Ux; = u} > ¢ for all (u,\) € [0,1] X A, then

1 n
V(A @, ¥) — NG Z Digya1(Uni)epni
=1

sup
(M) EAR x DX T

= 0p<].).

(ii) If there exists € > 0 such that P{D; = 1|U,,; = u} € [e,1 — €] for all (u,\) € [0,1] X A,

then

n

1 1 —D;)P(Ux;)gpr1(Ux;
Z( )P(Uxi) gy r1(Uni)

i NoR. 1= P(Uy,) S0

M) EAR X DX T

Vn,O()\7 ®, ¢) -

= OP(I).

Proor or LEMMA B3: Write

n ~[1] (1]
1 1 g )\Z‘(Un,)\,i> g ,\(U)\ﬂ')
Vni (A @, 9 ZT'—E U(Si)Di § -5 ’
1 ) Iy D /i 50 B Uri)  aNN(U)
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where g, (u) = Elp(W)1{D; = d}|U, = u], ¢{(u) = P{D; = d|Uy; = u},

. [d) L
J ) = —— 3 GW)UD, = AL, (U — ), and
VA, (n - 1) ,\,d(u) j:%]:#l :
A[d] 1 Y
Iyi(u) = ————— HD; = d}Ky (Unpj — ).
(n—1)fra(u j:lz,j;ﬁl

Using the arguments in the proof of Lemma B2, we can write

n ~[1] 1]
1 GoniUnni)  gor(Uni)
N Sz L) _ Jo,
ﬁzw){ﬁﬁm ﬁ%ﬁ
- Zl g[l] { <p )\'L(Un)\,l) g@ A(U)\ z)}
n (1]
1 g )\(U ) [1] ~[1]
= Si) D22 Uy Ui 1).
P A O = i) } £ or()

By applying Lemma B2 to both terms, we obtain that

{EIE},\ z(Un,)\,i) B 95[01},\(U>\,i) }
g[Al]i(Un,A,z’) 9&1](Ux,i)

(Uxi)
= Z gq/[;l)\ A {D(,D(W) gg})\(UA,z)}
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Note that

[ 1] U, (1] U, .
E 91/17/\( )\,Z)Di {@(WZ)—QW’A< )\,z)}

_9&1]<U>\z g&”(UA Z)
| B
g (U)\z)
- g)\ (U ,z)
- . i
= E gL (D0)E |o(W) - M|UA¢‘7D1‘ =1|| =
’ iy 1O
- 9y ( )\,z)

Therefore, using similar arguments in the proof of Lemma B2, we conclude that uniformly

over (A, p, 1) € A, x & x U,

W (U,
ZRONRDE Zg“ . {w%)—%ﬁf}ﬂm

1 zlg)\

Consider the second statement. Write

A[0] [0]
1 9pri(Unni) 9o (Uni)
Vn,0<)‘a ()Oad)) — 1" D Z¢ { @[(ii - LT{)])\ :
21 1 \/_ g,\,i(Un,/\,i) 95 (Ux)

Using the arguments in the proof of Lemma B2, we can write

~[0] [0]
JpniUnni) 9 A(UA,z‘)}
w ®, _ L,
\/_Z { Q&OL(Un,AJ) g (Uy,)
- Z 77Z)0] { Lp)\z(U'ﬂ)\ﬂ) QS]A(UA,Z)}
=1 g,\ ,Z
n 0]
1 gw(U ) {0y O .
+ 7 2 HSIDe = {Un) = Ui |+ on(D)
:LngwAU“ W) — g% (U,
i= 1 g)\ U)\z { g%A( )\72)}

g! (Ux,i) 9 (UM)
Z 1?0? wA {9,[\0}<U/\,i) - (1- Dz)} + op(1)
i=1 g)\ UAz (U)\,i)

g UA@ g i
= Z W - D) {@(Wi) - “}.]A—)

119>\ U/\z



(0]

Note that E [ uaO, Z)(l —Dy) {@(WZ) — g*”’]*(UA’i) H is equal to

E\ (Ux,s) 9&0 (Ux,s)

r (1] [0]
E|E gd[}é]k( ) {<P(Wi) gg[)o]A( - )} Ui, Di = 0”
L Loy (Uxi) v (Uxi)
Ml
Uy, Uy
A (UA z) gx (UM)

From similar arguments in the proof of Lemma B2, uniformly over (\, ¢, %) € A,, x & x U,

n [1]
gw)‘ - D, W M 1
Vno(A, 0, 0) = P1 Zzl QA ) i) {80( i) — /\ (U)\,i) + op(1).

2 Derivation of Asymptotic Covariance Matrices

2.1 Example 1: Sample Selection Model with Conditional Median

Restrictions

Let uz; = Z; — E[Z;|Uo;, D; = 1] and uy,; = Y; — E[Y;|Up;, D; = 1]. Let Szz, Szy, fig(u)
and fiy (u) be Sz, Szy, iy (w) and fiy (u) except that 6 is replaced by 6. Also, let U; be U

except that 0 is replaced by 6,. Write Sy7 —Syy = By, + B>,,, where

E ~T T
Bln = Z—D D UZluZZ UZ/LLZI)
i=1

n

1
By, = m ; D; (uzzuy; — Eluguy,|D; =1]),
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and ﬂZ,i = ZZ —

B, as

1

- 1

DiUZﬂ'{’aZ,i — ’UJZ,i}T + = Z Di{ﬂzyi — uZﬂ'}UJ;’Z- + Op(l/\/ﬁ)

Z?:l D; Z_Zl Z?:l D; i=1

fiy(U;) and diy; = Y; — fiy(U;). Under regularity conditions, we can write

Using Lemma B3(i), we find that both the sums above are equal to op(1/4/n). Following

similar arguments for Syv — 8 7v, we conclude that

1

SZZ —Szz = Z D; (UZzU;Z - E[uZ’Lu;Z’Dl = 1]) + OP(l/\/ﬁ) (16)
=1

Z?:l D; —

N 1 n
Szy —Szy = m ; D; (uzuy; — Eluguy;|D; = 1]) + op(1/v/n).

First write B — By = A1n + Aa,, where

Aln = {SE; — Sgé}gzy and A2n = Sgé{gzy — Szy}.

From (16), H[SZY gzz] - [SZY Szz]H = Op(l/\/ﬁ) Hence

Aln

because 5, =

= S22 — S22}, 52y = S;p{Szz — S22}574 52y + op(1/V/n)
= S,0{Szz — Sz}, + op(1/v/n),
S;1S,y. Therefore, from (16), /n{ — f,} is equal to
_ 1 <
—Szé (m ; l)Z (uz72~u;i — E[“Z,zu;zu)z = 1])) 60
. 1
525 | s, 2 Di(wzauvs = Blugaun| Di = 1)) | + 0p(1/vn).
=170 =y

As for the first term, observe that U},iﬁo = Uy,; — Uy,;, Where u,; = v; — E[v;|Uy;, D; = 1].
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From this, we find that

(UZZUL - E[UZzU;JDz = 1]) Bo

= (uguy,; — Eluguy;|D; = 1]) — (uzuy; — Elugu,;|D; = 1]).
Plugging this into the first sum of (17), we find that 3 — 8, = S;4€, + op(1//n), where

= s ZD (st — B fuz | Dy = 1))
=1

Therefore the asymptotic variance is obtained through Assumption SSO (i). W

2.2 Example 2: Single-Index Matching Estimators of Treatment

Effects on the Treated
Define ji(U;) to be ji(U;) except that 6 is replaced by 8. Write /n(3 — 3,) as
12 1Z\/_Z{Z Y /“LO(UUZ))_BO}

* lZ:—M ; 2 (10(Un) — B(00)) = Ava + Asy, sty

Let Py = P{Z =d}, d € {0,1}. As for A;,, it is not hard to see that

A = 5y lZ\/_ZZ (Y; — 1 (Uo,)) +

= PMZZ (Y; — i (Uo,)) +

i Z Z\/_ZZ L ( UO@ MO(UO,z‘) — Bo}

ZZ e Uol) Mo(UOZ) 50) +0P( )

\/_
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As for A,,, we apply Lemma B3(ii) to deduce that it is equal to

1 (1— Z)P(Up,)
Pivn z_; 1— P(Usy)

(10 (Uo,i) — Yi) + op(1).

Combining Ay, and A,,, we find that /n(3 — §,) = \/iﬁ > +op(1), where

. Zz'é‘lﬂ' (]_ — Z»P(Ugﬂ')éfo’i 1

M= Th T a= P n Ao #les) = mollhd) = Bo).

and e4; = Y; — py(Uo), d € {0,1}. Hence Vspr = Ev,
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