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Abstract

One of the approaches to compare forecasting methods is to test whether the risk from

a benchmark prediction is smaller than the others. The test can be embedded into

a general problem of testing inequality constraints using a one-sided sup functional.

Hansen (2005) showed that such tests su¤er from asymptotic bias. This paper general-

izes this observation, and proposes a hybrid method to robustify the power properties

by coupling a one-sided sup test with a complementary test. The method can also

be applied to testing stochastic dominance or moment inequalities. Simulation studies

demonstrate that the new test performs well relative to the existing methods. For illus-

tration, the new test was applied to analyze the forecastability of stock returns using

technical indicators employed in White (2000).
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1 Introduction

Comparing multiple forecasting methods is important in practice. Diebold and Mariano (1995)

proposed tests comparing two forecasting methods, and West (1996) o¤ered a formal analysis of

inference based on out-of-sample predictions. White (2000) developed a general testing framework

for multiple forecasting models, and Hansen (2005) developed a way to improve the power of the

tests in White (2000). Giacomini and White (2006) introduced out-of-sample predictive ability

tests that can be applied to conditional evaluation objectives. There also has been interest in

evaluation of density forecasts in the literature. See for earlier contributions Diebold, Gunther,

and Tay (1998), Christo¤ersen (1998), and Diebold, Hahn, and Tay (1999), and for more recent

researches, Amisano and Giacomini (2007), and Bao, Lee, and Salto¼glu (2007), among others. For

a general survey of forecast evaluations, see West (2006) and references therein.

This paper�s main focus is on one-sided sup tests of predictive ability developed by White

(2000) and applied by Sullivan, Timmerman, and White (1999). A one-sided sup test is based on

the maximal di¤erence between the benchmark and the candidate forecast performances. Hansen

(2005) demonstrated that the one-sided sup tests are asymptotically biased, and suggested a way

to improve their power. His approach is general and, in fact, related to some later literatures on

testing moment inequalities such as Andrews and Soares (2007), Bugni (2010), Andrews and Shi

(2009), and Linton, Song and Whang (2010).

This paper generalizes the observation by Hansen (2005), and proposes a method to robustify

the local asymptotic power behavior. The main idea is to couple the one-sided sup test with a

complementary test that shows better power properties against alternative hypotheses under which

the one-sided sup test performs poorly. For a complementary test, this paper adopts a symmetrized

test statistic used by Linton, Massoumi and Whang (2005) for their stochastic dominance tests.

This paper calls this coupled test a hybrid test, as its power properties are intermediate between

those of the one-sided sup test and the symmetrized test. As this paper demonstrates, one can

easily apply a bootstrap procedure to obtain approximate critical values for the hybrid test by
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using the existing bootstrap procedures.

Many recent researches have focused on the testing problem of inequality restrictions that

hold simultaneously under the null hypothesis. See, for example, Hansen (2005), Andrews and

Soares (2007), Bugni (2010), Canay (2010), Linton, Song, and Whang (2010), Andrews and Shi

(2010), and references therein. This paper�s approach makes contrast with the proposals mentioned

above. In the context of testing predictive ability, these proposals improve the �nite sample power

properties of the test by eliminating forecasting methods that perform poorly beyond a threshold

when computing a critical value. Since using a �xed threshold makes the test asymptotically invalid,

the threshold is chosen to be less stringent as the sample size becomes larger, satisfying certain rate

conditions. On the other hand, this paper�s approach modi�es the sup test to have a better local

power against alternatives that the original test is known to have weak power, and hence using a

sequence of thresholds is not required.

A test of such inequality restrictions is said to be asymptotically similar on the boundary, if the

asymptotic rejection probability remains the same whenever any of the inequality restrictions is

binding under the null hypothesis. A recent paper by Andrews (2011) showed an interesting result

that a test of such inequality restrictions that is asymptotically similar on the boundary has poor

power properties under general conditions. Like the researches mentioned previously, the hybrid

test of this paper improves power properties by alleviating asymptotic bias of the one-sided test

against certain alternatives, but does not eliminate entirely the asymptotic nonsimilarity of the

one-sided test. Hence the test is not subjected to the poor power problem pointed out by Andrews

(2011).

The performance of the hybrid test is investigated through Monte Carlo simulation studies.

Overall, the new test performs as well as the tests of White (2000) and Hansen (2005), and in some

cases, performs conspicuously better.

This paper applies the hybrid test to investigate the forecastability of S&P500 stock returns by

technical indicators in a spirit similar to the empirical application in White (2000). Considering the

3



periods from March 28, 2003 through July 1, 2008, the empirical application tests the null hypoth-

esis that no method among the 3,654 candidate forecasting methods considered by White (2000)

outperforms the benchmark method based on sample means. The hybrid test has conspicuously

lower p-values than the tests of Hansen (2005) and White (2000). A brief explanation behind this

�nding is provided in the paper.

The paper is organized as follows. The next section discusses poor power properties of one-

sided sup tests. Section 3 introduces a general method of coupling the one-sided test with a

complementary one. Sections 4 and 5 present and discuss results from Monte Carlo simulation

studies, and an empirical application on stock returns forecastability. Section 6 concludes.

2 Testing Predictive Ability and Asymptotic Bias

In producing a forecast, one typically adopts a forecasting model, estimates the unknown parameter,

and then produces a forecast using the estimated forecasting model. Since a forecasting model and

an estimation method constitute eventually a single map that assigns past observations to a forecast,

we follow Giacomini and White (2006) and refer to this map generically as a forecasting method.

Given information FT at time T , multiple forecasting methods are generically described by maps

'm; m 2M, from FT to a forecast, whereM � R denotes the set of the indices for the forecasting

methods. The set M can be a �nite set or an in�nite set that is either countable or uncountable.

Let �(m) denote the risk of prediction based on the m-th candidate forecasting method, and �(0)

the risk of prediction based on a benchmark method. Then the di¤erence in performance between

the two methods is measured by

d(m) � �(0)� �(m):
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We are interested in testing whether there is a candidate forecasting method that strictly dominates

the benchmark method. The null and the alternative hypotheses are written as:

H0 : d(m) � 0; for all m 2M and (1)

H1 : d(m) > 0; for some m 2M.

Let us consider some examples of �(m).

Example 1 (Point Forecast Evaluated with the Mean Squared Prediction Error) Sup-

pose that there is a time series f(Yt;X>t )g1t=1, where we observe part of it, say, FT � f(Yt;X>t )gTt=1.

The object of forecast is a � -ahead quantity YT+� . There are M number of candidate forecasts

Ŷ
(m)
T+� ; m = 1; � � �;M: Each forecast is generated by Ŷ (m)T+� = fm(FT ; �̂m;T ), where �̂m;T is a

quantity estimated using FT , and fm(�;�) the m-th forecasting model known up to �. Since

�̂m;T is estimated using FT , we can write �̂m;T = �m(FT ) for some map �m. When we write

'm(FT ) = fm(FT ; �m(FT )), the forecasting method is represented as a single map Ŷ
(m)
T+� = 'm(FT ).

One way to de�ne the risk �(m) is to adopt the mean squared prediction error:

�(m) = E[fYT+� � Ŷ (m)T+�g
2]:

The expectation above is with respect to the joint distribution of variables constituting information

FT and YT+� : �

Example 2 (Density Forecast Evaluated with the Expected Kullback-Leibler Diver-

gence): Let f(Yt;X>t )g1t=1 and FT � f(Yt;X>t )gTt=1 be as in Example 1. The object of forecast in

this example is the density fT+� of a � -ahead quantity YT+� . Suppose that fm;T+� (�;FT ) is the

density forecast obtained using the m-th forecasting method and information FT . Following Bao,

Lee, and Salto¼glu (2007), we may take the expected Kullback-Leibler divergence as a measure of
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discrepancy between the forecast density fm;T+� (�;FT ) and the actual density fT+� (�):

KL(m) =

Z
log (fT+� (y)) fT+� (y)dy �E

�Z
log (fm;T+� (y;FT )) fT+� (y)dy

�
:

where fT+� is the true density of YT+� : Since the �rst integral does not depend on the choice of a

forecasting method, we focus on the second part only in comparing the methods. Hence we take

�(m) = �E
�Z

log (fm;T+� (y;FT )) fT+� (y)dy
�

and de�ne e(m) = �(0)� �(m). �

Example 3 (Conditional Forecast Evaluated with the Mean Squared Prediction Error):

Giacomini andWhite (2006) proposed a general framework of testing conditional predictive abilities.

Let f(Yt;X>t )g1t=1 and FT � f(Yt;X>t )gTt=1 be as in Example 1. Let Ŷ
(m)
T+� = 'm(FT ) be a point

forecast of YT+� using the m-th method 'm, and de�ne the conditional mean squared prediction

error

�(mjGT ) = E[fYT+� � 'm(FT )g2jGT ];

where GT is part of the information FT . For example, the forecast is generated from Ŷ
(m)
T+� =

fm(FT ; �̂m) as in Example 1. Then the null hypothesis of interest is stated as d(mjGT ) � 0 for all

m 2 M; where d(mjGT ) = �(0jGT ) � �(mjGT ), with �(0jGT ) denoting the benchmark method�s

conditional mean squared prediction error. The null hypothesis states that regardless of how the

information GT realizes, the performance of the benchmark method dominates all the candidate

methods. As in Giacomini and White (2006), we choose an appropriate test function h(GT ), and

focus on testing (1) with d(m) = �(0) � �(m), where �(m) � E[h(GT )fYT+� � 'm(FT )g2]: A

remarkable feature of Giacomini and White (2006) is that their testing procedure is designed to

capture the e¤ect of estimation uncertainty when a �xed sample size is used for the estimation even

as T !1. This feature is also accommodated in this paper�s framework. �
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The usual method of testing (1) involves replacing �(m) by an estimator �̂(m) and constructing

an appropriate test using d̂(m) = �̂(0)� �̂(m). For Examples 1-3 above, we can construct:

�̂(m) =
1

T �R+ 1

TX
t=R

fYt+� � fm(Ft; �̂m;t)g2 (Example 1)

�̂(m) = � 1

T �R+ 1

TX
t=R

log(fm;t+� (Yt+� ;Ft)) (Example 2) and

�̂(m) =
1

T �R+ 1

TX
t=R

h(Gt)fYt+� � fm(Ft; �̂m;t)g2 (Example 3),

where the periods R+ � ; � � �; T + � are target periods of forecast. (For obtaining fm;t+� (Yt+� ;Ft) in

Example 2, see Bao, Lee, and Salto¼glu (2007) and Amisano and Giacomini (2007) for details.) Let

n denote the number of the time series observations used to produce d̂(m). The random quantity

d̂(m) is viewed as a stochastic process indexed by m 2M, or brie�y a random function d̂(�) onM.

The main assumption for this paper is the following:

Assumption 1: There exists a Gaussian process Z with a continuous sample path onM such that

p
nfd̂(�)� d(�)g =) Z(�); as n!1; (2)

where =) denotes weak convergence of stochastic processes on M.

WhenM = f1; 2; � � �;Mg, Assumption 1 is satis�ed if for d̂= [d̂(1); � � �; d̂(M)]> and d= [d(1); � �

�; d(M)]>;
p
n(d̂� d) d! Z � [Z(1); � � �; Z(M)]> � N (0;
) (3)

for a positive semide�nite matrix 
 (i.e., for all t 2 RM t>Z is zero if t>
t = 0, and t>Z �

N(0; t>
t) if t>
t > 0). Therefore, the predictive models are allowed to be nested as in White

(2000) and Giacomini and White (2006). In the situation where the forecast sample is small

relative to the estimation sample, the estimation error in �̂m;t becomes irrelevant. On the other
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hand, in the situation where parameter estimation uses a rolling window of observations with a �xed

window length as in Giacomini and White (2006), the estimation error in �̂m;t remains relevant in

asymptotics. Assumption 1 accommodates both the situations.

Assumption 1 also admits in�nite M. The case arises, for example, when one tests the con-

ditional mean squared prediction error as in Example 3 using a class of test functions instead of

using a single choice of h (e.g. Stinchcombe and White (1998)). In this case, M also includes the

indices of such a class of test functions.

However, Assumption 1 excludes the case where �(�) is a regression function of a continuous

random variable and �̂(�) is its nonparametric estimator. While such a case arises rarely in the

context of testing predictive abilities, it does in the context of testing certain conditional moment

inequalities (e.g. Lee, Song, and Whang (2011)).

We �rst show that tests based on the one-sided sup test statistic:

TK �
p
n sup
m2M

d̂(m) (4)

are asymptotically biased. To de�ne a local power function, we introduce Pitman local alternatives

in the direction a:

d(m) = a(m)=
p
n. (5)

The direction a represents how far and in which direction the alternative hypothesis is from the null

hypothesis. For example, suppose that M = f1; 2; � � �;Mg, i.e., we have M candidate forecasting

methods, and consider an alternative hypothesis with a such that a(1) = c > 0 and a(m) = 0 for

all m = 2; � � �;M . The alternative hypothesis in this case is such that the �rst forecasting method

(m = 1) has a risk smaller than that of the benchmark method by c=
p
n.

Proposition 1: Suppose that Assumption 1 holds. Then for any c� > 0 with limn!1 P
�
TK > c�

	
�
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Figure 1: Illustration of An Alternative Hypothesis Associated with Low Power: Recall that when a(m)
takes a positive value for some m, the situation corresponds to an alternative hypothesis. When a(m) is
highly negative at m�s away from m0 and a(m0) is positive but close to zero, supm2MZ(m) + a(m) is
close to Z(m0) with high probability, making it likely that the rejection probability is below �.

� under H0, there exists a map a :M! R such that under the local alternatives of type (5),

lim
n!1

Pa
�
TK > c�

	
� ���+ ";

where Pa denotes the sequence of probabilities under (5) and � = Pfsupm2M Z(m) > c�g �

infm2M PfZ(m) > c�g.

Proposition 1 shows that the sup test of (1) has a severe bias when � is large. Proposition 1

relies only on generic features of the testing set-up such as (1) and (2), and hence also applies to

many inequality tests in contexts beyond those of testing predictive abilities. A general version of

Proposition 1 and its proof is found in the supplemental note.

The intuition behind Proposition 1 is simple. Suppose that Pfsupm2M Z(m) > c�g = �. Then,

the asymptotic power under the local alternatives with a is given by Pfsupm2M Z(m)+a(m) > c�g.

Suppose we take a(m) of the form in Figure 1 with a(m0) positive but close to zero, whereas for

other m�s, a(m) is very negative. Then supm2M Z(m) + a(m) is close to Z(m0) + a(m0) with high
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probability. Since a(m0) is close to zero,

P

�
sup
m2M

Z(m) + a(m) > c�

�
� P fZ(m0) > c�g+ "

for small " > 0. Since typically P fZ(m0) > c�g < P fsupm2M Z(m) > c�g = �, we obtain the

asymptotic bias result.

3 Power Robusti�cation via Coupling

3.1 A Complementary Test

The previous section showed that the sup test has very poor power against certain local alternatives.

This section proposes a hybrid test that improves power against such local alternatives. Given d̂

as before, we construct another test statistic:

TS = min

�
max
m2M

d̂(m); max
m2M

(�d̂(m))
�
. (6)

This type of test statistic was introduced by Linton, Massoumi, and Whang (2005) for testing

stochastic dominance. For testing (1), TS is complementary to TK in the sense that using TS

results in a greater power against such local alternatives that the test TK performs very poorly.

To illustrate this point, letM = f1; 2g andX1 andX2 be given observations which are positively

correlated and jointly normal with a mean vector d= [d(1); d(2)]>: We are interested in testing

H0 : d(1) � 0 and d(2) � 0; against

H1 : d(1) > 0 or d(2) > 0:

Consider TK = maxfX1; X2g and TS = minfmaxfX1; X2g;maxf�X1;�X2gg: Complementarity

between TK and TS is illustrated in Figure 2 in a form borrowed from Hansen (2005). The ellipses
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Figure 2: Complementarity of TK and TS : Both panels depict three elipses that represent contours from
the joint density of (X1; X2) under di¤erent probabilities. Contour A corresponds to the least favorable
con�guration under the null hypothesis, and contours B and C di¤erent probabilities under the alternative
hypothesis. The lighter gray areas on both panels represent the rejection regions of the tests. Under the
alternative hypothesis of type C, the test TK has a better power than TS , while under the alternative
hypothesis of type B, the test TS has a better power than the test TK (as shown by a larger dark area
within the contour B for the test TS than for the test TK .)

in Figure 2 indicate representative contours of the joint density of X1 and X2; each corresponding

to di¤erent distributions denoted by A, B, and C. While A represents the null hypothesis under a

least favorable con�guration (LFC), i.e., d(1) = d(2) = 0, B and C represent alternative hypotheses.

Under B; the rejection probability of the test TK is lower than that under A; implying the biasedness

of the test. (This is illustrated by the dark area in ellipsis B in the left panel which is smaller than

the dark area in ellipsis A in the same panel.) However, the rejection probability of the test TS

against B is better than the test TK as indicated by a larger dark area in the ellipsis B on the right

panel than that on the left panel. (This contrast may be less stark when X1 and X2 are negatively

correlated.) Hence against B; test TS has a better power than test TK : This order of performance

is reversed in the case of an alternative C where the test TS has a power close to zero while the

test TK has a power close to 1.
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3.2 Coupling

We construct a hybrid test by coupling TK and TS . For a given level � 2 [0; 1] and  2 [0; 1]; we

de�ne a hybrid test of (1) as follows:

Reject H0 if TS > cS�() (7)

or

if TS � cS�() and T
K > cK� ();

where cS�() and c
K
� () are threshold values such that

limn!1PfTS > cS�()g = � and

limn!1PfTS � cS�() and T
K > cK� ()g = �(1� ):

The hybrid test runs along a locus between TK and TS as we move  between 0 and 1: When  is

close to 1, the hybrid test becomes close to TS , and when  is close to 0; it becomes close to TK :

The power-reducing e¤ect of the negativity of d(m) for most m�s on the test TK is counteracted

by the power-enhancing e¤ect of the positivity of �d(m) for most m�s on the test TS . By coupling

with TS ; the hybrid test shares this counteracting e¤ect. Without reasons to do otherwise, this

paper proposes using  = 1=2.

Critical values can be computed using bootstrap. First, we simulate the bootstrap distribution

P � of (TS ; TK) by generating (TS�b ; TK�b )Bb=1; where B denotes the bootstrap number. (When

observations are stationary series, this can be done using the stationary bootstrap method of Politis

and Romano (1994). See also for details White (2000) and Hansen (2005).) Using the empirical

distribution of fTS�b gBb=1, we �rst compute cS�� () such that

1

B

BX
b=1

1fTS�b > cS�� ()g = �. (8)
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Given cS�� (), we can take c
K�
� () to be the (1 � �(1 � ))-percentile of the bootstrap series,

TK�b � 1fTS�b � cS�� ()g; b = 1; � � �; B.

The method of coupling hardly entails additional computational cost. The computational cost in

most cases arises when one computes d̂�(m) using the bootstrap samples, which is a step common

in other bootstrap-based tests. Once d̂�(m) is computed, �nding TK�b and TS�b and obtaining

bootstrap critical values are straightforward.

We de�ne the p-values for the test as follows:

p̂ = sup
�
� 2 [0; 1] : TS � cS�� () and TK � cK�� ()

	
; (9)

where cS�� () and c
K�
� () are critical values de�ned in (8). The event that TS � cS�� () and

TK � cK�� () arises if and only if the hybrid test does not reject the null hypothesis. In practice,

one starts from � = 0 and increases along a grid point until TS > cS�� () or T
K > cK�� (). Since

bootstrap statistics TK�b and TS�b have already been computed, the grid search can be done very

fast.

3.3 A Recursive Search for a Better Forecasting Method

When the search for a better forecasting method is an ongoing process with candidate models

continuing to expand at each search, it is convenient to have a search algorithm that properly takes

account of the past searches. White (2000) proposed such an algorithm for practitioners. In this

section, we similarly o¤er the method of recursive search based on the hybrid test.

Given bootstrap versions fd̂�b(m)gBb=1, m = 1; � � �;M , and a consistent asymptotic variance

estimator !̂2(m) such that
p
n(d̂(m)� d(m)g=!̂(m) d! N(0; 1), we de�ne

~d�b(m) = d̂
�
b(m)� d̂(m). (10)

(One may construct !̂2(m) using an HAC (heteroskedasticity-autocorrelation consistent) type es-
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timator as done in Hansen (2005), p. 372.) Now, the recursive search that this paper suggests

proceeds as follows:

Step 1: For model 1; compute d̂(1) = �̂(0) � �̂(1), its asymptotic variance estimator !̂2(1),

and the bootstrap version fd̂�b(1)gBb=1. Set TK1;+ =
p
nd̂(1)=!̂(1); TK1;� = �

p
nd̂(1)=!̂(1); TS1 =

minfTK1;+; TK1;�g; and bootstrap versions, TK�1;+;b =
p
n ~d�b(1)=!̂(1); T

K�
1;�;b = �

p
n ~d�b(1)=!̂(1); and

TS�1;b = minfTK�1;+;b; T
K�
1;�;bg:

Step m: For model m, we compute d̂(m) = �̂(0) � �̂(m), its asymptotic variance estimator

!̂2(m), and the bootstrap version fd̂�b(m)gBb=1. Set TKm;+ = maxf
p
nd̂(m)=!̂(m); TKm�1;+g; TKm;� =

maxf�
p
nd̂(m)=!̂(m); TKm�1;�g; TSm = minfTKm;+; TKm;�g; and bootstrap versions

TK�m;+;b = max
np

n ~d�b(m)=!̂(m); T
K�
m�1;+;b

o
;

TK�m;�;b = max
n
�
p
n ~d�b(m)=!̂(m); T

K�
m�1;�;b

o
; and

TS�m;b = minfTK�m;+;b; T
K�
m;�;bg:

At each step m, the bootstrap p-value can be computed as in (9), where we replace TS�b ; TK�b and

TS ; TK by TS�m;b; T
K�
m;+;b and T

S
m; T

K
m;+:

The recursive search at Stepm carries along the history of previous searches done using the same

data. Similarly as in the spirit of White (2000), we emphasize that as for the previous searches,

the recursive search at any Step m requires only knowledge of TKm�1;+; T
K
m�1;�; fTK�m�1;+;bgBb=1; and

fTK�m�1;�;bgBb=1. In other words, one does not need to know the entire history of the searches and

performances, before one turns to the next search.
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4 Monte Carlo Simulations

4.1 Data Generating Processes and Three Tests

The �rst part of simulations focuses on the simulation design considered by Hansen (2005) and

compare three types of tests, a test of White (2000) (Reality Check: RC), a test of Hansen (2005)

(Superior Predictive Ability: SPA) and this paper�s proposal (Hybrid Test: Hyb). The second part

considers local alternatives that are di¤erent from those of Hansen (2005).

Suppose that Ŷ (m)T+� is a � -step ahead forecast of YT+� using the m-th method. The relative

performance is represented by L(YT+� ; Ŷ
(m)
T+� ) for some loss function L, and we simply write Lm;T =

L(YT+� ; Ŷ
(m)
T+� ): Suppose that Ŷ

(0)
T+� is a forecast from a benchmark method. The risk di¤erence is

given by d(m) = E [L0;T � Lm;T ] :

In simulation studies, we drew for m = 1; 2; � � �;M and t = 1; 2; � � �; n;

Lm;t � i.i.d. N(�(m)=
p
n; �2m)

for constants �(m) and �2m =
1
2 exp (arctan(�(m))) : We set �(0) = 0. As for �(m); we considered

two di¤erent schemes: alternatives with local positivity and alternatives with both local positivity

and local negativity. These two schemes are to be speci�ed in Sections 4.2.1 and 4.2.2 later.

First, consider two test statistics, one according to White (2000) and the other according to

Hansen (2005):

TRC =
p
n max
m2M

d̂(m) and TSPA =
p
n max
m2M

d̂(m)

!̂(m)
; (11)

where !̂2(m) is taken to be the sample variance of fL0;t � Lm;tgnt=1.

To construct critical values, we generated the bootstrap version fd̂�b(m)gBb=1; b = 1; 2; � � �; B; of

d̂(m) by resampling from observations fL0;t � Lm;tgnt=1 with replacement, and let ~d�b(m) be as
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de�ned in (10). We constructed

Reality Check Test (RC): Reject H0 if TRC > cRC�� and

Superior Predictive Ability Test (SPA): Reject H0 if TSPA > cSPA�� ;

where cRC�� is the (1 � �)-quantile of fTRC�b gBb=1, with TRC�b =
p
nmaxm2M ~d�b(m); and c

SPA�
� is

the (1� �)-quantile of fTSPA�b gBb=1 with TSPA�b = maxm2M
p
n �d�b(m)=!̂(m), where

�d�b(m) = d̂
�
b(m)� d̂(m)� 1f

p
nd̂(m)=!̂(m) � �

p
2 ln lnng:

Note that �d�b(m) involves centering of d̂
�
b(m) selectively depending on whether d̂(m) is close to the

boundary of the inequalities or not. The selective recentering is done to improve the power of the

test by weeding out the forecasting methods that perform badly.

For the hybrid test which is the main proposal of this paper, de�ne �rst the complementary

test statistic:

TS =
p
nmin

(
max
m2M

d̂(m)

!̂(m)
; max
m2M

� d̂(m)
!̂(m)

)
:

As for TK , we take TK = TSPA de�ned in (11). As for critical values, construct

TS�b =
p
nmin

(
max
m2M

~d�b(m)

!̂(m)
; max
m2M

�
~d�b(m)

!̂(m)

)
:

Let cS�� be the (1��=2)-quantile of fTS�b gBb=1, and take cK�� to be the (1��=2)-quantile of fTK�b gBb=1;

where TK�b = TSPA�b 1fTS�b � cS�� g: Choosing cS�� and cK�� as such re�ects the choice of  = 1=2.

Then, the hybrid test is de�ned as

Hybrid Test (Hyb): Reject H0 if TS > cS�� or

if TS � cS�� and TSPA > cK�� :

In the simulation studies, the sample size n was 200 and the number of Monte Carlo simulations
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and the bootstrap Monte Carlo simulations 2,000. The number (M) of candidate forecasting

methods was chosen from f50; 100g.

4.2 Alternative Hypotheses

4.2.1 Alternatives with Local Positivity

Following Hansen (2005), we �rst consider the following alternatives with �(m):

DGP A: �(m) =

8>>>><>>>>:
0; if m = 0

�(1); if m = 1

� � (m� 1)=(M � 2); if m = 2; � � �;M;

where � and��(1) were chosen from f0; 1; 2; 3; 4g. TheM�1methods withm = 2; ���;M are inferior

to the benchmark method (m = 0). Their relative performance is ordered asM �M �1 � � � � � 2:

When �(1) = 0; no alternative forecasting method strictly dominates the benchmark method,

representing the null hypothesis. When �(1) < �(0) = 0; the method 1 performs better than the

benchmark method, representing the alternative hypothesis. The magnitude � controls the extent

to which the inequalities �(m) � �(0) = 0; m = 2; � � �;M; lie away from binding. When � = 0; the

remaining inequalities for methods 2 through M are binding, i.e., d(m) = 0 for all m = 2; � � �;M:

Tables 1 and 2 show the empirical size of the tests under DGP A. The results show that the

test RC has lower type I error as the design parameter � increases. For example, when � = 2;

the rejection probability of the test RC is 0.0005 when the nominal size is 5% and M = 50: This

extremely conservative size of the test RC is signi�cantly improved by the test SPA of Hansen

(2005) which shows the type I error of 0.0180. This improvement is made through two channels:

the normalization by !̂(m) of the test statistic, and the trimming of poorly performing forecast

methods. The hybrid approach shows a further improvement over the test SPA, yielding type I

error of 0.0365 in this case.

17



Table 1: Empirical Size of Tests of Predictive Abilities under DGP A (M = 50; n = 200)

� = :05 � = :10
� �(1) RC SPA Hyb RC SPA Hyb

0 0 0.0520 0.0615 0.0620 0.1005 0.1180 0.1160
2 0 0.0005 0.0180 0.0365 0.0045 0.0330 0.0530
3 0 0.0005 0.0125 0.0230 0.0005 0.0210 0.0425
4 0 0.0000 0.0105 0.0220 0.0000 0.0230 0.0350

Table 2: Empirical Size of Tests of Predictive Abilities under DGP A (M = 100; n = 200)

� = :05 � = :10
� �(1) RC SPA Hyb RC SPA Hyb

0 0 0.0505 0.0710 0.0610 0.1060 0.1290 0.1210
2 0 0.0010 0.0125 0.0280 0.0040 0.0245 0.0485
3 0 0.0005 0.0080 0.0205 0.0015 0.0200 0.0355
4 0 0.0000 0.0120 0.0220 0.0015 0.0230 0.0315

Tables 3-4 show the power of the three tests. As for Hyb, the rejection probability is slightly

lower than that of SPA in the case of � = 0: It is interesting to see that the rejection probability

of Hyb is still better than RC when �(1) = �2;�3 with � = 0. As the inequalities move farther

away from binding while maintaining the violation of the null hypothesis (i.e. as � increases while

�(1) < 0), the performance of Hyb becomes prominently better than both RC and SPA.

To see how the power of Hyb can be better than that of SPA, recall that when the performance

of SPA performs better than RC in �nite samples, it is mainly because in computing critical values,

SPA weeds out candidates that perform poorly. Given the same sample size n, the proportion of

candidates weeded out tends to become larger as � increases. This explains the better performance

of SPA over RC in Tables 3 and 4. When n increases so that
p
2 ln lnn increases slowly yet

p
nd̂(m)=!̂(m) is stable for many m�s (as is the case with the simulation design with

p
n-converging

Pitman local alternatives), the power-improvement by SPA is attenuated because there are many
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Table 3: Empirical Power of Tests of Predictive Abilities under DGP A (M = 50; n = 200)

� = :05 � = :10
� �(1) RC SPA Hyb RC SPA Hyb

0 �2 0.1315 0.2995 0.2830 0.2180 0.4200 0.3950
�3 0.4895 0.7785 0.7435 0.6210 0.8450 0.8265

2 �2 0.0115 0.2945 0.3770 0.0255 0.3810 0.4520
�3 0.1135 0.7855 0.8395 0.2185 0.8490 0.8890

3 �2 0.0025 0.3055 0.4085 0.0095 0.3900 0.4690
�3 0.0655 0.7745 0.8390 0.1360 0.8345 0.8770

4 �2 0.0030 0.3295 0.4125 0.0085 0.4185 0.4700
�3 0.0475 0.8035 0.8625 0.0935 0.8655 0.8925

Table 4: Empirical Power of Tests of Predictive Abilities under DGP A (M = 100; n = 200)

� = :05 � = :10
� �(1) RC SPA Hyb RC SPA Hyb

0 �2 0.0945 0.2675 0.2475 0.1805 0.3765 0.3535
�3 0.3945 0.7080 0.6755 0.5270 0.7885 0.7755

2 �2 0.0025 0.2315 0.3185 0.0115 0.3040 0.3830
�3 0.0620 0.7040 0.7750 0.1230 0.7710 0.8220

3 �2 0.0000 0.2345 0.3245 0.0030 0.3110 0.3810
�3 0.0350 0.7115 0.7865 0.0725 0.7770 0.8230

4 �2 0.0005 0.2385 0.3125 0.0035 0.3155 0.3615
�3 0.0190 0.7220 0.7875 0.0435 0.7925 0.8250

methods that perform bad yet survive the truncation. In this situation, the power-improving e¤ect

of coupling by Hyb is still in force, because power reduction due to many bad forecasting methods

that survive the truncation in SPA continues to be counteracted by the complementary test coupled

in Hyb.

4.2.2 Alternatives with Local Positivity and Local Negativity

The hybrid test was shown to perform well relative to the other two tests under DGP A. However,

DGP A mainly focuses on alternatives such that RC tends to have weak power. In this section, we
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Figure 3: Three Designs of �(m) withM = 100: All the three designs represent di¤erent types of alternative
hypotheses. In DGP B1, the forecasting methods with m = 1 through m = 20 outpeforms the benchmark
method and in DGP B3, the forecasting methods with m = 1 through m = 80 outperforms the benchmark
method.

consider the following alternative scheme: for each m = 1; � � �;M;

DGP B1: �(m) = r � f�(�8m=M + 1=5)� 1=2g;

DGP B2: �(m) = r � f�(�8m=M + 2=5)� 1=2g; and

DGP B3: �(m) = r � f�(�8m=M + 4=5)� 1=2g;

where � is a standard normal distribution function and r is a positive constant running in an equal

spaced grid in [0; 5]: This scheme is depicted in Figure 3. In DGP B1, only a small portion of

methods perform better than the benchmark method, and in DGP B3, a large portion of methods

perform better than the benchmark method. The general discussion of this paper predicts that

the hybrid test has relatively strong power against the alternatives under DGP B1 while it has

relatively weak power against the alternatives under DGP B3.

Only the results for the cases DGP B1 and DGP B3 are shown in Figure 4 to save space. Under
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Figure 4: Finite Sample Rejection Probabilities for Testing Predictive Ability for Three Tests at Nominal
Size 5%: Reality Check (RC) test of White (2000), Superior Predictive Ability (SPA) test of Hansen (2005),
and Hybrid (Hyb) test of this paper against alternatives depicted in Figure 3. The result shows that Hyb
performs conspicuously better than SPA and RC under DGP B1 that is generally associated with low power
for tests, and it performs slightly worse than SPA under DGP B3 that is generally associated with high
power for tests. Hence the result illustrates the robusti�ed power behavior of the hybrid approach.

DGP B1, Hyb is shown to outperform the other tests. However, it shows a slight reduction in

power (relative to SPA) under DGP B3. This result suggests that as long as the simulation designs

used so far are concerned, the power gain by adopting the hybrid approach can be considerable

under certain alternatives while its cost as a reduction in power under the other alternatives is only

marginal.

21



5 Empirical Application: Reality Check Revisited

5.1 Testing Framework and Data

The empirical section of White (2000) investigates forecastability of excess returns using technical

indicators. He demonstrated that unless the problem of data snooping is properly addressed,

the best performing candidate forecasting method appears spuriously to perform better than the

benchmark forecast based on a simple e¢ cient market hypothesis. This section revisits his empirical

study using recent S&P500 stock returns.

Similarly as in White (2000), this study considered 3,654 forecasts using technical indicators

and adopted mean squared prediction error (MSPE) de�ned as follows: for m = 1; � � �; 3654;

MSPE : �MSPE(m) = E
h
(Ym;T+1 � Ŷm;T+1)2

i
;

where YT denotes the S&P500 return on day T; and ŶT+1 its one day ahead forecast. (Given stock

price Pt at t, the stock return is de�ned to be Yt = (Pt�Pt�1)=Pt�1.) See White (2000) for details

about the construction of the forecasts.

S&P500 Stock Index closing prices were obtained from the Wharton Research Data Services

(WRDS). The stock index returns data range from March 28, 2003 to July, 1, 2008. For each

forecast method, we obtain 187 one-day head forecasts from October 4, 2007 to July 1, 2008. The

data used for the estimation of the forecast models begin from the stock index return on March

28, 2003, and the sample size for estimation is 1,138. Hence the sample size for estimation is much

larger than the sample used to produce forecasts, and it is expected that the normalized sum of the

forecast error di¤erences will be approximately normally distributed. (See Clark and McCracken

(2001) for details.)
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Table 5: Bootstrap p-Values for Testing Predictive Ability in terms of MSPE. The number q represents
the tuning parameter that determines the random block sizes in the stationary bootstrap. See Politis and
Romano (1994) and White (2000) for details.

q RC SPA Hyb

Data Snooping 0.10 0.1910 0.1598 0.0670
Taken into Account 0.25 0.2916 0.2736 0.0980

0.50 0.3378 0.3206 0.1250
Data Snooping 0.10 0.0094 0.0094 0.0200

Ignored 0.25 0.0188 0.0188 0.0390
0.50 0.0384 0.0384 0.0780

5.2 Results

The results are shown in Table 5. The number q in the tables represents the tuning parameter that

determines the random block sizes in the stationary bootstrap of Politis and Romano (1994). (See

White (2000) for details.) Note that in White (2000), q = 0:5 was used.

Table 5 presents p-values for the tests with data snooping taken into account, and for the tests

with data snooping ignored. When data snooping is ignored, all the tests spuriously reject the

null hypothesis at 10%. (Note that the results of RC and SPA are identical, because there is only

one candidate forecast when data snooping is ignored, and this forecast is not trimmed out by

the truncation involved in SPA.) This attests to one of the main messages of White (2000) that

without proper consideration of data snooping, the best performing candidate forecasting method

will appear to highly outperform the benchmark method.

Interestingly, the p-values from Hyb are conspicuously lower than those obtained from RC and

SPA. For example, when q = 0:10, the p-values for RC and SPA are 0.1910 and 0.1598, but the

p-value for Hyb is 0.0670. Hence the null hypothesis is rejected by Hyb while not by RC and SPA

at 10% in this case. This illustrates the distinctive power behavior of Hyb. Note that Hyb can

outperform RC even when SPA does not outperform it. Such a case may arise when for all the m�s
p
nd̂(m)=!̂(m) is greater than �

p
2 ln lnn with large probability, but for some m;

p
nd̂(m)=!̂(m)
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Figure 5: Normalized Estimated Mean Forecast Error Di¤erences in terms of MSPE (i.e.,
p
nê(m)=!̂(m)).

The threshold is �
p
2 ln lnn. The x-axis is the forecasting method index m running from 1 to 3654. The

forecast error di¤erences lie above the threshold value (represented by the lower dashed line). This means
that no forecast method was truncated by SPA in this case. Therefore, the di¤erence between RC and SPA
is solely due to the normalization by !̂(m) in SPA. Even in this case, Hyb can still improve the power of
the sup test through the power-enhancing e¤ect from the complementary test.

still tends to take a fairly negative value relative to the critical value c� of RC.

For example, see Figure 5 that plots the normalized MSPE di¤erences, i.e.,
p
nd̂(m)=!̂(m); for

m = 1; � � �; 3654. It is interesting to see that no forecasting method is truncated by the truncation

scheme of SPA. This is indicated by the fact that all the normalized forecast error di¤erences are

above the threshold value (lower dashed line). This perhaps explains similar p-values for RC and

SPA. The di¤erence between the results from RC and SPA is solely due to the fact that SPA

involves normalization by !̂(m) while RC does not. Even in this case, Hyb continues to counteract

its power-reducing e¤ect by coupling with the complementary test statistic.
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6 Closing Remarks

This paper has shown that the one-sided sup tests of predictive ability can be severely asymp-

totically biased in a general set-up. To alleviate this problem, this paper proposes the approach

of hybrid tests where we couple the one-sided sup test with a symmetrized complementary test.

Through simulations, it is shown that this approach yields a test with robust power behavior. The

hybrid approach can be applied to numerous other tests of inequalities beyond predictive ability

tests. The question of which modi�cation or extension is suitable often depends on the context of

application.
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