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SPATIAL PRICE COMPETITION: A SEMIPARAMETRIC APPROACH

By Joris Pinkse, Margaret E. Slade, and Craig Brett1

We investigate the nature of price competition among firms that produce differentiated
products and compete in markets that are limited in extent. We propose an instrumental
variables series estimator for the matrix of cross price response coefficients, demonstrate
that our estimator is consistent, and derive its asymptotic distribution. Our semiparametric
approach allows us to discriminate among models of global competition, in which all prod-
ucts compete with all others, and local competition, in which products compete only with
their neighbors. We apply our semiparametric estimator to data from U.S. wholesale gaso-
line markets and find that, in this market, competition is highly localized.

Keywords: Price competition, differentiated products, spatial models, monopolistic
competition, nonparametric estimation, series estimators, instrumental variables, wholesale
gasoline.

1� introduction

In many industries, firms produce differentiated products and compete in
markets that are limited in extent. Common features of those markets are that
entry is easy and that firms supply similar but not identical goods (e.g., gasoline
stations, movie theaters, and restaurants). In attempting to model such markets,
one is naturally led to a variant of spatial or monopolistic competition. These
game-theoretic models are typically based on the assumption that sales and prof-
its depend on a vector of own and rival prices. The nature of this dependence,
however, varies from model to model. Indeed, there is an entire spectrum of
assumptions that ranges from extremely localized rivalry to symmetric competi-
tion.

For example, with one-dimensional spatial models, whether linear (Hotelling
(1929)), circular (Salop (1979)), or vertical (Gabszewicz and Thisse (1979)), each
firm competes directly only with its two neighbors, one on either side. In other
words, conditional on neighbor prices, fluctuations in prices of more distant com-
petitors have no effect on own sales.2 In direct contrast to these spatial models

1 We would like to acknowledge financial support from the Social Sciences and Humanities
Research Council of Canada. Joris Pinkse’s research was also supported by a U.B.C. H.S.S. Research
Grant for new faculty. We thank the following people for thoughtful suggestions and comments:
Charles Blackorby, Richard Blundell, John Cragg, Erwin Diewert, Rob Engle, Joel Horowitz, Henry
Thille, several referees, and participants of the Canadian Econometrics Study Group in Windsor,
the Applied Semiparametric Econometrics workshop in Tilburg, the EARIE conference in Turin,
the workshop on the Econometrics of Price and Product Competition in Toulouse, and departmental
seminars at GREQAM in Marseille, WZB in Berlin, and the Universities of Bristol, British Columbia,
Cornell, Emory, McMaster, Rochester, Waterloo, and York.

2 This assumes that there is no mill price undercutting (see Eaton and Lipsey (1976)).
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where competition is local, models of monopolistic competition in the spirit of
Chamberlin (1933) (e.g., Spence (1976) and Dixit and Stiglitz (1977)) are based
on the notion that competition is not only global but also symmetric. Indeed,
sales and profits depend only on the distribution of rival prices and not on the
identities or locations of the firms that post those prices.3

In this paper, we develop an empirical technique that can be used to discrimi-
nate between local and global rivalry, where we use the words local and global in
a general sense. Following Anderson, de Palma, and Thisse (1989), local compe-
tition denotes a situation in which firms compete directly only with their neigh-
bors, but the dimension of the space need not be one, whereas global competition
denotes a situation in which all products compete with all others, but competi-
tion need not be symmetric.

The answers to many questions concerning the efficiency of downstream mar-
kets depend crucially on the industry’s location on the global/local spectrum.
For example, it is well known that markets where competition is segmented are
less competitive than those where competition is symmetric. In addition, markets
with local competition tend to be characterized by brand proliferation and over
entry, whereas when competition is global, there is no such tendency.4 Given
the importance of these questions from a policy point of view, it is desirable to
have empirical methods that can locate particular industries on the local/global
spectrum.5

We assume that price is the strategic variable and derive the firms’ best reply
or reaction functions. These functions form the basis of our empirical tests. If
we were to impose considerable structure on the way in which firms interact,
we could estimate the pricing rules by standard techniques. However, we do
not choose this route. Instead, we use semiparametric methods to estimate the
matrix of diversion ratios or reaction function slopes. In particular, we allow
substitution patterns, and thus competitive responses, to depend in a possibly
nonlinear fashion on a vector of distance measures that have been proposed
in the literature. For example, we experiment with the (local) common-market-
boundary measure that was used by Feenstra and Levinsohn (1995) and with the
(global) Euclidean-distance measure that was used by Davis (1997). By allowing
the pricing rules to be flexible, and by considering a number of frequently used
distance measures, we are able to assess the nature of price competition in a
given market.

3 A number of models of differentiated products lie somewhere in between these two extremes.
For example, with the characteristics approach to demand (Lancaster (1966), Baumol (1967), and
Gorman (1980)) products compete along several dimensions. Moreover, as the number of dimensions
increases, so does the number of neighbors.

4 See Deneckere and Rothschild (1992) for a formal assessment of these issues in a model that
encompasses both local and global competition. Vives (1999) claims that over entry is also the norm
in models of global competition. However, we do not find his assumptions to be compelling.

5 A number of researchers have calculated cross-price elasticities between all product pairs (e.g.,
Berry, Levinsohn, and Pakes (1995), Goldberg (1995), and Nevo (2000)). The models used, however,
have generally been variants of a random-utility model in which all products compete with all others
by assumption.
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Although we estimate best reply functions (i.e., first-order conditions), our
method could easily be used to estimate demand for differentiated products or
a combination of demand and first order conditions.6 The general problem is
as follows. Suppose that there are n differentiated products where n is large.
The data, however, consist of a single cross section or a short panel. In order to
estimate the n2 cross price elasticities, considerable structure must be imposed on
the problem. The choice of structure to impose differentiates the various studies,
and there are several general classes of models that deal with this problem.

Most empirical models of differentiated product markets in the industrial orga-
nization literature are cast in a discrete choice framework. In other words, con-
sumers can purchase at most one brand of the differentiated product and are
limited to one unit of that brand. Within this framework, there are two commonly
used models: a global random utility model in which each product competes with
every other, albeit with varying intensity, and a local spatial model in which most
cross price elasticities are zero a priori.

A typical random utility model makes use of an individual utility function that
is linear in product characteristics, product price, and an error term that is often
assumed to have an extreme value distribution. Aggregation across consumers
is accomplished by integrating with respect to that distribution, and it is well
understood that the choice of distributional assumptions has strong implications
for preferences. For example, if individual draws from the extreme value distri-
bution are independent and identically distributed, one has a multinomial logit,
which is symmetric. If, in contrast, consumer tastes are allowed to be correlated
across products in a restricted fashion that involves a priori product groupings,
one has a nested multinomial logit (NML). Finally, if the coefficients of the prod-
uct characteristic variables are allowed to vary more generally, one has a random
coefficients model that allows for very general patterns of substitution.7

Highly localized discrete choice models are much less common than random
utility models. However, Bresnahan (1981, 1987) estimates a model of vertical
differentiation with a single parameter that captures quality differences. With his
model, products compete directly only with their two neighbors, one of higher
and the other of lower quality. Feenstra and Levinsohn (1995), in contrast, allow
for multiple dimensions of diversity and compute endogenous market boundaries
in this larger space. They do this by assuming that the transport cost (or utility
loss) function is quadratic in m-dimensional Euclidean space, where m is the
number of characteristics. With both models, products that do not share a market
boundary do not compete directly.

Whereas the discrete choice assumption seems more appropriate for some
applications, variety in consumption seems more natural for others. For exam-
ple, shoppers often purchase several brands of breakfast cereal in one shopping

6 For an application that involves demand estimation, see Pinkse and Slade (2000).
7 Examples of the use of a NML include Goldberg (1995), Verboven (1996), and Fershtman and

Gandal (1998). Bresnahan, Stern, and Trajtenberg (1997) estimate a generalized extreme value model
that is not hierarchical. Examples of random coefficients models include Berry, Levinsohn, and Pakes
(1995), Davis (1998), Petrin (1998), and Nevo (2000). For a more comprehensive discussion of these
models, see Berry (1994).
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trip, and drinkers often consume variable amounts of several brands of beer in
one evening on the town. With variety in consumption, consumers have con-
vex indifference surfaces, and corner solutions are the exception, not the rule.
Though common elsewhere, empirical models that embody a systematic taste
for diversity are less common in the differentiated products literature. A recent
study by Hausman, Leonard, and Zona (1994), however, is based on the notion
that consumers can, and often do, purchase several varieties or brands. These
authors consider a multi-stage budgeting problem, where individuals first decide
how much of the product (beer) to consume, then decide which product types to
purchase (e.g., premium, regular, or light), and finally select brands. The struc-
ture of their model, which involves a priori product groups, is thus similar to a
NML. Substitution patterns within groups, however, are more flexible, but the
number of brands that can be included in a group is more limited.

In this paper, we develop an alternative empirical approach to modeling com-
petition among differentiated products that differs from a random utility model
in several ways. First, it is applicable in situations in which consumers have a sys-
tematic taste for variety and thus might want to consume more than one product.
Second, it nests local and global competition in a natural way.8 Finally, it offers
considerable flexibility in modeling substitution possibilities while, at the same
time, being computationally less burdensome than a full fledged random coeffi-
cients model. Our approach also differs from a multistage budgeting model in
that it does not rely on, but can encompass, a priori product groupings. In addi-
tion, it can be used when there is a very large number of products or brands in
each group.

The organization of the paper is as follows. In the next section, we specify
the theoretical model that forms the basis of our empirical tests. We begin with
individual buyers and sellers, who can be heterogeneous in both observed and
unobserved dimensions. Buyers are competitive firms whose profits depend on
local demand and cost conditions, whereas sellers’ are imperfectly competitive
firms whose profits also depend on rival prices and on local market structure
conditions. Our estimating equations are first order conditions that can be solved
to obtain equilibria of the upstream product market game.

Section 3 deals with estimation. After a brief review of conventional estima-
tion techniques, we present our semiparametric estimator. We propose a series
estimator for the coefficients of rival prices, demonstrate that our estimator is
consistent, and derive its asymptotic distribution. Our estimator makes use of a
vector of measures of the distance between seller (product) pairs, where ‘dis-
tance’ locates sellers (products) in geographic (product characteristic) space. We
assume that the strength of pairwise competition is determined by these mea-
sures. The functional form of this dependence, however, is determined by the
data. Our estimator can handle endogenous prices and measurement error in a

8 Berry (1994) demonstrates that, for example, the vertical model of Bresnahan (1987) is a special
case of a random coefficients model. The different models, however, are not nested in an econometric
sense.
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straightforward fashion through the use of instrumental variables. We therefore
also discuss the choice of instruments and suggest tests of their validity.

Section 4 describes the market and the data that are used in the application.
We assess the nature of spatial price competition in U.S. wholesale gasoline mar-
kets. Petroleum products are shipped by pipeline or barge from refineries to ter-
minals where they are sold to wholesalers at published prices. We use a cross
section of prices, locations, and demand, cost, and market structure factors at
terminals in the lower 48 states. Since we are interested in modeling price com-
petition in geographic space, we experiment with several measures of geographic
proximity for each terminal pair. These measures are dichotomous variables that
indicate if firm j is i’s nearest neighbor in some metric, if i and j share a mar-
ket boundary, and if i and j share a boundary with a third competitor. A final
measure, which is continuous, is the Euclidean distance between the terminals in
which i and j are located. With all four measures, ‘distance’ can be determined
exogenously as a function that only depends on kilometers or endogenously as a
function that also depends on prices and transport costs.

In Section 5, we present our estimated pricing rules and our assessment of
popular models of price competition. To anticipate results, we find that, in this
market, competition is highly localized. Indeed a model in which each firm com-
petes directly principally with its single nearest neighbor receives strongest sup-
port. Furthermore, conditional on being nearest neighbors, the distance between
terminals is unimportant.

2� the model of price competition

In this section, we develop a model in which consumers purchase one or more
of several variants of a differentiated product; a taste for diversity is thus a
maintained hypothesis. Our framework nests local and global models of compe-
tition; the nature of competitive interactions is therefore to be assessed. Nesting
is accomplished through the use of several notions of distance, or its inverse
closeness.

Formally, suppose that there are n sellers of a differentiated product, with one
seller for each variant.9 Sellers as well as variants are indexed by i = 1� � � � � n.
The products, q = 	q1� q2� � � � � qn
T , sell at nominal prices p̃ = 	p̃1� p̃2� � � � � p̃n


T

that are parametric to the purchasers. Finally, each product or variant is asso-
ciated with a characteristic, yi. For notational simplicity, we assume that there
is one characteristic per product. The generalization to multiple characteristics,
however, is straightforward.

There are K buyers of q that are indexed by k = 1� � � � �K. In our appli-
cation, buyers are firms (wholesalers) who resell q (i.e., q is an input vec-
tor).10 Each buyer is located at a point in geographic (or product characteris-
tic) space and therefore has a unique profit function. We assume that the kth

9 The generalization to multiproduct sellers is straightforward (see Pinkse and Slade (2000)).
10 In other applications, buyers could be households or individuals (see Pinkse and Slade (2000)).
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buyer or downstream firm can sell its output at a parametric nominal price, ṽk,
that also depends on its location.11 Let buyer k’s competitive profit function be
�̃k	ṽk� p̃� y
, where y = 	y1� y2� � � � � yn
T . The aggregate profit function for the
buying industry is then

�̃	ṽ� p̃� y
=∑
k

�̃k	ṽk� p̃� y
�(1)

where ṽ = 	ṽ1� ṽ2� � � � � ṽK
T .
Up to this point, our analysis is completely general. In particular, Bliss (1975,

pp. 68–69) shows that, in a competitive economy, no restrictions on individual
demand functions are required for the existence of an aggregate profit func-
tion that generates the aggregate demands.12 In other words, there is no loss of
generality in treating a collection of price-taking firms as if they were a single
price-taking maximizing unit. Moreover, given any aggregate profit function that
satisfies standard regularity conditions, there exists an economy of firms whose
profit-maximizing behavior generates the same aggregate demands.

As is common in the literature on derived demand, we approximate �̃ with a
flexible functional form, which is a second order approximation to an arbitrary
profit function that places no restrictions on product substitution possibilities.
There are many functional forms from which to choose. We use a normalized
quadratic (Berndt, Fuss, and Waverman (1977) and McFadden (1978)), which is a
quadratic function of prices that have been divided by an individual price or by an
index of those prices.13 We divide by an index of output prices, which we denote
V , and define normalized prices, p = V −1p̃ and v̄ = V −1ṽ. The approximation is
then

�̃	ṽ� p̃� y
≈ V
{
�̃T1 p+ �̃T2 v̄+

V

2

[
pTB1p+ v̄T B2v̄+pTB3v̄

]
(2)

+ 1
2

[
pTB4y+ v̄T B5y

]}
�

Without loss of generality, one can choose units for downstream outputs such
that V equals one. Furthermore, since v̄ is constant in a cross section, it can be
suppressed. The normalized quadratic profit function is then

�	p�y
= a0+aT p+ āT y+
1
2

[
pTB1p+pTB4y

]
�(3)

11 ṽk can be a vector of prices without significantly altering the analysis.
12 Individual or household utility functions, in contrast, can be combined into an aggregate utility

function that is independent of the distribution of heterogeneity if and only if the indirect utility
functions are in generalized Gorman polar form (see Gorman (1953, 1961) and Blackorby, Primont,
and Russell (1978)).

13 Diewert and Wales (1987) suggest using a price index rather than a single price. In our case,
this is an important modification, since no single firm sells all products. It is also important that the
normalizing price be exogenous.
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where B1 is an arbitrary symmetric positive semidefinite n by n matrix. Finally,
by Hotelling’s Lemma, downstream demand for product i is

qi =
��̃

�p̃i
� ��
�pi

�pi
�p̃i

= ��
�pi

= ai+
∑
j

[
b1ijpj +b4ijyj

]
(4)

where bkij denotes the i� j element of Bk.
Turning to the upstream (imperfectly competitive) industry, we assume that

each firm’s marginal cost, Ci, is a linear function of a vector of cost factors,
ci�Ci = �T ci. Given rival prices, the ith upstream seller chooses pi to

max
pi
	pi−�T ci


[
ai+

∑
j

(
b1ijpj +b4ijyj

)]−Fi�(5)

where Fi is a fixed cost. The first order condition for this maximization can be
solved to yield seller i’s reaction or best reply function,

pi =Ri	p−i
=
1

−2b1ii

(
ai−b1ii�T ci+

∑
j �=i
b1ijpj+

∑
j

b4ijyj

)
	i = 1� � � � � n
�(6)

where p−i = 	p1� � � � �pi−1�pi+1� � � � �pn
.
Unfortunately, it is not possible to estimate the parameters of (6) from a single

cross section or short panel of n firms. It is therefore necessary to place some
structure on the parameters, which we do as follows.

Equation (6) shows that the intercepts of the best reply functions depend on
the demand and cost factors, y and c. We drop the assumption that yi is one
dimensional, and, since our application is spatial, we partition y into national,
regional, and local variables. To illustrate, a national factor might be the growth
rate of GNP, a regional factor might be the deviation of regional from overall
growth, and a local factor might be city population and/or per capita income.
Furthermore, we assume that, whereas all product demands depend on national
factors, the demand for qi depends only on regional and local factors that are
associated with the region and locality to which i belongs. We also partition the
marginal cost variables into national, regional, and local factors (for example,
crude oil price, regional shipping cost, and local wages, respectively).

The slopes of the best reply functions, −b1ij/	2b1ii
, are proportional to the
diversion ratios that surface in the antitrust literature.14 The diversion ratio from
product i to j is the fraction of the lost customers of i that would switch to j if
the price of i were to rise. It seems natural to assume that this fraction depends
on the proximity of the two products in geographic (or characteristic) space. We
therefore assume that the ratio depends on a vector, dij , of measures of the dis-
tance between the two products in some set of metrics.15 To illustrate, if the

14 See, e.g., Shapiro (1996). The factor of proportionality is 1/2.
15 Even though the metrics measure only pairwise distance, they can depend on all prices and

locations, as will be seen below.
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products were brands of beer, the measures of distance (or its inverse, close-
ness) might be alcohol content proximity, market share proximity, and dummy
variables that indicate whether brands belong to the same product group (e.g.,
premium, regular, or light). In our application, the elements of dij are measures
of proximity in geographic space, which we discuss below.

These assumptions on the parameters of the aggregate profit function are
clearly restrictive. Nevertheless, this simplification involves no conflict with the
assumption that decisions are made separately, independently, and optimally by
heterogeneous decision makers.

Let X = 	xih
�h = 1� � � � �H , be a matrix of observed demand and cost vari-
ables. If, in addition, there are unobserved variables, u, the system of equations
(6) can be written as

p =R	p
=A+X&+Gp+u�(7)

where, in the parametric part of (7), A is a vector of intercepts that we treat
as random effects and & is a vector of parameters that must be estimated. The
matrix G = 	gij
 has zero diagonal elements, gii = 0, and off diagonal elements
gij = g	dij
� i �= j , where g	�
 is a function that must be estimated. As we are
interested in placing as little structure as possible on patterns of substitution and
competitive interactions, we estimate g	�
 nonparametrically.16

Finally, the random variable u, which captures the influence of unobserved
demand and cost variables, can be heteroskedastic and spatially correlated. We
assume, however, that the unobserved characteristics, u, are mean independent
of the observed characteristics, X�E*ui	X+= 0. This strong conditional indepen-
dence assumption is identical to the one that is made by most researchers in the
area (see, e.g., Berry, Levinsohn, and Pakes (1995, p. 854)). Relative to other
applications, however, the problems that are associated with the assumption are
somewhat lessened in our context. Indeed, unlike product characteristics that
tend to come in packages, observed and omitted geographic variables are less
apt to be correlated. To illustrate, whereas larger cars tend to weigh more and
have larger storage capacities and bigger engines, it is not as clear that larger
cities have higher unemployment rates or more developed freeway systems. This
means that xi is less likely to be correlated with ui in our context. Nevertheless,
the conditional independence assumption is very strong, and when it is violated
our estimator is inconsistent. For example, as in other contexts, it is possible that
xj belongs directly in the ith demand equation, in which case xj will be correlated
with ui and thus will not be a valid instrument (see subsection 3.3).17 Ultimately,
the reasonableness of the conditional independence assumption for a particular
application is an empirical issue, and the restrictions that are associated with that
assumption should be tested on a case by case basis.

16 The fact that g is a common function does not imply that buyers are similar, since g can be the
sum of K buyer-specific functions, gk.

17 The fact that ui can be correlated with uj , in contrast, does not present a problem.
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In specifying our model, we have implicitly assumed that all sellers are play-
ing the same game. Furthermore, as is common in the literature, that game is
assumed to be Bertrand.18 If the game were to vary by region, our estimation
strategy would not work well.19 However, these problems are ubiquitous. For
example, it is also possible that different segments of the automobile market are
engaged in different games and that those games might not be Bertrand. Unfor-
tunately, in the absence of good cost data, it is difficult to verify our equilibrium
assumption or to assess whether it varies by region.20

3� estimation

3�1� Estimation by Conventional Methods

If one is willing to impose considerable structure on equation (7), it is possi-
ble to estimate this equation by conventional methods. In particular, one must
parameterize the matrix G and either parameterize or ignore heterogeneity in
the unobserved demand, cost, and market structure variables.

For example, if one assumes that ui ∼ i�i�d�N	0�-2
 and that G consists of
an exogenously specified weighting matrix � that is scaled by a single unknown
parameter .�G= .� , the likelihood function is21

l =− N
2
ln	2�-2
+ ln 	In−.� 	(8)

− 1
2-2
	p−.�p−X&
T 	p−.�p−X&
�

where In is the identity matrix of size n. Equation (8) can be maximized to yield
efficient estimates of &�., and -2. Moreover, the estimation can be simplified
by using the fact that

	In−.� 	 =∏
j

	1−.1j
�(9)

where 1j is the jth eigenvalue of � .
This is the approach that is taken by Case (1991), who assumes that �ij = 1

if i and j share a market boundary and zero otherwise, and by Pinkse and Slade
(1998), who experiment with several weighting matrices. Our objective, however,
is to estimateG without imposing structure on the problem a priori. We therefore
choose a semiparametric estimator.

18 One can estimate a dynamic version of the model in which lagged rival prices appear on the
right-hand side of the equation. When we do this we obtain very similar results.

19 This is an argument in favor of not using time-series variation, since the game could also change
over time.

20 Pinkse and Slade (2000) use cost data to verify the equilibrium solution concept in a model in
which demand functions are estimated using similar techniques.

21 For a general discussion of maximum likelihood estimation in the presence of spatially lagged
dependent variables and/or spatial residual correlation, see Anselin (1988).
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3�2� Estimation by Semiparametric Methods

In this subsection, we propose a semiparametric series estimator for equation
(7). Since prices appear on the right-hand side of this equation, we take an instru-
mental variables approach. We prove that our estimator is consistent, demon-
strate that &̂ and ĝ are asymptotically normal, and show how to obtain their
standard errors.

Our semiparametric estimator makes use of a vector, dij , of measures of dis-
tance between regions or outlets i and j in some metric.22 For example, this
vector could include the Euclidean distance between the geographic locations of
the two outlets, a zero/one variable that indicates whether j is i’s nearest neigh-
bor, and a zero/one variable that indicates whether the two outlets are in the
same broad region of the country. For other applications, measures of proximity
in taste space, such as differences in speeds and storage capacities of computers,
might be more relevant.

The price set at outlet i depends partly upon the prices set at other outlets
and partly upon demand and cost factors, as noted earlier. Formally,23

pi=
∑
j �=i
g	dij
pj+&T xi+ui 	i= 1� � � � � n
�(10)

The function g in (10) shows how the distance measures, dij , influence the
strength of competition between products i and j . In the current subsection, we
are interested in devising methods that will tell us something about the structure
of g and will also give us consistent estimates of &, without specifying a func-
tional form for g. It will still be up to the practitioner, however, to select the
measures that are included in dij .

Since the discrete measures in dij can take finitely many values, one can with-
out loss of generality assume that dij contains one compound discrete measure
dDij taking D∗ different values,24 1� � � � �D∗, and a vector of continuous distance
measures dCij . For convenience of notation, in what follows we assume that there
is only one continuous distance measure. The modifications that are required to
deal with several continuous measures, however, are straightforward. We thus
have

g	d
=
D∗∑
t=1

I	dD = t
gt	dC
�(11)

where I is the indicator function that equals one when its argument is true and
zero otherwise, and gt� t = 1� � � � �D∗, are continuous functions. Furthermore,
each of the gt ’s can be written as

gt	d
C
=

∑
l=1

�tletl	d
C
�(12)

22 We also experimented with models in which market structure variables enter g.
23 The intercepts, A, have been dropped, since they can be included in the regressor matrix X.
24 For example, if there are m∗ dichotomous indicators, D∗ will equal 2m∗.
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where the �tl’s are unknown coefficients, and the etl’s for each t form a basis
of the function space to which gt belongs.25 For example, when gt has compact
support, common choices for series expansions are ones consisting of Fourier or
polynomial functions.

Setting e1	d
=I	dD=1
e11	dC
�� � � �eD∗	d
=I	dD=D∗
eD∗1	d
C
�eD∗+1	d
=

I	dD=1
e12	dC
�� � � and letting �l�l=1�2�� � � � denote the corresponding coef-
ficients, we have

g	d
=
∑
l=1

�lel	d
�(13)

Accordingly,

pi =
∑
l=1

�l
∑
j �=i
el	dij
pj +&T xi+ui�(14)

=
Ln∑
l=1

�l
∑
j �=i
el	dij
pj +&T xi+vi�

where vi = ui+ ri with ri =
∑
l=Ln+1�l

∑
j �=i el	dij
pj , and Ln denotes the number

of expansion terms to be estimated. Let � = *�1� � � � ��Ln+
T . In vector notation,

(14) is then

p = Z�+X&+v�(15)

where Z is a matrix whose 	l� i
 element is
∑
j �=i el	dij
pj .

There are three concerns that must be addressed. First, Z contains current
rival prices and is thus not independent of u, let alone of v. Second, the number
of columns in Z�Ln, increases with the sample size. Finally, v is not an ordinary
error term but contains neglected expansion terms, r , in addition to the ordinary
error, u.

We deal with endogeneity by taking an instrumental variables approach. As
the number of endogenous right-hand side variables increases with the sample
size, so must the number of instruments. Since the variables that are to be instru-
mented are of the form

∑
j �=i el	dij
pj� l = 1� � � � �Ln, it is intuitive to choose

instruments of the form
∑
j �=i el	dij
xjh, where xjh is a regressor for observation j .

If xjh explains much of the variation in pj , then one would expect
∑
j �=i el	dij
xjh

to explain much of the variation in
∑
j �=i el	dij
pj . When only one exogenous

regressor is used to construct instruments in this manner, the number of instru-
ments is automatically the same as the number of endogenous right-hand side
variables, namely Ln. Each additional exogenous regressor provides an additional
Ln instruments.

The number of instruments, bn, must be no less than the number of endoge-
nous right-hand side variables Ln plus the number of exogenous regressors H .

25 This is akin to the fact that any vector can be written as a linear combination of basis vectors of
the Euclidean space to which the vector belongs.
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Let B be the n by bn matrix of instruments. In general, we use the notation PY
to denote the orthogonal projection matrix onto the columns of Y , and MY to
denote I −PY , where I is the identity matrix. Premultiply both sides of (15) by
PB to obtain

PBp = PBZ�+PBX&+PBv = PBW<+PBv�(16)

In this equation, W = *Z	X+, where *Z	X+ denotes the concatenation of the
matrices Z andX, and <= *�T �&T +T . We can then estimate < by the instrumental
variables (IV) estimator

<̂ = 	WT PBW

−1WTPBp�(17)

and hence

ĝ	d
=
Ln∑
l=1

�̂lel	d
�(18)

The form of <̂ is identical to that of the traditional parametric IV estimator,
albeit that now the number of columns of the W and B matrices increases with
the sample size. Without the matrix PB in the definition of <̂, consistency and
asymptotic normality follow from Andrews (1991). To our knowledge, all results
that appear below, in contrast, are new.

It is now possible to state the first theorem. Let =min and =max be functions
whose images are respectively the smallest and largest eigenvalues of their argu-
ments, and let # be a function whose image is the number of elements in its
argument.

Theorem 1 (Consistency): If:
(i) E*p+ = 	I −G
−1X&, there exist scalars cG and N such that 0 ≤ cG < 1,

and for all n > N , the eigenvalues of G are between −cG and cG,
(ii) lim supn→ =max	@
 <, where @= V *u+,
(iii) X contains at least one ‘locally measured’ exogenous variable with nonzero

coefficient, (i.e., a variable that varies by individual location), the regressors are
uniformly bounded, and XTX/n converges to a positive definite limit matrix,

(iv) for any fixed bounded set D� limn→#A	i� j
 B dij ∈DC/n <,
(v) for some N > 0 and some sequence ADnC� infn>N =min	W

T PBW/Dn
≥ 1 a.s.,
(vi) limn→ sup1≤i≤n�1≤l<

∑
j �=i 	el	dij
	<,

(vii) for some fixed = > 1� sup1≤l< 	�ll=	<,
(viii) Ln →�nL2−2=

n D−1
n → 0, and bnD−1

n → 0, as n→;
then (a) ĝ	d
−g	d
= op	1
 at almost all d and (b) &̂−&= op	1
.26

26 Un =O	zn
 means that the limit as n approaches infinity of Un/zn is a finite constant. When O
is replaced by o, this limit is zero. When O 	o
 has a subscript p, it refers to a probability limit.
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The conditions of Theorem 1 not only ensure consistency of the estimators of
g and &, but also implicitly guarantee that g and & are identified. A separate
proof of identification would be longer than is merited.

We first summarize the practical implications of the conditions of Theorem 1
for our application, after which we discuss each condition in turn. The detailed
discussion is more technical and can be skipped without loss of continuity.

The conditions of Theorem 1 embody three main assumptions. The first is
that dependence between random variables at different locations (terminals in
our application) does not decrease too slowly as the ‘distance’ between them
increases. More precisely, when more terminals are located between terminals i
and j , the dependence between the random variables at i and j should lessen.27

Fully symmetric competition is therefore explicitly excluded.
Secondly, the price response functions 	gt
 should be reasonably smooth func-

tions of the continuous distance measures (dC or Euclidean distance in our appli-
cation) for each value of t. Extreme fluctuations appear unlikely in our context;
in fact, even the much stronger assumption of monotonicity of the price response
functions would not be unreasonable there.

The final assumption is that there be at least one local instrument for the price
at each terminal. This means that not only must there be at least one exogenous
regressor, but also at least one of those regressors must vary locally (i.e., it must
be possible for it to take different values at different terminals).

Note that we do not make any assumptions concerning homogeneity across
terminals. Indeed, we allow for more than heteroskedasticity, since aspects of
the conditional distribution in addition to the second moments can depend on
regressor values. We now proceed with a more detailed discussion of individual
conditions.

Condition (i) excludes the possibility of spatial unit roots, which can occur, for
example, when firms match rival price changes. Although of interest, allowing for
spatial unit roots (or indeed even stronger forms of spatial dependence) leads to
a hopeless statistical quagmire.

Condition (ii) says that our errors can be heteroskedastic and correlated with
variance covariance matrix @. The maximum eigenvalue restriction on @ is sat-
isfied when the error variances are uniformly bounded and the autocovariances
are summable. The autocovariances are summable if AuiC satisfies what is called
a mixing condition and the locations of our observations are suitably spread out.
In other words, correlation must decay suitably fast with distance.

The restriction of one ‘locally measured’ exogenous variable in condition (iii)
is needed for identification purposes.28 If all variables vary only regionally, the
coefficient on the price of a neighboring observation is generally not identified

27 The conditions of Theorem 1 are in fact even weaker than this in respects irrelevant to our
application.

28 On the issue of identification, our model is not subject to the reflection problem (Manski (1993)),
since the values of our regressor variables vary with location but are not solely determined by, and
are unlikely to depend in a linear fashion on, geographic location however measured.
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separately from the exogenous variables of the observation itself, since the obser-
vations share the same set of exogenous regressors. The boundedness condition
on the regressors can be relaxed at the expense of stronger conditions elsewhere.
Finally, the third part of condition (iii) is standard, except that the exogenous
variables are assumed to be deterministic. One can allow for random exogenous
variables with some additional notation.

In conjunction with condition (i), condition (iii) ensures that we can at least
identify the coefficients of the exogenous variables and the first term in each
expansion (the constant). Identification of the remaining expansion term coeffi-
cients is achieved by sufficient variation in the distances, as assumed in condition
(iv). Condition (iv) implies that, in general, additional observations cause the
area studied to grow rather than the density of observations to increase.

Without condition (v), our right-hand side variables would be collinear. Since
the number of regressors in Z (and hence W ) increases with the sample size,
the dimension of WTPBW/n also increases. Hence the number of eigenvalues
of WTPBW/n increases, and there is no guarantee that they will be bounded
away from zero uniformly in n and across eigenvalues. Condition (v), which is a
standard, albeit not very primitive, assumption in the series estimation literature,
deals with this problem. The sequence ADnC is technical in that it has no practi-
cal relevance. We are only concerned with the existence of such a sequence. If
WTPBW is invertible, such a sequence can always be found.29 Condition (viii),
however, imposes additional restrictions on ADnC.30

Condition (vi) restricts the locations of the observations as well as the func-
tions el. When the support of a particular el is finite, there are only finitely many
neighboring observations for which el	dij
 is nonzero, and condition (vi) is sat-
isfied automatically. When in the limit there are infinitely many j ’s for which
el	dij
 �= 0, condition (vi) requires that el	d
 decline suitably fast as d→ and
that the observations be sufficiently spread out. In other words, we do not want
an infinite number of observations in a limited area.31

Condition (vii), which is a “smoothness condition,” is also standard in the series
estimation literature. It is almost equivalent to the condition

∑
l=1�ll

=−1−=I <
where =I is an arbitrarily small positive number. When a polynomial expansion
is used as in our application, this condition can be expressed in terms of the
Sobolev norm, i.e. �g�St = supd

∑t
i=1 	g	i
	d
	, where g	i
 is the ith derivative of

g. With polynomial expansions, an initial transformation is carried out to the
*0�1+ interval before powers are taken. Condition (vii) is therefore similar to
�g�St <, where t is the smallest integer no less than =−1−=I. Hence, = > 1
means that g must have bounded first derivatives, = > 4 means that its fourth
derivatives must be bounded, and so forth. Hence the greater the number =, the
more derivatives are bounded, and hence the smoother is this function.32

29 If WTPBW is singular, the instruments were poorly chosen.
30 One can think of ADnC as a sequence that increases almost as fast as n.
31 More formally, we do not want any fixed and bounded set to contain more than an asymptotically

negligible fraction of the observations.
32 There are different notions of smoothness, and this is but one of them.
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Finally, condition (viii) restricts the rate at which Ln and bn go to infinity. This
condition says nothing about the optimal rate, let alone the optimal choice. From
the proof, however, it can be deduced that the optimal rate of increase for Ln
and bn is n1/	2=−1
, assuming that Ln and bn increase at the same rate.33

Theorem 1 establishes the consistency of &̂ and ĝ. For the purpose of inference,
it is also useful to establish the limiting distribution of &̂, which is achieved in
Theorem 2. In Theorem 3 we establish the limiting distribution of ĝ at fixed
values of d.
@= V *u+ can be written as

∑n
i=1 =

∗
i KiK

T
i , where the Ki are orthonormal eigen-

vectors and the =∗i are the corresponding eigenvalues. Using this notation, we
have the following:

Theorem 2 (Asymptotic Normality of &̂): If in addition to the conditions of
Theorem 1:

(ix) maxi n−1=∗i �XTPBMPBE*Z+
PBKi�2 → 0 as n→,

(x) the elements of the matrix of instruments B are uniformly bounded, and for
N and Dn of condition (v), infn>N =min	B

TB/Dn
≥ 1� infn>N =min	Z
T PBZ/Dn
≥ 1,

infn>N =min	�ZTPB�Z/Dn
≥ 1, where �Z = E*Z+,
(xi) nb2nLnD

−2
n → 0, as n→;

then 	XT PBMPBZ
PB@PBMPBZ

PBX

−1/2XTPBMPBZ

PBX	&̂−&
 �→N	0� I
.

The conditions of Theorem 2 and Theorems 3 and 4 below are technical and
their discussion can be skipped by readers who are only interested in the appli-
cation. The main practical implication is that the conditions on the rate at which
dependence decreases with increasing distance are more restrictive than in the
conditions of Theorem 1.

Condition (ix) is a technical condition that is used to exclude the possibility
that a single observation has an asymptotically nonnegligible effect. It is generally
satisfied when the off diagonal elements of @ decline sufficiently fast. When @
is diagonal, it is implied by condition (ii).

With longer proofs, the boundedness of the instruments in condition (x) could
be avoided.34 The second and third eigenvalue conditions are similar to those
in condition (v). The condition on the eigenvalues of BTB could be tied to
a sequence other than ADnC; tying it to ADnC, however, reduces the number of
sequences used.

Condition (xi), like condition (viii), is uninformative about the optimal choice
of Ln and bn, and there are situations in which no sequences ALnC and AbnC that

33 No additional efficiency can be gained if they do not. This implies that ĝ	d
 − g	d
 =
Op	n

	1−=
/	2=−1

 at almost all d and that &̂−&=Op	n	1−=
/	2=−1

. The greater the value of =, there-
fore, and hence the smoother g, the greater the asymptotic efficiency of the estimator, were the value
of = known. Indeed, for == there are only finitely many nonzero coefficients and hence a rate of
n−1/2 could be achieved if this fact were known a priori. This is in line with the standard results for
a fixed number of regressors.

34 Given the choice of instruments for our application, the boundedness condition is not overly
restrictive.
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satisfy the conditions can be found. However, one might let Ln and bn increase
at a rate of n1/5, in which case the condition would require that Dn go to infinity
at a rate exceeding n4/5.

Theorem 3 (Asymptotic Normality of ĝ): If in addition to the Conditions of
Theorems 1 and 2:

(xii) infn>N =min	W
T PB@PBW/Dn
≥ 1,

(xiii) nb2/3n L
1/3
n D

−4/3
n → 0 and nL	2/3
	1−=
n D−2/3

n → 0, as n→;

then @̂−1/2
g Aĝ	d
− g	d
C �→N	0�1
, where @̂g = �@1/2PBW	W

TPBW

−1LT e�2,

with e = *e1	d
� � � � � eLn	d
+T and L ∈ �Ln×	Ln+H
 is the matrix

L = *0 I+�(19)

The conditions of Theorem 3 are of the same form as those used earlier. Con-
dition (xii) is equivalent to condition (v) when @ is proportional to the identity
matrix, i.e. when the errors are independent and identically distributed. Condi-
tion (xiii) is stronger than condition (xi) but can still be satisfied. Indeed, when
Ln and bn increase at a rate of n1/5� Dn should increase at a rate exceeding n9/10

to satisfy the first half of condition (xiii); if Ln and bn increase at a slower rate,
so can Dn. Having Ln and bn increase slowly, however, requires a greater degree
of smoothness on g in the form of = taking greater values to satisfy the second
half of condition (xiii); for Ln = n1/5�= = 4 is sufficient; for Ln = n1/10�= > 6 is
needed.

Theorems 2 and 3 determine the matrices that are used to rescale &̂−& and
ĝ	d
−g	d
 to get limiting standard normal distributions. However, Theorems 2
and 3 are silent as to estimation. In Theorem 4 we derive a consistent estima-
tor of matrices of the form plimn→ n

−1J T@J , where J is a matrix of uniformly
bounded variables such as regressors. In the standard linear model with regres-
sors J , the variance matrix is 	J T J 
−1J T@J	J T J 
−1. Since the structure of @ can
be very complicated, and we do not wish to impose any structure on the covari-
ances (including homogeneity), estimation of @ by itself is infeasible.

Instead, we use a simple generalization of White’s (1980) heteroskedasticity-
consistent covariance matrix estimator, or indeed of the Newey–West (1987)
covariance matrix estimator.35 When @ is a diagonal matrix, White (1980) sug-
gests estimating

N = plimn→ n
−1J T@J(20)

by N̂ = n−1J T @̂J , where @̂ is a diagonal matrix with diagonal elements û2i .
When the ui’s are correlated, White’s approach does not suffice. If the errors

are stationary one can use the Newey–West estimator. In our case, the errors are
possibly nonstationary,36 so instead we use a matrix @̂ with

@̂ij = Oij ûiûj �(21)

35 Another relevant reference is Andrews and Monahan (1995).
36 Stationarity is used here to mean that the joint distribution can depend on locations, not just on

the distance between locations, and not to denote a unit root.
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where the Oij are weights that, for fixed i and j , converge to 1 as n increases.37

Although, in general, @̂ij does not converge to @ij� N̂ can be shown to converge
to N for suitably chosen Oij .38 We suggest that Oij be set to 1 for the values of i
and j for which @ij is likely to be the greatest. Moreover, Pn should approach
infinity with n, where39

Pn =max
j≤n

∑
i

Oij +max
i≤n

∑
j

Oij �(22)

Note that although we do not know the value of any of the @ij ’s, it is not
difficult to make an educated guess about which correlations are likely to be
large, which is all that is required. For example, for each i, one can rank the
observations according to one of the distance measures in dij . Moreover, if the
weights are chosen such that Oij = Oji� N̂ will be symmetric. If a distance measure,
Kij , is used for ranking purposes, and if this measure is not symmetric, one can
rank according to 	Kij +Kji
/2.

We are now in a position to state the final theorem. Let @i	j
 denote the ele-
ment of @ corresponding to Oi	j
, where Oi	j
 is the jth order statistic of Oi1� � � � � Oin.

Theorem 4 (Covariance Matrix Estimation): If in addition to the conditions
of Theorem 2:

(xiv) supi E*u
4
i + < and for some C̃ > 0 and some Q > 0,

sup
n>N

sup
i� j

�@i	j
�j1+Q < C̃�

(xv) for any i� j�k� l and any random variables Ri�Rj�Rk�Rl with supi E	Ri	4 < that can be written as Ri = R	Xi�Zi�Bi�pi
,
	 cov*RiRk�RjRl+	

≤
√
maxAE*R2

i R
2
k+E*R

2
j R

2
l +�E	R1R2R3R4	CASij +Sil+Sjk+SklC�

where the ‘mixing numbers’ ASijC satisfy supi
∑n
j=1 	Sij +Sji	 =O	1
 and the indices

correspond to the indices of the observations,
(xvi) the vector of residuals û satisfies �û− u�2 = Op	Tn
, and Pn → ,

P2
nn

−1 → 0, TnP1/2
n n

−1/2 → 0, as n→,
(xvii) the weights Oik are positive and bounded, Oi	k
 = 0 for all k > Pn, and

	Oi	k
−1	 ≤ �CkP−1
n for all k ≤ Pn;

then N̂ −N = op	1
.
37 We have ignored the implicit dependence on n in our notation here.
38 It would be a mistake to set Oij = 1 for all i and j . Indeed, when J is the matrix of regressors in

a standard linear regression model that is estimated by ordinary least squares, N̂ is n−1J T ûûT J = 0,
since J T û= 0 is the first-order condition of the least squares estimator.

39 Alternatively, we could let the Oij ’s decrease suitably fast with the perceived value of @ij . The
advantage of the latter scheme is that for suitably chosen Oij � @̂ij and hence N̂ can be guaranteed
to be positive semidefinite. Indeed, one could use weights similar to those in Newey–West (1987),
albeit accounting for the nonstationarity, Oi	j
 = 1− j/	Pn+1
, where Oi	j
 is the jth order statistic of
Oi1� � � � � Oin.
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Except for the assumed existence of fourth moments, condition (xiv) is not
much stronger than condition (ii).40

Condition (xv) is rather technical. With more structure on the process, a sim-
pler condition would suffice. For example, with stationary time series or spatial
data, condition (xv) is implied by strong mixing (see, e.g., Ibragimov and Linnik
(1970, Lemma 1, p. 306)). In practical terms, the rate at which dependence
decreases with distance is further constrained.

In a standard linear regression model, Tn in condition (xvi) is O	1
. We allow
Tn to increase with the sample size, as is appropriate for non- and semiparametric
regression models.41

Finally, condition (xvii) restricts the choice of the weights AOijC. It permits
weights that decline in a similar way to those in Newey and West (1987) as
well as zero/one weights. Unfortunately, it does not provide guidance concerning
the most efficient choice of weights. Indeed, in the absence of stationarity, the
problem of determining the optimal choice is probably intractable.

3�3� The Instruments

Rival prices appear on the right-hand side of our estimating equation, and,
since we are dealing with imperfect competition, all prices are at least poten-
tially jointly determined and thus endogenous. Appropriate instruments for these
regressors must therefore be found. Moreover, we need variables that vary by
location. Any of the locally measured included exogenous variables is a candi-
date for an instrument. In addition, locally measured exogenous variables from
rival markets can be used.

While this is a common choice,42 the use of rival variables is somewhat differ-
ent here. To illustrate, consider a random utility discrete choice demand equation.
The endogenous variable in that equation is own price, pi. With our estimating
equation, the endogenous variables are a subset of rival prices, pj with j �= i.
We therefore use the variables xj as instruments for pj , whereas most other
researchers use xj as instruments for pi. In spite of this difference, the validity of
either practice depends on the validity of the conditional independence assump-
tion, E*ui	X+= 0. It is therefore clear that this assumption should be tested.

40 Assuming the existence of fourth moments is not always reasonable (e.g. in financial time series)
but it does not seem unreasonable in our application.

41 For example, with our semiparametric model, û − u = p −W	WT PBW

−1WTPBp − u =

−W	WT PBW

−1WTPBu, and hence

�û−u�2 ≤ �PPBWu�2=max	W
TW
=max		W

T PBW

−1
=Op	LnnD−1

n 


by condition (v). Condition (xvi) then says that n1/2LnP−1/2
n D−1

n → 0, as n→ , which is satisfied,
for example, if one chooses Ln ∼ n1/5 and Pn ∼ n1/4, as long as Dn → at a rate faster than n23/40.
Note that these rates do not violate condition (xi) when Dn increases at a rate faster than n4/5.
For =max	W

TW
 =Op	n
 some additional restrictions would need to be imposed on the dependent
variable. The example merely illustrates condition (xvi).

42 See, for example, Berry, Levinsohn, and Pakes (1995), who use rival product characteristics as
instruments.
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In most applications, there are more moment conditions than there are
unknown parameters. The excess moment conditions can be employed to test the
validity of the set of moment conditions by means of an overidentification test. In
particular, exogeneity of the instruments can be assessed. As in the generalized
method of moments (GMM) literature, it is possible to use the � statistic for this
purpose, where � is proportional to the minimized value of the GMM objective
function, 	p−W<̂
T B	BT @̂B
−1BT 	p−W<̂
, and the notation @̂ indicates that
our first stage estimate of the matrix in parentheses is used. The � statistic is dis-
tributed Q2 with degrees of freedom equal to the number of instruments minus
the number of regression coefficients.

4� wholesale gasoline markets

4�1� The Market

Most large American cities have nearby terminals where refined petroleum
products are sold to wholesalers. These products are first shipped from a refinery
to a terminal by pipeline or barge and then trucked by wholesalers to retail
service stations.43

Sellers, or refiners who produce gasoline, can be grouped into two broad
classes, majors and independents. Major brand gasoline bears the trademark of
one of the large integrated oil companies (e.g., Exxon or Shell). Independents, in
contrast, tend to be smaller and less fully integrated. Sellers post product prices
at each terminal site. Posted prices fluctuate frequently, and the spread between
the highest and lowest price at a given terminal can be as much as fifteen cents
per gallon. Major sellers charge higher prices and secure their customers through
brand loyalty, long term contractual arrangements, or company affiliation. Inde-
pendent sellers, in contrast, charge lower prices and sell a higher proportion
of unbranded gasoline.44 A typical terminal is supplied by approximately twelve
companies.

Buyers, or wholesalers who purchase and truck gasoline, can also be grouped
into two classes. Some are independent “jobbers.” Jobbers own and operate some
stations; they also supply stations that they do not operate. The other group of
wholesalers is affiliated with a refiner. These affiliated wholesalers also purchase
gasoline that they truck to their own stations or sell to independent marketers.
Affiliated wholesalers buy only from their parent companies, whereas jobbers are
not tied to particular sellers.

We assume that the upstream market is imperfectly competitive. To enter this
market, one must acquire a refinery, which involves a substantial investment.
The downstream market, in contrast, is assumed to be perfectly competitive. Any

43 A number of researchers have studied this market including Slade (1986), Spiller and Huang
(1986), and Borenstein and Shepard (1996).

44 The distinction between major and independent is not the same as the distinction between
branded and unbranded. Indeed, both major and independent refiners sell both branded and
unbranded products.
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individual who acquires a truck that can transport petroleum products can enter
the downstream market, and there are many small independent wholesalers as a
consequence.

There are also two types of gasoline sold at each terminal—branded and
unbranded. Branded products are normally sold to service stations that bear
the name of the refiner, whereas unbranded gasoline is produced by a branded
refiner but sold as a homogeneous product that cannot be resold under the brand
name. Buyers of unbranded gasoline from wholesalers are normally small inde-
pendent marketers.

Arbitrage occurs when buyers select a terminal site that offers the lowest deliv-
ered price (rack price plus transport, information, and other costs).45 When a
buyer is willing to truck gasoline long distances in order to minimize costs, he will
almost certainly purchase from a low price seller at the distant terminal. How-
ever, nonprice factors also influence a buyer’s choice, and many of those factors
are not observed by the econometrician. These include traffic density, road qual-
ity, and bottlenecks such as bridges and tunnels that must be negotiated en route.

Arbitrage can also occur on the seller side of the market. For example, ship-
ments that were originally destined for one city can be diverted to another where
the price is expected to be higher. Market equilibration from the seller side, how-
ever, usually takes more time, since it involves revising pipeline schedules that
are normally set well in advance.

We expect that most of the pricing arbitrage that occurs across terminals results
from the actions of independent jobbers who purchase unbranded products, since
independent jobbers are in a position to take advantage of the lower unbranded
price. For this reason, in our empirical work, we analyze the low, unbranded
rack price at each terminal. Purchasing patterns in that market are not compli-
cated by dynamic issues such as brand loyalty and switching costs. Furthermore,
unbranded prices are not discounted and are therefore true transaction prices.

The branded and unbranded markets are fairly well segregated. Indeed,
branded sellers must sell branded products to their regular customers, and
branded buyers must purchase the products of their affiliated refiners. For this
reason, we assess inter rather than intraterminal price competition. Our analy-
sis, however, is conditioned on several local market structure variables, including
the average of the prices posted by the branded sellers. In order to motivate an
estimating equation that includes branded price, Appendix B develops a formal
model in which there are both branded and unbranded sellers at each terminal.

A given wholesaler can supply terminals in more than one metropolitan area
and will therefore often purchase gasoline from more than one terminal. More-
over, as relative prices vary, the fraction of a wholesaler’s purchases that are
supplied by a given terminal will also vary. For example, if a buyer patronizes
two terminals, A and B, and if the price at A rises relative to the price at B, the
wholesaler will purchase gasoline from A only for those stations that are very

45 A rack price is a price at which wholesalers purchase petroleum products for resale. Rack prod-
ucts (and prices) can be branded or unbranded.
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close to A. A larger fraction of stations, however, will be supplied by gasoline
purchased from B.

Regular unleaded gasoline is physically an almost completely homogeneous
commodity. Nevertheless we consider the product to be differentiated. Indeed,
there are a number of factors that cause individual sellers to face downward
sloping demand. These include geographic location, brand loyalty, and the pres-
ence or absence of gasoline additives. With unbranded gasoline, however, only
the former is of primary importance.

Finally, the industry divides the country into five regions or petroleum allo-
cation districts (PADs). PADs one through five are in the east, midwest, south,
northwest, and southwest respectively. Oil companies often treat PADs or groups
of PADs as relevant markets. In particular, there is very little pipeline shipment
of product between regions located to the east of the Rocky mountains (PADs
1–3) and those located to the west (4 and 5), and companies that market in
both areas usually operate the two regions independently. Buyers, however, who
transport by truck, not pipeline, can arbitrage across PADs.

4�2� Data and Preliminary Data Analysis

The data set is a cross section of 305 terminals in the lower 48 states. Although
there are 312 terminals in the U.S., observations were eliminated if there were
no price data for the week of interest (i.e., if there were no unbranded sellers)
or if the site was located in Hawaii or Alaska.

Terminal prices are published weekly by the Oil Price Information Service
(OPIS), a private data collection agency. Our prices are for the third week in
October of 1993. They are unbranded rack prices to resellers, f.o.b. terminal.
This means that the buyer bears the transport cost, as in our model. Both regular
and premium unleaded prices are available. We focus on the regular unleaded
price because the volume of sales in that category is greater. Prices are measured
in cents per gallon and are denoted PRICE.

Explanatory variables include the observed demand, cost, and market structure
factors. Data for those variables are as follows: Gasoline spot prices are included
to capture overall economic conditions in the oil industry. Spot markets, where
only unbranded gasoline is sold, are larger in geographic extent and more com-
petitive than terminal markets. Spot markets are located in New York, the Gulf
Coast, the Midwest, Los Angeles, San Francisco, and the Northwest. Spot prices
are on average lower than terminal prices, but are not a practical alternative for
wholesalers, due to the distances and transactions costs involved. The spot price
of gasoline for terminal i is the price that prevailed in the spot market that was
closest to i. The spot price, like the terminal price, is for the third week in Octo-
ber of 1993. This variable, which is published by OPIS and is measured in cents
per gallon, is denoted SPOT.

Changes in gasoline inventories are a measure of supply/demand imbalance.
The percentage change in stocks is 100 times the stock in the third week in Octo-
ber minus the stock in the second week divided by the stock in the second week.
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Inventory data are available from OPIS for each PAD. Moreover, OPIS divides
PAD one (the East Coast) into the Northeast and Southeast coasts. Percentage
changes in inventories are denoted STOCK.

City population and household income are local demand variables. Population,
which is for the year 1989, is published by the Bureau of the Census.46 It is
measured in millions of persons and is denoted POP. Average household income,
which also comes from census data, is also for 1989. This variable is measured
in thousands of dollars per year and is denoted INC.

City wage rates (WAGE) are a measure of local labor costs. Wage rate data
are average annual pay in 1992 for workers covered by unemployment insurance.
Wage rates for metropolitan areas of the U.S. are published by the Bureau of
Labor Statistics. For locations not named in metropolitan areas, the wage rate in
the closest city was used.47

Certain regions of the country require that gasoline burned in the region con-
tain methyl terciary butyl ether (MTBE). This gasoline additive enhances oxygen
in the fuel and is associated with cleaner burning. It also increases production
costs. A dummy variable, MTBE, was constructed to equal one if a terminal was
located in a region where MTBE was required.48 These data are also published
by OPIS.

We use the number of competing sellers at a terminal, NCOMP, to capture
variations in local market structure. In addition, we construct an average branded
price for each terminal, BRPRICE, as well as the number of branded sellers at
that terminal, NBRAND. These variables are used to control for within-terminal
competition.

Dummy variables that distinguish the five petroleum allocation districts were
created. These variables, which are denoted PADi� i = 1� � � � �5, are fixed effects
in the regression equations. In particular, they capture broad regional differences,
such as differences in regional transport costs.49 The inclusion of these fixed
effects controls for the unobserved regional demand and cost factors.50

Table I lists summary statistics for each of the variables with the exception of
the PAD dummies. It shows that branded prices are approximately two and one
half cents per gallon higher and spot prices are two cents per gallon lower than
unbranded terminal prices. It also shows that variation in most of the explanatory
variables is sizable, especially city population. Since POP has a thin right tail, we
use the natural logarithm of POP, LPOP, in the estimation.

46 1989 is the year of the closest census.
47 Geographic locations were determined with the help of a number of publications that are listed

in the references.
48 There are only nine MTBE terminals in the sample. It is not clear whether they should be

included in the analysis, or whether they form a separate market. The flavor of our results, however,
is completely insensitive to this choice.

49 For example, shipment by water, which is possible in coastal regions, is cheaper than shipment
by pipeline.

50 Aggregate (national) demand and cost factors are included in the constant term.
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TABLE I
Summary Statistics

Number of
Competitors

Unbranded Changes in Household (NCOMP) Average MTBE
Rack Price Spot Price Stocks Population Income Annual Wage Firms selling Branded Price (MTBE)
(PRICE) (SPOT) (STOCK) (POP) (INC) (WAGE) unleaded at (BRPRICE) Dummy
¢/gallon ¢/gallon % change 106 people 103 $/year 103 $/year own terminal ¢/gallon Variable

Mean 57�53 55�45 0�26 0�41 30�47 23�62 12�35 60�16 0�03
S.D. 6�08 4�81 2�03 1�14 5�61 3�43 6�30 5�88 0�17
Minimum 49�25 48�05 −2�42 0�0003 17�83 16�58 1�00 52�15 0�00
Maximum 73�00 59�75 4�27 11�40 59�99 38�80 30�00 74�49 1�00

4�3� The Metrics

To implement the estimation, we must specify the elements of the distance
vector d. Each measure is an n×n matrix with typical element i� j . We exper-
imented with four notions of closeness or distance: terminals that are nearest
neighbors, that share a market boundary, that share a market boundary with a
third competitor, and the Euclidean distance between terminals. Moreover, each
of these measures can be exogenously or endogenously determined.

The elements of the first matrix, denoted NNX where X stands for exogenous,
are dummy variables that equal one if outlet j is i’s nearest neighbor and zero
otherwise, where i’s nearest neighbor is located in the terminal that is the shortest
Euclidean distance from i.51 With the second nearest neighbor matrix, NNP, the
nearest neighbor is determined endogenously by prices and transport costs as
well as by kilometers, and the letter P is used to indicate that distance is price
determined. Specifically, let EU ij be the Euclidean distance between locations i
and j . Then j is i’s endogenous nearest neighbor if DPij =pj+U×EU ij is smaller
for j than for any other terminal, where U denotes the (linear) transport cost.52

In other words, outlet j is i’s endogenous nearest neighbor if j has the lowest
delivered price at i’s location.

The elements of the first common boundary matrix, denoted CBX, are dummy
variables that equal one if i and j share an exogenous market boundary but
are not nearest neighbors, and zero otherwise. To determine exogenous mar-
ket boundaries, the continental U.S. was partitioned into nonoverlapping, all-
inclusive regions. This partition was constructed so that i’s market contains all
customers who are at least as close (in Euclidean distance) to i as to any other
terminal. The boundary between markets i and j thus consists of customers who
are equidistant from the two and are not closer to any other terminal. In other
words, i’s market contains the set of buyers who would purchase from i if trans-
port costs were determined solely by geographic distance and all customers based

51 Note that i need not be j ’s nearest neighbor. In other words, this measure is not symmetric.
52 We use a transport cost parameter, U , of 0.05 cents/gallon/kilometer, a number that was provided

by Shell Oil Company.
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Figure 1.—Endogenous market areas.

their purchases on transport costs alone. We use NCBX i to denote the number
of firm i’s exogenous common boundary neighbors.

The second common boundary measure, with associated matrix CBP, is simi-
lar to the first except that market boundaries are endogenously determined. To
illustrate, consider two terminals, i and j , that share a common boundary in the
sense of CBX. The boundary between the two is determined by the perpendic-
ular bisector of the line that joins the two locations. With CBP, the boundary
between the two is also determined by a curve that is orthogonal to the line
joining the two locations. However, instead of being a bisector of this line, its
position is determined by the relationships pi+ U ×EU1ij = pj + U ×EU2ij and
EU1ij+EU2ij =EU ij . In other words, the boundary between markets i and j con-
sists of customers for whom the delivered prices of the two sellers are the same,
and i’s market area consists of those customers for whom i’s delivered price is
less than or equal to the delivered prices of all other sellers. These market areas
are depicted in Figure 1. We let NCBPi denote the number of i’s endogenous
common boundary neighbors. On average, sellers have six common boundary
neighbors. Since the determination of common boundary markets is more com-
plex, we give details in Appendix C.53

Second order common boundary measures allow for indirect competition. The
first second order matrix, CBX2, consists of dummy variables that equal one if
i and j do not share a market boundary in the sense of CBX, but each shares
a boundary with a third seller, k. We let NCBX2i denote the number of firm

53 This measure of closeness is very similar to the one used by Feenstra and Levinsohn (1995). The
principal difference is that our transport costs are linear whereas theirs are quadratic.
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i’s exogenous second order common boundary competitors. The second second
order matrix, CBP2, is defined in a similar manner except that markets are based
on delivered prices instead of Euclidean distances. We let NCBP2i denote the
number of i’s endogenous second order common boundary competitors. On aver-
age, sellers have twenty second order common boundary neighbors.

We also constructed continuous, global measures of closeness. Elements of the
first matrix, EDX, are functions of the Euclidean distance between locations i
and j , whereas elements of the second matrix, EDP, are functions of delivered
prices. The function that we use is 1/	0�01×XX ij + 1
, where XX ij = EU ij for
EDX, and XX ij =EU ij+	pj−pi
/U for EDP.54 These measures are thus smooth,
decreasing, convex functions of exogenous and endogenous distance, respectively.

Finally, we need measures of rival prices that correspond to each weighting
matrix. These are constructed by interacting the distance measures with prices. To
illustrate, the variable NNPPRICE was constructed by premultiplying the vector
PRICE by the matrix NNP. This means that the weighted average of rival prices
is simply one times the price of the endogenously determined nearest neighbor.
Other rival price measures, e.g., CBPPRICE, CBP2PRICE, and EDPPRICE, were
constructed in a similar fashion. Each is a weighted average of rival prices where
the weights or strengths of rivalry are determined by the distance measures.

4�4� Construction of Instruments

Rival price regressors can be endogenous for two reasons: they are weighted
averages of prices, and both prices and weights can be endogenous. As noted
earlier, we use the characteristics of rival markets, xj with j �= i, as instruments
for the prices in those markets, pj . The groups of markets that interact, however,
is an issue that must be determined by the data. For this reason, for each con-
tinuous terminal-specific exogenous variable (i.e., population, income, wage, and
the number of competitors at the terminal), we create an instrument by premul-
tiplying this variable by a weighting matrix.55 To illustrate, when a specification
includes the endogenous nearest neighbor price, NNPPRICE, additional instru-
ments are created using products of the exogenous nearest neighbor weighting
matrix and the vectors of exogenous variables, NNX ×LPOP�NNX × INC, etc.56
This means that exogenous variables from nearest neighbor terminals are used
as instruments. Averages of common boundary location variables are used when
the equation contains CBPPRICE, and so forth, whereas all four sets of instru-
ments are used when all four rival price measures are included in a specification.

54 EUij+	pj−pi
/U is the (asymmetric) endogenous Euclidean distance between terminals i and j .
Indeed, when pj is equal to pi, it is the exogenous Euclidean distance. However, when prices differ,
this distance is adjusted by an amount that refects both the price difference (positive or negative)
and the transport cost.

55 We assume that the number of competitors at the terminal is predetermined, since it is fixed
when the pricing decisions are made.

56 We multiply by NNX rather than NNP because NNP is endogenous.
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5� empirical results

5�1� Parametric Estimates

Prior to examining the semiparametric estimates, it is useful to look at ordi-
nary least squares (OLS) and parametric instrumental variables (IV) estimates
of the pricing equation (10). Due to the presence of spatially lagged dependent
variables, OLS (IV) estimates of the coefficients of this equation are (can be)
inconsistent.57 Nevertheless, they are suggestive.

Table II contains OLS estimates of price response functions that include each
endogenous rival price measure separately, as well as specifications with average
branded price at the same terminal and with all rival price measures simultane-
ously. The dependent variable in each specification is the unbranded rack price,
PRICE. The variable NNPPRICE appears in the first specification, CBPPRICE
appears in the second, and so forth. The table shows that the coefficients of the
rival price variables decline as one moves from local to global measures of com-
petition (i.e., from specifications 1 to 4). However, this is not the best way to
determine the relative importance of the various measures of rivalry, since the
units of measurement differ. It is preferable to assess this issue in a less direct
manner. First, notice that the influence of the spot price, as measured by either
the magnitude or the significance of its coefficient, grows as one moves from local
to more global notions of competition. This means that, when rivalry is measured
inappropriately, the spot price becomes a proxy for the omitted more appropri-
ate rival price measure. Second, notice that both R2 and the significance of the
rival price coefficients decline as one moves from specifications 1 to 4. Individ-
ually, each of these facts implies that local measures of competition outperform
global measures. Taken together, the evidence in favor of local competition is
overwhelming.

One can use the same methods to assess the influence of the average branded
price at the same terminal (specification 5). Indeed, intraterminal competition
between branded and unbranded gasoline appears to be less intense than inter-
terminal competition among sellers of unbranded gasoline at nearest neighbor
and common boundary outlets. However, intraterminal competition is stronger
than competition at second order common boundary locations.

When all rival price measures are included in a single equation (specification
6), the significance of the coefficients of the interterminal rival price variables
declines as one moves from local to global measures. Furthermore, in this spec-
ification, the influence of the spot price is less strong than in any of the others.

Table II reveals another empirical regularity—as the number of competitors
rises, prices fall. Moreover, this conclusion does not depend on whether the num-
ber of competitors at the same terminal (NCOMP and NBRAND) or at neigh-
boring terminals (NCBP and NCBP2) are used as market structure measures.

57 Parametric IV estimators are inconsistent if the functional form that is imposed on g is incorrect.
Our IV estimators are therefore consistent only when we have selected the correct distance measure
and, when this measure is discrete, the magnitude of the price response does not depend on Euclidean
distance.
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TABLE II
OLS Price Response Functions
Endogenous Market Boundaries

Branded Price
Second-Order Euclidean at Same All Rival

Rival-Price Nearest-Neighbor Common-Boundary Common-Boundary Distance Terminal Prices
Variable 1 2 3 4 5 6

NNPPRICE 0�793 0�394
	0�038
 	0�042


CBPPRICE 0�146 0�041
	0�008
 	0�010


CB2PRICE 0�026 0�006
	0�0025
 	0�004


EDPPRICE 0�002 0�0004
	0�0014
 	0�0006


BRPRICE 0�489 0�375
	0�032
 	0�034


# of −0�084 −0�016 −0�035 −0�089 0�223
competitors 	0�027
 	0�032
 	0�039
 	0�042
 	0�032


# of CB −8�888 −2�520
competitors 	0�475
 	0�813


# of 2nd order −1�226 −0�312
competitors 	0�111
 	0�260


# of branded −0�636 −0�557
competitors 	0�047
 	0�054


Spot price 0�309 0�402 0�736 0�900 0�604 0�234
	0�067
 	0�071
 	0�083
 	0�097
 	0�075
 	0�047


R2 = 0�84 R2 = 0�82 R2 = 0�73 R2 = 0�61 R2 = 0�78 R2 = 0�93

Notes: Supply and demand variables and PAD fixed effects not shown. Standard errors in parentheses.

The only exception is the positive coefficient of NCOMP in the specification that
contains all market structure measures.

Next consider the IV regressions. Table III, which contains the IV estimates,
shows that the significance of the rival price coefficients declines when these vari-
ables are instrumented. The qualitative nature of the results, however, does not
change. This table also shows that, when the four distance weighted rival prices
are considered simultaneously, only the coefficient of the nearest neighbor rival
price is significant at conventional levels. Conditional on being nearest neighbors,
therefore, no other notion of closeness matters.

A number of tests of specification were made. First, we assessed the explana-
tory power of the exogenous variables (i.e., if the instruments can explain the
endogenous variables). For the null hypothesis of no explanatory power, p val-
ues were all 0.00. Next, we assessed the exogeneity of the instruments. The last
row in Table III shows tests of overidentification as measured by the � statistic.
With the exception of the specification that includes only the continuous inverse
distance measure of rivalry, EDPPRICE, the moment conditions are satisfied.
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TABLE III
IV Price Response Functions
Endogenous Market Boundaries

Branded Price
Second-Order Euclidean at Same All Rival

Rival-Price Nearest-Neighbor Common-Boundary Common-Boundary Distance Terminal Prices
Variable 1 2 3 4 5 6

NNPPRICE 0�921 0�593
	0�181
 	0�145


CBPPRICE 0�173 −0�071
	0�017
 	0�089


CBP2PRICE 0�071 0�031
	0�009
 	0�028


EDPPRICE 0�003 0�002
	0�002
 	0�0012


BRPRICE 0�575 0�483
	0�155
 	0�115


# of −0�082 −0�075 −0�010 −0�085 0�269
competitors 	0�027
 	0�375
 	0�050
 	0�043
 	0�084


# of CB −10�435 −5�299
competitors 	0�957
 	6�624


# of 2nd order −3�088 −1�703
competitors 	0�359
 	1�548


# of branded −0�752 −0�721
competitors 	0�215
 	0�176


Spot price 0�212 0�309 0�454 0�896 0�547 0�243
	0�151
 	0�088
 	0�130
 	0�096
 	0�127
 	0�087


R2 = 0�84 R2 = 0�82 R2 = 0�61 R2 = 0�43 R2 = 0�78 R2 = 0�89
J Stat = 2�2 J Stat = 0�5 J Stat = 0�02 J Stat = 10�0 J Stat = 0�1 J Stat = 1�2
df = 3 df = 2 df = 2 df = 3 df = 3 df = 8

Notes: Supply and demand variables and PAD fixed effects not shown. Standard errors in parentheses. The J statistic is a test of
overidentification. df denotes the degrees of freedom for the J statistic.

Rejection in the one case is perhaps due to the fact that the equation is misspec-
ified. Since the � statistic is a joint test of model specification and instrument
validity, rejection does not necessarily imply that the instruments are invalid.
For a final assessment of instrument validity, we tested whether the characteris-
tics of rival markets (i.e., the instruments) should enter the best reply equation
directly.58 For the null hypothesis that they do not belong in that equation, the
p values were all over 0.15. The instruments therefore appear to be valid.

58 To illustrate, if the rival price measure was the nearest neighbor price, we included the nearest
neighbor characteristics in the estimating equation and used second order, nearest neighbor charac-
teristics as instruments for nearest neighbor price.
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We also estimated specifications that contain the exogenous distance measures.
Those results are extremely similar to the specifications that are shown in Tables
II and III.59

5�2� Semiparametric Estimates

We have carried out our semiparametric estimation procedure for a number
of different specifications. With all specifications, we use polynomials with five
expansion terms per discrete distance measure for the functions el.

As with the parametric IV regressions, an adjustment must be made to the way
that the instruments are constructed when endogenous distance weights are used.
We solve the endogenous distance problem by using instruments of the form∑
j �=i el	EDX ij 
xjh instead of

∑
j �=i el	EDPij 
xjh, where h denotes the regressor

that is used to construct the instrument, and EDX ij 	EDPij 
 are the exogenous
(endogenous) Euclidean distance measures.

The asymptotic covariance matrix was estimated using the results of Theorem
4. The main concern is the choice of the weights Oij . The weights were chosen
such that Oij = 1 if j is among i’s four nearest neighbors and i is among j ’s
four nearest neighbors, Oij = 0�5 if j is among i’s four nearest neighbors or i is
among j ’s four nearest neighbors (but not both), and Oij = 0 otherwise. In these
calculations, Euclidean distance was used as a measure of closeness.60

The results are summarized in Figure 2. This figure corresponds to specifica-
tions that include endogenous nearest neighbor, common boundary, and second
order common boundary prices separately and nearest neighbor and common
boundary prices together. Euclidean distances enter all four specifications.61 The
continuous lines in the figure are estimated responses to a one cent price increase
by the nearest neighbor or by a single common boundary or second order com-
mon boundary neighbor, respectively, at various endogenous Euclidean distances
from one’s terminal. The dashed lines are 95% asymptotic pointwise confidence
bands.

A striking feature of the graphs is that the nearest neighbor’s price has a
strong effect on own price, whereas common boundary neighbor prices, whether
first or second order, have much less of an impact. Indeed, the function g0	d
=
0 is entirely within the common boundary confidence bands. One is forced to
conclude that competition is extremely local.

Another striking feature is that all graphs are rather flat, suggesting that,
for example, when two terminals are nearest neighbors, the Euclidean distance

59 An appendix with the results from the exogenous distance estimations can be obtained from the
authors upon request.

60 Unlike the OLS and IV regressions, Euclidean distance enters all of the semiparametric
regressions.

61 We also estimated an equation with only the (endogenous) Euclidean distance measure. The
results are in line with what one would expect on the basis of Figure 2: an initial steep decline to
about 50 kilometers, after which the price response function hugs the horizontal axis. Furthermore,
after about 25 kilometers, the response is not significantly different from zero.
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Figure 2.—Price responses for endogenous nearest neighbors, common boundary neighbors, and second order common boundary neighbors.
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between those terminals is not an important determinant of rivalry. In other
words, conditional on being the nearest neighbor, the effect of a price change at
a nearby terminal is almost exactly the same as the effect of a change at a termi-
nal that is more than 200 kilometers away. This finding is perhaps due to the fact
that competition occurs at the margin, and small price changes can cause buy-
ers that are located on boundaries to switch suppliers, regardless of the distance
between terminals.

Table IV contains OLS, IV, and semiparametric IV estimates of the coefficients
of all of the exogenous variables. Only the specification with nearest neighbor
price is shown. The table reveals that unbranded rack prices tend to be higher
when the number of competitors at the same terminal is smaller, when spot prices
are higher, stocks are falling, population is lower, income is higher, wages are
lower, and the additive MTBE is required. All of these results are as expected
except for the effect of wages. Not all, however, are significant. The coefficients
of the petroleum allocation district or PAD dummy variables, differ by specifica-
tion. The difference, however, is approximately constant, implying that only the
constant term varies. Finally, note that both specifications satisfy the overidenti-
fication restrictions as measured by the � statistic.

If the magnitude of the price response is indeed not affected by Euclidean
distance, then both the parametric and the semiparametric IV estimators are
consistent. The similarity in the regression coefficients in the second and third
columns of Table IV is therefore not coincidental. The finding that, in our appli-
cation, the parametric IV estimator appears to be consistent does not detract
from the usefulness of our semiparametric estimation method. First, without hav-
ing computed the semiparametric IV estimates we would not have known that
the magnitude of the price response is insensitive to Euclidean distance, once
we account for nearest neighbor effects. Furthermore, our estimation method is
applicable in a much wider context than the one considered here.

5�3� Further Analysis and Potential Applications

All factors considered thus far lead to the conclusion that direct competition
among terminals is extremely local and that therefore markets are small. How-
ever, we have not considered domino effects, where a price change at terminal i
triggers a change at terminal j , which in turn triggers a change at terminal k, and
so forth. For example, with the Hotelling model, firms compete directly only with
their nearest neighbors on either side. Nevertheless, all firms compete indirectly
through domino effects.

We assess this issue in two ways. First, in Figure 3, nearest neighbor termi-
nals are connected by straight lines. This construction allows for both direct
and indirect competition through spatial domino effects. Nevertheless, markets
are very small.62 Indeed, if markets are determined solely by nearest neighbor

62 With the Hotelling model, in contrast, if neighbors were joined to one another, eventually all
locations would be connected.
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TABLE IV
OLS, IV, and Semiparametric Estimates

Price Response Functions with Endogenous Market Boundaries

Semiparametric

OLS IV IV

Nearest neighbor 0�793 0�921 (See Figure 2)
price 	0�038
 	0�181


# of competitors −0�084 −0�082 −0�095
	0�027
 	0�027
 	0�023


Spot price 0�309 0�212 0�235
	0�067
 	0�151
 	0�107


% V stocks −0�078 −0�045 −0�040
	0�101
 	0�112
 	0�067


log(population) −0�128 −0�105 −0�177
	0�079
 	0�087
 	0�048


Average income 0�092 0�085 0�063
	0�030
 	0�032
 	0�031


Wage −0�119 −0�082 −0�076
	0�052
 	0�074
 	0�059


MTBE 2�674 2�815 3�163
(gasoline additive) 	1�008
 	1�046
 	1�861


PAD1 −2�640 −5�301 1�444
	3�536
 	5�145
 	4�183


PAD2 −3�851 −6�209 0�415
	3�991
 	5�210
 	4�151


PAD3 −2�392 −4�829 1�283
	3�486
 	4�893
 	4�277


PAD4 −2�085 −6�001 1�070
	3�985
 	6�762
 	5�350


PAD5 −2�391 −5�479 1�164
	3�646
 	5�655
 	5�821


R2 = 0�84 R2 = 0�84
J Stat = 2�2 J Stat = 8�4
df = 3 df = 10

Notes: Standard errors in parentheses. The J statistic is a test of overidentification. df denotes the degrees of
freedom for the J statistic.

relationships, as we find, each set of connected terminals constitutes a separate
geographic market for wholesale gasoline.

Second, it is possible that our finding of extremely local competition depends
on the fact that our model is static. This would be the case, for example, if more
distant firms responded to price changes with a lag that was longer than a week,
in which case we would have a temporal domino effect. To assess this issue, we
experimented with a specification in which rival prices are lagged one month.
When we ran regressions with lagged prices; however, our conclusions remained
unchanged.
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Figure 3.—Markets.

We can relate our findings to the empirical market definition literature. For
example, Slade (1986), Spiller and Huang (1986), and Scheffman and Spiller
(1987) assess the U.S. wholesale gasoline market and address the question of
whether two or more terminals are in the same geographic market for antitrust
purposes. The answers in those studies depend on the size and significance of
price correlations or cross price elasticities of demand. However, the authors
assess competition between pairs of terminals in isolation. In other words, if there
are six regions of interest, each of the fifteen possible pairs must be assessed
separately. The method of this paper can be used to define markets in a more
integrated framework. Moreover, the techniques used in the earlier studies are
less well suited to applications in which products are both physically and spatially
differentiated and to situations where firms produce multiple products.63

There are many possible ways to use our empirical findings. We illustrate by
considering the price effects of a terminal closing. Clearly openings could be
assessed as well. Our model predicts that if, for example, the terminal in Seattle
were to close, wholesale prices in Tacoma and Anacortes would increase by more
than three cents per gallon. This finding is due to the fact that the three termi-
nals constitute a separate wholesale market. If competition were symmetric, in
contrast, the effect of this or, more generally, any closing would be negligible.

63 Many recent studies bypass the process of market definition altogether and use differenti-
ated product models to evaluate the effects of a merger directly (see Werden and Froeb (1994),
Hausman, Leonard, and Zona (1994), Nevo (2000), and Pinkse and Slade (2000)). Nevertheless,
market definition is still an integral part of antitrust analysis.
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6� summary and conclusions

The notion of being neighbors or in close proximity surfaces in many economic
problems. For example, these concepts can refer to sellers located in geographic
space, or they can be applied to product types or industrial sectors. Although
intuitively we know what these words mean, in practice we do not have good
methods of measuring their strength. In this paper, we propose a method of esti-
mating proximity that places minimal structure on the problem. Specifically, our
procedure requires that the econometrician select a number of possible measures
of closeness but allow the data to determine the importance of those measures
and how each interacts with the others in a possibly nonlinear fashion.

We apply our estimation technique to the problem of determining the nature
of spatial price competition in wholesale gasoline markets and find that, in this
market, competition is highly localized. Indeed, we experiment with measures
of distance that include being nearest neighbors, having markets with common
boundaries, and being located a certain Euclidean distance apart, and find that
only the first is a strong determinant of the strength of interterminal rivalry. In
particular, direct rivalry decays abruptly with distance, not in a more gradual
manner, as would be the case if the market were global. Our results, however, are
stronger than mere rejection of global competition; we find that wholesale price
competition is even more local than in a typical Hotelling model, where firms
compete directly with all competitors with whom they share a market boundary.
We use semiparametric methods to guide this analysis, and we think that the
relationships among the distance measures are illustrated much more effectively
and parsimoniously in Figure 2 than by the results of a specification search using
conventional estimation techniques.

The market for crude oil is clearly worldwide. We conclude, however, that
refined product markets are much smaller, a finding that could be used in a num-
ber of policy applications. We have illustrated, using a quantitative example, the
impact of closing a terminal site. In addition, the qualitative nature of our results
could be used in evaluating mergers among refiners.64 Indeed, when integrated
refiners merge, one must consider the impacts on markets at all stages in the
production and sale of gasoline, and the wholesale market is probably the small-
est in that sequence. This means that competition authorities should scrutinize
the wholesale market most closely when evaluating such mergers.

There are a number of other empirical research areas where our proposed
estimation technique could be fruitfully applied. We suggest one here, but clearly
there are others. The problem that we choose to emphasize is the determination
of the nature and strength of R&D spillovers across firms or industrial sectors.
Intuitively one expects that spillovers will occur among industries that are in
some sense close. It is not obvious, however, how one should measure closeness.

64 Before assessing mergers between refiners quantitatively, one would need to develop a model of
intraterminal price competition in more detail. For an application of the method developed here to
a quantitative evaluation of mergers and divestitures, see Pinkse and Slade (2000).
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Indeed, different researchers propose different measures, such as patent cita-
tions across sectors or input/output flows among sectors. With our technique, the
measures that have been proposed by others would be the exogenously specified
measures of closeness, and the data would determine their relevance.
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APPENDIX A: Proofs

Let PC =W	WT PBW

−1WTPB .

Proof of Theorem 1: First (a). Note that
∫
	ĝ	d
 − g	d

2 = ��̂ − ��2 +∑

l=Ln+1 �
2
l . The

second term on the right-hand side is O	
∑
l=Ln+1 l

−2=
 by condition (vii), which is O	L1−2=
n 
 = o	1


by conditions (vii) and (viii). For (a) it remains to be shown that ��̂− ��2 = op	1
 and for
(b) that �&̂−&�2 = op	1
. We show that ��̂−��2 +�&̂−&�2 = �<̂− <�2 = op	1
. Now �<̂− <�2 =
�	WTW
−1/2PC	u+ r
�2. Note that =max	W

TW
−1 = Op	D−1
n 
 by condition (v). Since PC = PCPB we

consider �PCPBu�2 and �PCr�2. Note that �PCPBu�2 ≤ �PBu�2 and that E�PBu�2 = tr	PBE*uuT +
=
tr	PB@PB
≤ =max	W
 tr	PB
=Op	bn
 where the second equality follows from condition (ii) and the
last equality from condition (ii) and the fact that PB is an orthogonal projection matrix. Finally,
�PCr�2 ≤ �r�2 and

E�r�2 =
n∑
i=1

E

{ ∑
l=Ln+1

�l
∑
j �=i
el	dij 
pj

}2

≤ n
( ∑
l=Ln+1

	�l	
)2(

sup
i� l

∑
j �=i

	el	dij 
	
)2

sup
i

Ep2
i

≤ Cn
( ∑
l=Ln+1

l−=
)2

=Op	nL2−2=
n 


for some C > 0 where the first inequality follows from the Schwarz inequality and the second
from conditions (i), (vi), (iii), and (vii). Finally, nL2−2=

n D−1
n + bnD−1

n → 0 as n→  by condition
(viii). Q.E.D.

Lemma 1: lim supn→ =max	V *p+
 <.

Proof: Consider

=max	V *p+
= =maxA	I −G
−1@	I −GT 
−1C≤ =maxA	I −G
−1	I −GT 
−1C=max	@
�

Finally, lim supn→ =maxA	I −G
−1	I −GT 
−1C < by condition (i) and lim supn→ =max	@
 < by
condition (ii). Q.E.D.

Lemma 2: Let Z̃ = Z−E*Z+. Then sup�W�=1�PBZ̃W�2 =Op	nbnLnD−1
n 
.
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Proof: Note that Z = 	I⊗pT 
A where A ∈ �n
2×L has 	n	i−1
+ j� l
 element el	dij 
. Consider

E

[
sup
�W�=1

�PBZ̃W�2
]
≤ trE

[
Z̃T PBZ̃

]= n∑
i� j=1

tr
(
QTi E

[
p̃p̃T

]
QjB

T
i 	B

T B
−1Bj

)
�

where Qi ∈ �n×L has 	j� l
 element el	dij 
 for j �= i and 0 for j = i, and p̃ = p−E*p+. Denote
@p = E*p̃p̃T += V *p+. Note that

n∑
i� j=1

tr
(
QTi E

[
p̃p̃T

]
QjB

T
i 	B

T B
−1Bj

)
=

Ln∑
l=1

n∑
i=1

BTi 	B
T B
−1/2QTil@

p
n∑
j=1

Qjl	B
T B
−1/2Bj

≤ =max	@
p


Ln∑
l=1

n∑
i� j=1

BTi 	B
T B
−1BjQ

T
ilQjl�

where Qil is the lth column of Qi and @p = V *p+. By Lemma 1, =max	@
p
 = O	1
. Further,

note that 	BTi 	BT B
−1Bj 	 ≤ BTi 	BT B
−1Bi +BTj 	BT B
−1Bj . But supi 	BTi 	BT B
−1Bi	 ≤ supi �Bi�2×
=max	B

T B
−1 = O	bnD−1
n 
 by condition (x). Hence we still need to show that

∑Ln
l=1

∑n
i� j=1 	QTilQjl	 =

O	nLn
. The left-hand side is
∑Ln
l=1

∑n
i� j� t=1 	el	dit
el	djt
	 ≤ nLn supl� t 	

∑n
i=1 	el	dit
	
2 =O	nLn
, by

condition (vi). Q.E.D.

Lemma 3: Let �= PBZ��= PB�Z�� = �−�. Then for any two vectors W�Y,

∣∣WT 	M�−M�
Y
∣∣ ≤ =max

(
	�T�
1/2

){
=max

(
	�T�
−1/2

)+=max

(
	�T�
−1/2

)}
×A�P�W�	�P�Y�+2�P�Y�
+�P�W��P�Y�C

=Op
(
n1/2b1/2n L

1/2
n D

−1
n

){�P�W�	�P�Y�+2�P�Y�
+�P�W��P�Y�
}
�

Proof: Define within the context of this lemma SY = Y	Y T Y 
−1 and �Y = Y	Y T Y 
−1/2, for
Y = �����. Note that

M�−M� = P�−P� = S��T +P��S
T
� +S��T PT� +�ST� = Q̃1+ Q̃2 + Q̃3+ Q̃4

for implicitly defined Q̃1� Q̃2� Q̃3� Q̃4. Note that

	WT Q̃1Y	 =
∣∣WTD�	�

T�
−1/2	�T�
1/2DT�Y
∣∣

≤ =max

(
	�T�
−1/2

)
=max

(
	�T�
1/2

)�P�W��P�Y��
Q̃2 ≤ =max

(
	�T�
−1/2

)
=max

(
	�T�
1/2

)�P�W��P�Y��
Q̃3 ≤ =max

(
	�T�
−1/2

)
=max

(
	�T�
1/2

)�P�W��P�Y��
Q̃4 ≤ =max

(
	�T�
−1/2

)
=max

(
	�T�
1/2

)�P�W��P�Y��

The final equality in the lemma statement follows from Lemma 2 and condition (x). Q.E.D.

Lemma 4: �XT 	M�−M�
u� =Op	nbnL1/2
n D

−1
n 
= op	n1/2
.

Proof: Without loss of generality we prove that 	XT
�1	M� −M�
u	 = op	n1/2
, where X�1 is the

first column ofX. In Lemma 3, take W=X�1 and Y=u. Observe that (i) �P�W� = �P�X�1� =O	n1/2
,
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(ii) �P�W� = �P�X�1� =Op	n1/2
, (iii) �P�Y� = �P�u� = �P�PBu� ≤ �PBu� =Op	b1/2n 
, (iv) �P�Y� =
�P�u� = �P�PBu� ≤ �PBu� =Op	b1/2n 
, such that

�XT 	M�−M�
u� =Op	n1/2b1/2n L1/2
n D

−1
n 
Op	n

1/2	b1/2n +b1/2n 
+n1/2b1/2n 

=Op	nbnL1/2

n D
−1
n 
= op	n1/2


since n1/2bnL1/2
n D

−1
n → 0 by condition (xi). Q.E.D.

Lemma 5: XT 	M�−M�
@	M�−M�
X = op	n
.

Proof: This can be proved along the lines of Lemma 4. Q.E.D.

Proof of Theorem 2: We need to prove that 	XT PBM�PB@PBM�PBX

−1/2XTPBM�PBu

�→
N	0� I
. Let s =@−1/2u such that AsiC is i.i.d. From Lemmas 4 and 5 (noting that PB	M� −M�
 =
M�−M�) it follows that instead it is sufficient to prove that(

XTPBM�PB@PBM�PBX
)−1/2

XTPBM�PBu

= (
XTPBM�PB@PBM�PBX

)−1/2
XTPBM�PB@

1/2s
�→N	0� I
�

Because of the independence of the si this is an immediate consequence of Eicker’s (1963) central
limit theorem using condition (ix).65 Q.E.D.

Proof of Theorem 3: First observe that

@̂g ≥ =min

(
	WT PBW


−1WTPB@PBW	W
T PBW


−1
)�LT e�2

≥ =min	W
T PB@PBW
=min		W

T PBW

−2
�LT e�2�

which is of order no less than Dnn−2�LT e�2. Hence, @̂−1/2
g =Op	D−1/2

n n�LT e�−1
.
Note that

ĝ	d
−g	d
= eTL	WT PBW

−1WTPB	p−W�
−

∑
l=Ln+1

�lel	d
�

First, ∣∣∣∣ ∑
l=Ln+1

�lel	d


∣∣∣∣=O( ∑
l=Ln+1

	�l	
)
=O

( ∑
l=Ln+1

l−=
)
=O(L1−=

n

)
�

Hence @̂−1/2
g

∑
l=Ln+1 �lel	d
=Op	D−1/2

n n�LT e�−1L1−=
n 
=Op	D−1/2

n nL1−=
n 
= op	1
 by condition (xiii).

Now look at the first term,

eTL	WT PBW

−1WTPB	p−W�
= eTL	WT PBW


−1WTPBu+eTL	WT PBW

−1WTPBr

= Su+Sr �

Note that

	Sr 	≤�LT e�=max		W
T PBW


−1/2
�r�=�LT e�Op	D−1/2
n 
Op	n

1/2L1−=
n 
=Op	n1/2D−1/2

n L1−=
n 
�

65 Reference found in Andrews (1991).
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where the rate for �r� was established in the proof to Theorem 1. Thus, L̂−1/2
g Sr =Op	n3/2D−1

n L
1−=
n 
=

op	1
 by condition (xiii).
Next, split up Su = 	Su−S∗u
+S∗u , where S∗u is Su with the W ’s replaced with �W ’s. We first look

at Su−S∗u = eTL	S� −S�
u, where S�� S����� are as in Lemma 3. But S� −S� = 	�T�
−1�T +
	�T�
−1�T P�+S��ST� and hence

	eTL	S�−S�
u	 ≤
{
=max

(
	�T�
−1/2

)
=max

(
	�T�
−1/2

)+=max		�
T�
−1


}
×=max	�

T�
1/2�LT e�	�P�u�+�P�u�

=Op	D−1

n 
Op

(
n1/2b1/2n L

1/2
n D

−1/2
n

)
�LT e�Op

(
b1/2n

)
=Op

(
n1/2bnL

1/2
n D

−3/2
n

)
�LT e�

by Lemma 2, (the derivations in) Lemma 4, and condition (x). Hence @̂−1/2
g 	Su − S∗u
 =

Op	n
3/2bnL

1/2
n D

−2
n 
= op	1
 by condition (xiii).

Along the same lines it can be shown that the difference between @̂g and �@g , which is defined as
@̂g with the W ’s replaced with �W ’s, is of smaller order than �@g .

Finally, let sL =@1/2PB �W	�WTPB �W
−1LTm and s =@−1/2u. Then s is i.i.d. and hence by Eicker’s
(1963) result, �@−1/2

g S∗u = 	sTL/�sL�
s
�→N	0�1
. Q.E.D.

Lemma 6: n−1∑n
i�k=1	Oik−1
@ik = o	1
.

Proof: The left-hand side is for some C > 0 and sufficiently large n bounded in absolute value by

n−1
n∑
i=1

Pn∑
k=1

	Oi	k
−1	 	@i	k
	+n−1
n∑
i=1

n∑
k=Pn+1

	Oi	k
−1	 	@i	k
	�

Now,

n−1
n∑
i=1

Pn∑
k=1

	Oi	k
−1	 	@i	k
	 ≤ C̃�Cn−1
n∑
i=1

Pn∑
k=1

kP−1
n k

−1−Q = C̃�Cn−1P−1
n

n∑
i=1

Pn∑
k=1

k−Q =O	P−Q
n 


by conditions (xiv) and (xvii). Further,

n−1
n∑
i=1

n∑
k=Pn+1

	Oi	k
−1	 	@i	k
	 ≤ C̃n−1
n∑
i=1

n∑
k=Pn+1

k1+Q

by conditions (xiv) and (xvii). Finally, n−1∑n
i=1

∑n
k=Pn+1 k

1+Q =O	P−Q
n 
= o	1
. Q.E.D.

Lemma 7: n−1∑n
i�k=1 Oik	uiuk−@ik
= op	1
.

Proof: The squared left-hand side expectation is n−2 ∑n
i� j�k� l=1 OikOjlE*	uiuk −@ik
	ujul −@jl
+

which is bounded by Cn−2 ∑n
i� j�k� l=1 OikOjlASij + Sil + Sjk + SjlC for some finite C > 0 by the uniform

boundedness of E*u4i + imposed in condition (xiv) and by condition (xv). Then

n−2
n∑

i� j�k� l=1

OikOjlSij ≤ n−2
n∑

i� j=1

Sij sup
i

n∑
k=1

Oik sup
j

n∑
l=1

Ojl ≤ 	Pn/n
2
n∑

i� j=1

Sij =O	P2
nn

−1
= o	1


by condition (xvii). Q.E.D.

Lemma 8: n−1∑n
i�k=1 Oik	ûi−ui
	ûk−uk
= op	1
.
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Proof: By the Schwarz inequality the left-hand side is bounded by n−1A
∑n
i�k=1 O

2
ikC

1/2�û−u�2 =
Op	n

−1n1/2P1/2
n Tn
= op	1
 by condition (xvi). Q.E.D.

Lemma 9: n−1∑n
i�k=1 Oik	ûi−ui
uk = op	1
.

Proof: By the Schwarz inequality the left-hand side is bounded by

n−1�û−u�1/2
{ n∑
i=1

( n∑
k=1

Oikuk

)2}1/2

�

Note that �û−u� =Op	Tn
 by condition (xvi). Finally,

n∑
i=1

E

[( n∑
k=1

Oikuk

)2]
=

n∑
i� k� l=1

OikOil@kl ≤ sup
k� l

n∑
i=1

	OikOil	
n∑

k� l=1

@kl =O	Pnn


by the summability of the covariances in condition (xiv) and by condition (xvii). Hence,

n−1�û−u�1/2
{ n∑
i=1

( n∑
k=1

Oikuk

)2}1/2

=Op
(
n−1T1/2

n n
1/2P1/2

n

)
=Op

(
n−1/2T1/2

n P
1/2
n

)
= op	1


by condition (xvi). Q.E.D.

Proof of Theorem 4: To simplify notation, we only consider the case in which J is a vector
of ones. This can be done without loss of generality since the elements of J are bounded and
deterministic. Thus we prove that n−1∑n

i�k=1AOikûiûk−@ikC = op	1
. The left-hand side can be split
up into (i) n−1∑n

i�k=1 Oik	ûiûk −uiuk
, (ii) n−1∑n
i�k=1 Oik	uiuk −@ik
, and (iii) n−1∑n

i�k=1	Oik − 1
@ik.
Expression (iii) is taken care of in Lemma 6 and (ii) in Lemma 7. (i) remains, which is

n−1
n∑

i� k=1

Oik	ûi−ui
	ûk−uk
+n−1
n∑

i� k=1

Oikuk	ûi−ui
+n−1
n∑

i� k=1

Oikui	ûk−uk
�

The first term is dealt with in Lemma 8 and the remaining two in Lemma 9. Q.E.D.

APPENDIX B: A Model with Several Competitors at One Terminal

Suppose that there are two sellers at terminal i� i = 1� � � � � n, one branded and one unbranded.
Let pB = 	pB1� � � � �pBn
T be the vector of branded prices and pU = 	pU1� � � � �pUn


T be the vector of
unbranded prices. We assume that the branded and unbranded markets are somewhat segregated, and
that there is no direct interterminal competition between branded and unbranded sellers. However,
at a given location, branded and unbranded products compete.

To motivate this assumption, using the data from our application, we obtain the following
correlation coefficients: [	pU �pB
 = 0�426, [	pU �pNNU
 = 0�940, and [	pU �pNNB
 = 0�375, where
pNNU 	pNNB
 is the unbranded (branded) price at the nearest neighbor terminal. Clearly, the principal
competition is between unbranded gasoline at nearest neighbor locations. The correlation coefficient
between branded and unbranded prices at the same location is less than half of the correlation coef-
ficient between unbranded prices at neighboring terminals, and the correlation between unbranded
and branded prices at neighboring terminals is even smaller.

We therefore assume that a typical unbranded firm’s profit, �Ui , depends on the vector pU , the
scalar pBi , and the vector of local demand, cost, and market structure variables, xi. Unbranded seller
i chooses pUi to

max�Ui	pU �pBi� xi
�(23)

given pU−i and pBi , where pU−i = 	pU1� � � � �pUi−1�pUi+1� � � � �pUn

T . The first order condition for this

maximization is fi	pU �pBi� xi
 = 0, which can be solved for i’s best response or reaction function,
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pUi =Ri	pU−i� pBi� xi
. Given our assumptions on profits, this function, which is linear, can be written
as

pUi =Ri	pU−i� pBi� xi
=
∑
j �=i
gijpUj +&TXi+�pBi+ui�(24)

which is identical to equation (10) except that branded price at the same terminal has been added.

APPENDIX C: The Market Boundary Algorithms

Below is a description of the algorithm that determines which neighbors share an endogenous
boundary. Since endogenous boundaries are not piecewise linear, the algorithm is somewhat more
complicated than that for exogenous boundaries, which are linear. Appendix C.1 contains a rough
outline of the algorithm, whereas Appendix C.2 contains some technical detail on specific steps.

C.1. Outline of the Algorithm

The algorithm follows three steps.
(i) Determine the Set of Corner PointsB Let b be an arbitrary location. Define d̃i	b
= pi+UEUb� i ,

where EU is the Euclidean distance between b and terminal i. Then 	ij = Ab B d̃i	b
= d̃j 	b
C is the
set of locations at which jobbers are indifferent between buying from terminals i and j . If prices are
equal or transport costs infinite, this is a straight line; otherwise it is a curve convex to the location
of the higher priced terminal.

Define sets of intersection points 
 ∗
ijk by 


∗
ijk =	ij ∩	ik∩	jk. When prices are equal there generally

is one intersection point, but when they are different there could be more. Finally, define sets of
corner points 
ijk by 
ijk = Ab ∈
 ∗

ijk B� ∃ i∗ �= i� j�k B d̃i∗ 	b
 < d̃i	b
C. 
ijk is hence the set of intersection
points for terminals i� j�k for which there is no terminal i∗ closer (in terms of d̃) to the intersection
point than terminals i� j�k are to the intersection point.

(ii) Determine whether i and j Share an Endogenous BoundaryB When 
ijk �= �, then i shares an
endogenous boundary with both j and k, and j and k also share an endogenous boundary. We have
ignored boundaries that are located far outside the geographical area studied.

(iii) Creating an Endogenous Common Boundary GraphB One can graph the boundaries of the
endogenous market areas. When this is done using the data of our application, the result is Figure 1.

C.2. Some Technical Details

Determining the Intersection PointsB

Denote the observation longitudes and latitudes by 	]xi� ]yi
� i = 1� � � � � n, and the longitude and
latitude of an intersection point by 	Ix� Iy
. Then to determine the intersection points (if any) of
observations 1, 2, and 3, the following set of nonlinear equations needs to be solved for Ix�Iy , and
^, where ^ is the delivered price at the intersection point:

	Ix−]x1
2 + 	Iy−]y1
2 = 	^−p1

2/U2�

	Ix−]x2
2 + 	Iy−]y2
2 = 	^−p2

2/U2�

	Ix−]x3
2 + 	Iy−]y3
2 = 	^−p3

2/U2�

(25)

Subtracting the first from the second and third equalities, one obtains{
2	]x1−]x2
Ix+2	]y1−]y2
Iy+2	p2 −p1
U

−2^ = 	p2
2 −p2

1
U
−2 +]2x1+]2y1−]2x2 −]2y2�

2	]x1−]x3
Ix+2	]y1−]y3
Iy+2	p3−p1
U
−2^ = 	p2

3 −p2
1
U

−2 +]2x1+]2y1−]2x3−]2y3�
(26)

Any two of Ix�Iy , and ^ can be expressed in terms of the third and substituted into any one of the
earlier nonlinear equations.66 One is then left with a single quadratic expression with zero, one, or
two solutions (intersection points).

66 One generally wants the largest number (in absolute value) in the denominator.
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Mill Price Undercutting

We encountered the problem that, for the transportation cost used (U = 0�05 cents per gallon
per kilometer), there were occasions of mill price undercutting. We have solved this by adjusting
prices (for the purpose of determining common boundary neighbors only) until prices plus transport
costs from all other terminal locations exceed the price at the terminal (the mill price). The price
adjustments were chosen to minimize the number of price changes necessary.

A Miscellaneous Issue

It is possible for a terminal at the center of the area studied to have only two (endogenous) com-
mon boundary neighbors (and this phenomenon occurred in our application). This is due to the fact
that the boundaries are not straight lines. This phenomenon manifests itself when price differences
between neighboring terminals are large. The terminal with two common boundary neighbors then
also has only two corner points, both with the same two neighbors.
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