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Abstract

Over the last fifteen years, a large number of studies have attempted to explain the determinants

and changes of wage inequality.  This paper proposes a simple procedure to decompose changes

in the distribution of wages or in other distributions into three factors: changes in regression

coefficients, changes in the distribution of covariates, and residuals changes.  The procedure

requires only estimating standard OLS regressions augmented by a logit or probit model.  The

procedure can be extended by modelling residuals as a function of unmeasured skills and skill

prices.  Two empirical examples showing how the procedure works in practice are considered. 

The first example looks at sources of differences in the wage distribution in Alberta and British

Columbia.  The second example re-examines the sources of changes in overall wage inequality in

the United States from 1973 to 1999.  Finally, the proposed procedure is compared to other

existing procedures.  

Résumé

Au cours des quinzes dernières années, nombre d’études se sont penchées sur les déterminants et

les changements de la distribution des salaires.  Ce mémoire propose une procédure pour

décomposer les changements de la distribution des salaires en trois éléments: les changements

dans les coefficients de régression, la distribution des regresseurs et les changements résiduels. 

Cette procédure ne nécessite que l’estimation de regressions par moindre carrés ordinaires et

d’un modèle probit ou logit.  L’auteur montre aussi comment modéliser les résidus en fonction

de compétences non mesurées.  La procédure proposée est mise en application dans le contexte

de deux exemples: la distribution des salaires en Alberta et en Colombie-Britannique et les

changements dans la distribution des salaires de 1973 à 1999 aux Etats-Unis.  Le mémoire

examine aussi comment cette procédure se compare aux méthodes proposées par d’autres

chercheurs.  

JEL classification code:  J3
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1. Introduction

Studying changes in the distribution of wages has been an active area of research over the

last fifteen years.  One reason for the resurgence of interest for this topic is that wage inequality

increased steeply in several countries, and in particular in the United States, since the early

1980s.  Another reason is that it is now much easier to conduct in-depth empirical studies thanks

to the increased power of computers and the easy access to large micro data sets for a large

number of countries and time periods.    

Most studies have focused on one particular aspect of wage inequality, namely the wage

gap between more and less-educated workers.  For example, Katz and Murphy (1992) and Bound

and Johnson (1992) show that after declining during the 1970s, the wage gap between college-

and high school-educated workers increased steeply in the 1980s in the United States.  Both of

these studies propose a simple supply and demand explanation to this phenomena.  They suggest

that while the relative demand for more educated workers increased steadily during the 1970s

and 1980s, the growth in the relative supply did slowdown in the 1980s relative to the 1970s.  As

a result, the growth in relative demand due to factors such as skilled-biased technological change

outstripped the growth in relative supply during the 1980s, causing the relative wage of college-

educated workers to increase.

Ten years later, this supply-demand-technology paradigm remains to a large extent the

accepted theoretical framework for understanding the evolution of the college-high school wage

gap.   While recent research has considered richer versions of this basic approach, supply,

demand and technology remain the key factors used to understand this dimension of wage

inequality.1  There is also a consensus in the literature on the basic facts to be explained, namely

that the U.S. college-high school wage gap declined in the 1970s, increased rapidly in the 1980s,

and increased more slowly in the 1990s.2  Part of this consensus stems from the fact that the

college-high school wage gap, or returns to education more generally, is simply a difference in

conditional means that can be readily estimated using regression methods.  

By contrast, there is much less of a consensus in the literature when it comes to

understanding the evolution of overall measures of wage inequality over the last 20 or 30 years. 

One possible reason for the lack of consensus is that, unlike the case of mean wage differences
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by education groups, there are no unique and well-accepted measures of overall wage inequality.

As is well known in the income distribution literature, different summary measures of inequality

like the coefficient of variation or the Gini coefficient can yield different rankings of inequality

as they put different weights on different parts of the distribution.3  As a result, recent research

has increasingly focused on more global, though less parsimonious, methods for describing

changes in the whole distribution of wages such as kernel density estimation.

There is no consensus either on the underlying economic explanations for the changes in

overall wage inequality.  For example, Juhn, Murphy and Pierce (1993) conclude that much of

the increase in wage inequality for U.S. men in the 1980s is due to increased returns to skills.  By

contrast, DiNardo, Fortin, and Lemieux (1996) find that the decline in the real value of the

minimum wage played an important role in the increase in wage inequality for both men and

women during the same period.  Lee (1999) and Teulings (2002) push this idea further and

conclude that most of the increase in inequality during this period is due to changes in the

minimum wage.  These studies all propose innovative procedures for estimating changes in

overall wage inequality, but it is difficult to compare the results of these various approaches

because of differences in methodologies.  

The main goal of this paper is to propose a unified and simple approach to analyzing

changes in the distribution of wages that is economically interpretable using the standard tools of

human capital theory.  One related goal is to compare the proposed approach to other techniques

that have been used in the literature.  One last goal is to show how the proposed approach can

also be used to analyze changes or differences in distribution in other contexts.  The approach

can be viewed as a generalization of well-known Oaxaca-Blinder decomposition of means to the

full distributional case.  

I illustrate how the method works using two empirical examples.  I first analyze the

sources of difference in the wage distribution of women in Alberta and British Columbia in year

2000.  I then use the proposed approach to re-assess the sources of changes in the distribution of

wages in the United States between 1973 and 1999.  Like most other studies, I find that increases

in the returns to measured skills like experience and education play a major role in secular

increases in wage inequality in the United States.  I also find, however, that this explanation does



4

not account well for the changes at the bottom end of the wage distribution.  More importantly, I

find that much of the increase in residual wage inequality is due to changes in the composition of

the workforce.   This suggests that increases in the price of unmeasured skills does not play much

of a role in the overall growth in wage inequality since 1973.  

2. Economic model: human capital

Before turning to econometric issues, it is useful to first provide some background on models of

wage determination across individuals.  Almost all empirical studies of wage determination use

as their point of departure Mincer (1974)’s famous human capital earnings function

ln w = c + rS + b1E + b2E2 + e,

where w is earnings (or the hourly wage when available), c is a constant, S is years of schooling,

E is years of labor market experience, and e is an error term.  Hundreds, if not thousands of

studies have estimated this equation for a large number of countries and time periods.4  This

earnings function is probably the closest thing to an “empirical law” in labor economics, since

almost all studies show that schooling has a positive and significant effect on earnings (r>0) and

that earnings are a concave function of labour market experience (b1 > 0 and b2 < 0).  Mincer

shows how this earnings equation can be obtained as the outcome of a process by which

individuals optimally invest in two types of human capital, education and on-the-job training

(OJT).5 Years of schooling is a fairly direct measure of education human capital, while years of

labour market experience is viewed as a proxy for on-the-job training.  

In this context, S and E can be though as the “quantity” of human capital, while r, b1, and 

b2 are the “prices” or returns to human capital.  In general, the distribution of wages depends both

on the distribution of human capital and its price.  For instance, ignoring all wage determinants

but schooling means that ln w = c + rS and that the variance of log wages is the product of the

squared price (return) of schooling times the variance of schooling (Var(lnW) = r2 ×Var(S) ).  

Mincer also discusses the implications of the human capital approach for the conditional

distribution of the error term e.  In particular, he considers the case in which different individuals

with the same level of formal schooling S invest with differential OJT intensity.  As in other

aspects of human capital investments, individuals who devote more time and efforts in OJT
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implicitly pay for it by accepting lower earnings initially.  But these investments eventually pay

off in terms of higher earnings in the future.  This also means that the slope of the experience-

earnings profile is steeper for those who invest more.  

This is illustrated for several types of individuals in Figure 1.  Individuals of type H

invest more than average (M), while individuals of type L invest less than average.  Since a wage

regression only captures conditional means, the parameter estimates of b1 and  b2 capture the

average experience earnings profile M.  However, one additional empirical prediction of the

model in Figure 1 is that residual wage dispersion decreases as a function of experience until the

“overtaking” point (10 years of experience in this example) where the earnings of type H catch

up with those of others.  Residual dispersion starts expanding past this point.  

In terms of the conditional variance of the error term e, this model implies that the

variance should first decline and then expand as a function of experience.  In econometric terms,

this means that e is heteroskedastic.  In economic terms, it suggests that it is legitimate to

interpret differences in the residual variance across experience levels as evidence that the

dispersion in unmeasured human capital systematically varies across those experience levels. 

For instance, Juhn, Murphy and Pierce (1993) argue that the increase in the residual variance of

wages in the United States during the 1970s and 1980s should be interpreted as evidence that the

“price” of unmeasured human capital increased during this period.  The early work by Mincer

and others provide the conceptual and empirical basis for this type of statement.  

Related arguments can be used to show that residual wage dispersion may also depend on

the level of schooling of individuals.  The simplest argument is that years of schooling is an

imperfect proxy for true educational inputs and that the error term includes unmeasured aspects

of educational inputs such as school quality.  Systematic differences in the residual variance

across education groups arise if the residual dispersion in school quality is different for different

levels of schooling.  A more sophisticated argument is that if individuals who invest more in

education have higher marginal returns to education than others, the log wage-schooling

relationship will generally be convex, i.e. the labour market “price” of schooling will be higher at

higher levels of education.6  This results in more residual wage dispersion at higher than lower

levels of education even if the dispersion in unmeasured educational inputs is the same at
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different levels of education.

3. Decomposing the wage distribution

This section proposes a decomposition procedure that unifies several existing approaches

by combining elements of Juhn, Murphy, and Pierce (1993) and DiNardo, Fortin, and Lemieux

(1996).  Consider a general regression model 

yit = xit$t + eit , (1)

where i indicates the observation (individual) and t the time period; xit is a 1×k vector of

covariates (including a constant), $t is a k×1 vector of parameters, and the error term eit is

assumed to have a zero conditional mean (E(eit | xit) = 0).  In terms of the earnings model of

Section 2, yit corresponds to log wages while xit is a vector of human capital and other variables

such as schooling, experience, and other socio-economic characteristics.  

For simplicity, I focus on the case where there is a series of cross-sectional samples for

different time periods t.  However, this setting can readily be applied to cases where t represent

various groups (men vs. women, immigrants vs. non-immigrants, etc.) or regions instead of time

periods.  

While it is customary to assume random sampling, the sampling structure of most micro

data sets collected by Statistics Canada and other survey agencies is considerably more complex. 

I ignore all these issues and assume random sampling except for the fact that the probability of

sampling of a given observation i at time t, 1/Tit, depends on a set of exogenous factors such as

geographic location, urban/rural status, etc.  This probability is the inverse of the sample weight,

Tit.  To simplify the notation, I also normalize the sample weights so that they sum up to one

(E
i
Tit=1).

Consider the OLS estimate bt of $t.  The estimated regression equation is:

yit = xitbt + uit, (2)

where uit is the regression residual that has, by construction, a zero average and is uncorrelated

with the covariates.  The sample average of y in period t is

y - t = x - t bt , (3)

where y - t =  E
i

 Tityit and x - t =  E
i

 Titxit .
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3.1. Decomposing changes in the mean: the Oaxaca-Blinder decomposition.

Consider an alternative time period s.  The sample average of y in period s is

y - s = x - s bs.  (4)

The difference between the average value of y in periods t and s can be decomposed as

y - t - y 
- 

s = x - t (bt- bs) + ( x - t -  x 
- 

s)bs , (5)

where the first term on the right hand side captures differences in the estimated parameters, while

the second term captures differences in the average values of the covariates between the two

samples.  This kind of decomposition, first suggested by Oaxaca (1973) and Blinder (1973), is

now a standard practice in empirical economics.  One useful interpretation of this decomposition

is that  x - tbs is a counterfactual average value of y that would be obtained if the parameters in

period t were replaced by those in period s.  In terms of the wage model, this represents the

average wage that would prevail in period t if the “price” of human capital were the same as in

period s.  Denote this counterfactual as y - t
a where

y - t
a =  x - tbs. (6)

This counterfactual can be used to rewrite equation (5) as:

y - t - y 
- 

s = ( x - tbt - y 
- 

t
a) + (y - t

a -  x - sbs) = ( y - t - y 
- 

t
a) + ( y - t

a -  y - s).

Consider yit
a, the individual-specific counterfactual wage:

yit
a = xitbs + uit = yit +  xit(bs - bt).

In terms of computation, y - t
a can be either obtained by computing the sample average of xit and

applying equation (6), or by computing directly the sample average of yit
a:

y - t
a =   E

i
 Tityit

a. (7)

3.2. Decomposing changes in the variance

Before trying to go from the simple mean decomposition to a full decomposition of the whole

distribution, consider the case of the variance which is one among many summary measures of

dispersion.  The variance is the most natural measure of dispersion to use in a regression context

since, by construction, the residuals  uit are uncorrelated with the covariates xit. The variance of yit

is, therefore, the sum of the variance of the predicted (xitbt) and residual (uit) parts of the

regression:
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Vt =   bt’Sx,t bt + Ft
2,  (8)

where Vt is the variance of yit, Sx,t is the variance-covariance matrix of xit, and Ft
2 is the variance

of the residuals.  This suggests three potential sources of change in the variance of y: changes in

the estimated parameters, bt, changes in the variance-covariance matrix of the covariates, Sx,t,

and changes in the residual variance Ft
2.  

It is useful to link these three sources of changes back to the economic model of wage

determination of Section 2.  In this setting, changes in bt represent the role of “price effects” in

changes in the variance of wages. For example, if bt doubles between two periods, the predicted

part of the variance, bt’Sx,t bt, will quadruple, holding the distribution of human capital constant.  

At first glance, equation (8) suggests that the impact of changes in the distribution of

human capital (x) on the variance of wages can be captured by the variance-covariance matrix

Sx,t.  The human capital approach suggests, however, that this is only one possible impact of

changes in the distribution of human capital.  For example, if the workforce becomes more

experienced over time, this may change the wage distribution for two separate reasons.  The first

reason is that if the variance of experience also happens to change over time, then the predicted

variance bt’Sx,t bt should change too.  The second reason is that if the residual variance is higher

for more experienced workers (as in Mincer’s OJT model), the overall residual variance Ft
2 

should expand because of composition effects. 

To see this point more clearly, consider the case where xit = [xi1t, ..., xijt,..., xiJt] is an

exhaustive set of dummy variables that divide the sample in a set of J cells.  For example, if the

two basic covariates are age and education, J indicates the number of age-education cells (or skill

groups) in which the sample can be divided.  In the first empirical example below, I use public

use files of the Labour Force Survey (LFS) in which education is coded in 7 categories and age is

coded in 5-year age bands.  J is thus equal to 70 for workers age 15 to 65 (10 age categories).  

The sample average of the dummy variable xijt is the proportion of the sample in cell j,

2jt:

x - jt =  E
i

 Tit xijt =   E xijt=1
 Tit = 2jt.

Furthermore, the OLS estimates bt (with no intercept) are just the sample means of yit for each

cell j:
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bt’ = [b1t,..., bjt, ..., bJt] = [y - 1t ,..., y 
- 

jt ,..., y 
- 

Jt],

where

 y - jt = (1/2jt)  E xijt=1
 Tityit.  

The sample mean of y is:

 y - t = E
i

 Tit yit =  E
j

 2jt y 
- 

jt =   E
j

  x - jt bj =   x - t bt .

Similarly, the variance of y is:

Vt =   E
i

 Tit( yit- y 
- 

t )2 =   E
i

 Tit(xit bt -  x 
- 

t bt)2 +  E
i

 Tituit
2 (9)

     =   E
j

 2jt ( y 
- 

jt -  y 
- 

t )2 +    E
j

 2jt Fjt
2, 

where Fjt
2 = (1/2jt)  E xijt=1

 Tit uit
2.

Equation (9) is the standard between/within decomposition of the variance.  The between-

group variance is the weighted sum of squared deviations across skill groups (first term of the

right hand side of the equation) while the within-group variance is the weighted sum of the

residual variance over skill groups (second term).  

It is now clear how changes in the distribution of x affect both the predicted (between)

and residual (within) components of the variance of wages.  The sample proportions 2jt, which

are equal to x - jt , completely describe the distribution of the x’s in this dummy variables model.7 

Therefore, the change in the between group-variance induced by changes in sample composition

is just an alternative way of describing the effect of changes in the variance of x on the predicted

part of the variance of wages.  

The second effect of changes in the distribution of human capital on the variance of

wages is captured by the residual variance term  E
j
2jt Fjt

2.  Since the overall residual variance is a

weighted sum of cell-specific variances, it should systematically depend on the distribution of the

x’s through the sample proportions 2jt.  

These various effects can be captured in a variance decomposition by first considering the

counterfactual variance obtained by replacing bt (i.e. the y - jt’s) in equation (9) by its value in

period s:

Vt
a  =  E

j
2jt ( y 

- 
js -  y 

- 
t
a)2 +  E

j
2jt Fjt

2. (10)
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Just like the difference between  y - t and the counterfactual mean  y - t
a, the difference between Vt

and Vt
a represents the effect of changes in the price of human capital, bt, between periods t and s. 

The variance that would prevail in period t if the distribution of x were also as in period s is

obtained by replacing the sample proportions 2jt by 2js:

Vt
b  =  E

j
2js ( y 

- 
js -  y 

- 
t
b)2 +  E

j
2js Fjt

2, (11)

where   y - t
b =   E

j
2js y 

- 
js =  y - s.

The counterfactual mean  y - t
b represents the mean that would prevail if both the price of human

capital (as in the case of  y - t
a) and the distribution of human capital were as in period s.  This turns

out to be the same as the actual mean in period s,  y - s.  By contrast, the counterfactual variance Vt
b 

is not the same as Vs because of differences in the residual variance term Fjt
2 and Fjs

2.  Using the

two counterfactual variances Vt
a and Vt

b, the change in the variance can be decomposed as:

Vt - Vs  =  (Vt - Vt
a) + (Vt

a - Vt
b ) + (Vt

b - Vs). (12)

The first term on the right hand side is the contribution of changes in bt to changes in the

variance:

Vt - Vt
a  =   E

j
2jt [( y 

- 
jt -  y 

- 
t)2 - ( y - js -  y 

- 
t
a)2]

The second term in equation (12 ) represents the contribution of changes in the distribution of x’s

(i.e sample proportions 2jt ) to both the between- and within-group variance:

Vt
a - Vt

b = [ E
j
2jt( y 

- 
js -  y 

- 
t
a)2 - E

j
2js( y 

- 
js -  y 

- 
t
b)2] + E

j
(2jt - 2js )Fjt

2.

The last term captures changes in the residual variance within each cell:

Vt
b - Vs =  E

j
2js (Fjt

2 - Fjs
2).

These decompositions can be implemented in practice by computing the various elements of

equations (10) and (11).  An alternative is to compute the counterfactual variance Vt
a as the

sample variance of the counterfactual wage yit
a, and then use a re-weighting procedure to

compute Vt
b.  The main advantage of this latter approach is that it can also be used to compute

any other distributional statistic.  

3.3. Decomposing changes in the whole distribution: a re-weighting procedure

A comparison of equations (10) and (11) indicates that the counterfactual variance Vt
b is simply

“reweighted” version of Vt
a in which the sample proportions 2jt are replaced by 2js.  In other

words, Vt
b can be written as:
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Vt
b  =  E

j
2jt Rj( y 

- 
js -  y 

- 
t
b)2 + E

j
 Rj 2jt Fjt

2,

where Rj is a re-weighting factor defined as

Rj = 2js /2jt .

The counterfactual variance can also be written as a function of the counterfactual wage  yit
a 

using an individual-level reweighting factor Ri :

Vt
b = E

i
 Tit Ri ( yit

a- y - t
b )2, 

where 

Ri = E
j

xijt  2js /2jt.   (13)

Since {xijt , j=1,...,J} is a set of indicator variables for the various cells, equation (13) simply

assigns to each observation the period s to period t ratio of the sample proportions of the cell to

which it belongs.  

The computational advantages of this re-weighting procedure are limited in the case of

the variance since one could as well directly use the closed form formula in equation (11).  It not

generally possible, however, to derive similar closed form formula for most other popular

distribution statistics such as the Gini coefficient or the interquartile range, or for point-by-point

estimates of the distribution like the Lorentz curve or kernel density estimates. 

By contrast, once the counterfactual wage yit
a  and the counterfactual weight  Tit

a = Tit Ri

have been computed, it is straightforward to compute any counterfactual statistics.  Since sample

weights  Tit  need to be used in the first place to compute sample statistics that are representative

of the whole population, using the counterfactual weight poses no additional computing

requirements relative to computing simple descriptive statistics.  

Irrespective of the distributional statistic being computed, using  yit
a instead of yit always

shows what this statistic would have been if bt had remained at its period s level.  Similarly,

using the weights Tit
a = Tit Ri instead of Tit yields the distributional statistic that would have

prevailed if the distribution of x had remained as in period s.

The proposed procedure unifies existing procedures in the cell-by-cell case by combining

elements from both Juhn, Murphy and Pierce (1993) and DiNardo, Fortin and Lemieux (1996). 

The idea of replacing yit by yit
a to compute any distributional statistic comes from Juhn, Murphy

and Pierce (JMP thereafter), while the re-weighting procedure was suggested by DiNardo, Fortin
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and Lemieux (DFL thereafter).  However, JMP did not suggest an explicit way of accounting for

changes in the distribution of the x’s, while DFL only partially addressed the issue of changes in

the b’s.  Both of these papers also deal with the case where it is not feasible or practical to

divide the observations in a limited number of cells.  The proposed procedure is easily modified

to account for this more general case.  This is not much of an issue for computing  yit
a =  xitbs + uit

since usual regression and model specification methods can be used to choose an appropriate

specification for the regression function.  Similarly, DFL suggest using a standard logit or probit

model to compute the reweighting factor Ri in the case where the cell-based approach cannot be

used.  The idea is to pool the period s and t samples and estimate a probit or logit model for the

probability of being in year t.  The estimated model yields a predicted probability of being in

period t conditional on the x’s.  Call this predicted probability 

Pit = Prob(period=t | xit).  

DFL then define the reweighting factor as:8

Ri = [(1- Pit ) / Pit] × [Pt / (1-Pt)],

where Pt the unconditional probability that an observation is in period t (the weighted share of the

pooled sample which is in period t).  In the case where a full set of dummies for the J cells are

included in a probit or logit model, Pit /Pt is simply the sample proportion 2jt and the reweighting

factor is Ri = 2js / 2jt as before.  As in the case of the regression model, standard model

specification procedures can be used to choose a sufficiently accurate specification for the logit

or probit model when a fully unrestricted cell-by-cell approach is not feasible or appropriate.

Table 1 provides a summary of how various counterfactual values of y and  T can be

combined to generate a variety of counterfactual distributions.

3.4 Reweighting vs Oaxaca-Blinder regression-based decompositions and propensity score

estimation.

In the Oaxaca-type decomposition of the mean considered above, it was sufficient to

compute a single counterfactual mean y - t
a =  x - tbs to carry over the decomposition

y - t - y 
- 

s = ( y - t - y 
- 

t
a) + ( y - t

a -  y - s).

The usual way of performing the decomposition involves estimating regressions for both time
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periods, though one could compute y - t
a by just estimating the regression model in period s.  In the

original case considered by Oaxaca (1973) where “group t” are women and “group s” are men, y - t
a

=  x - tbs is the average wage women would earn if they were paid according to the wage equation

of men.

An alternative way of computing  y - t
a is to reweight the male sample so that the

distribution of x for men becomes the same as for women.  Interestingly, in the “cell” model

these two approaches yield identical results.  This follows from the fact that in this model,  2jt =

x - jt and  y - jt =  bjt , so that:

 y - t
a =  x - tbs =   E

j
 x - jt bjs =  E

j
2jt y 

- 
js =  E

j
 Rj’2st y 

- 
js , 

where Rj’=(1/Rj) = 2jt /2js is the reweighting factor used to transform the distribution of x for

men (group s) into the distribution of x for women.  

In the general case where it is not feasible or desirable to divide observations into a

limited number of cells, the regression approach and the re-weighting approach do not yield

numerically identical results.  The results should nevertheless be very close if the regression

model and the probability model like the one used by DFL are “well-specified”.9  In the case

where the data can be divided in J cells, 2jt and y - jt are non-parametric estimates of the conditional

probabilities and conditional means, respectively.  In the general case where observations cannot

be divided in cells, it is nonetheless possible to estimate non-parametrically the conditional

probabilities and conditional means using available methods.  It could be shown in this case that

both the (non-parametric) reweighting and the (non-parametric) regression method yield

consistent estimates of the counterfactual  y - t
a.

Some of the issues that arise when decomposing the means also arise when looking at the

whole distribution.  For example, the results of the decomposition are sensitive to the order in

which each factor is analyzed because of interactions between those factors.  One pragmatic

solution to this problem used in Figure 2 is to carry out the decomposition in different orders to

verify the robustness of the conclusions.10  It is also possible to look separately at the impact of

each individual covariate and its coefficient, just like in the usual Oaxaca-Blinder

decomposition.11

The reweighting approach is also closely linked to propensity score estimation that has
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recently been used by several researchers to estimate the impact of training programs or other

“causal” effects.12  For example, if group t represent the “treatment” group of individual

receiving training while group s represents a “control group”, the re-weighting factor Ri can be

interpreted as a “propensity score” that represents the relative probability of being in the

treatment group given the covariates x.  Most papers simply use the propensity score as an

additional regressor or “control function” on the right hand side of the outcome equation (e.g. a

wage equation with a training dummy and other covariates on the right-hand side).  However, in

a recent paper, Hirano, Imbens, and Ridder (2000) suggest an alternative estimator that uses the

propensity score to reweight the treatment group.  This particular type of propensity score

estimation turns out to be identical to the re-weighting approach suggested by DFL.

4. Empirical application no. 1: Wage distributions in Alberta and British Columbia

I now illustrate how the decomposition procedure of Section 3 works in practice using

data for female workers in Alberta and British Columbia from the Labour Force Surveys (LFS)

of January to October 2000.  (Data from November and December are not used because the

minimum wage was increased in British Columbia in November 2000, see below).  Since

January 1997, the LFS has collected detailed information on the wages and earnings of all wage

and salary workers.  Since each monthly sample of the LFS contains information on over 100,000

individuals throughout Canada, the resulting wage samples are very large, even at the provincial

level.  

Another feature of the LFS is that the socio-economic characteristics of individuals are

only released at a relatively aggregated level in the public use files.  In particular, age is only

coded in 5-year intervals and education is coded as a categorical variable taking only seven

possible values.13  All individuals age 15 to 64 can thus be assigned to a total of 70 age-education

cells.  Since age and education are the two key human capital variables in Mincer-type wage

regressions, the LFS lends itself naturally to the cell-based decomposition method discussed in

Section 3.14   

After removing few observations from very small cells or with very high or very low

hourly wages, the final sample contains 19,319 observations for Alberta and 20,587 observations
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for British Columbia.15  Each of the 57 remaining age-education cells contains about 350

observations by province, on average.  

Table 2 reports several descriptive and counterfactual statistics for log wages in Alberta

and British Columbia.  The LFS sample weights are used throughout the table.  Column 1 shows

that the mean log wage is about 13 percent higher in British Columbia than in Alberta.  By

contrast, a comparison of rows 1 and 4 shows that the variance of log wages is substantially

lower in British Columbia (0.199) than Alberta (0.218).  Not surprisingly, the difference between

the 90th and the 10th percentile (column 5), which is an alternative measure of wage dispersion, is

also lower in British Columbia (1.196) than in Alberta (1.253).  This means that the ratio of the

wage at the 90th percentile over the 10th percentile is about 6 percentage points higher in Alberta

than in British Columbia.

These descriptive statistics illustrate why Alberta and British Columbia are two

interesting provinces to compare from a distributional point of view.  Looking at the mean, the

variance, and the 90-10 gap suggest that British Columbia is the “high wage/low dispersion”

province while Alberta is the “low wage/high dispersion” province.  A closer examination of the

evidence suggests, however, that this may be an oversimplification of the facts.  For example,

columns 6 and 7 indicate that while the gap between 90th and the 50th percentiles is larger in

Alberta than in British Columbia, as expected, the reverse is true for the 50-10 gap.  This

suggests that the shape of the wage distributions are quite different in the two provinces.  

Figure 2a indicates that the two wage distributions look indeed very different.  The figure

reports kernel density estimates of the wage distributions in the two provinces.16  While the

density for Alberta looks more or less like the usual bell-shaped curve, the density for British

Columbia is bimodal or “twin-peaked”.17 The figure also indicates the respective values of the

minimum wage in the two provinces during this period.  Throughout year 2000, the minimum

wage was $5.65 in Alberta.  By contrast, the minimum wage was $7.15 in British Columbia from

January to October 2000 before increasing to $7.65 in November 2000.  This change in the

minimum wage is the reason why the sample used only goes from January to October. 

It is quite clear from the figure that the 25 percent difference in the minimum wage

between the two provinces has a visually large impact on the wage distributions.  The minimum
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wage does not appear to have much “bite” in Alberta.  By contrast, the data strongly suggests that

the higher minimum wage in British Columbia is the source of the “second peak” in the lower

end of the wage distribution in this province.   This large visual impact of the minimum wage on

the wage distribution for women is quite consistent with the findings of DiNardo, Fortin and

Lemieux (1996) for the United States, though the “twin-peak” distribution in British Columbia is

more unusual. 

 It is nonetheless possible that factors other than the minimum wage explain why the

wage distributions have such different shapes in the two provinces.  For example, if education

were highly polarized in British Columbia (e.g. many university graduates and high school

dropouts with few people in between), this could result in a bimodal wage distribution in this

province even in the absence of minimum wage effects.  This can be formally tested by looking

at whether the BC wage distribution would be unimodal if the distribution of age and education

in the province were the same as in Alberta.  Similarly, it would be interesting to see whether the

wage distribution in Alberta would become bimodal if the distribution of age and education in

the province were the same as in British Columbia.  Both of these counterfactual distributions

can readily be computed using the reweighting procedure suggested in Section 3.

The remaining panels of Figure 2 compare several counterfactual distributions to the

actual distributions in Alberta and British Columbia.  Figure 2b compares the actual wage density

for British Columbia to the density that would prevail in Alberta if the regression coefficients b

(the mean log wages by cell) were the same as in British Columbia.  The counterfactual density is

obtained by applying kernel density estimation on yit
a instead of  yit (in this setting “t” refers to

Alberta and “s” to British Columbia).  On the one hand, this counterfactual densities lines up

better with the BC density in terms of location parameters (mean or median).  The lower and

upper tails of the two distributions also look relatively similar.  On the other hand, the relative

shapes of the two distributions remain very different.  Like the actual density for Alberta, the

counterfactual density clearly has a single mode, which is very different from the actual density

for British Columbia.

Figure 2c shows the density that would prevail in Alberta if both the regression

coefficients b and the distribution of the covariates were as in British Columbia.  In terms of the
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notation of Table 1, this counterfactual density is obtained by applying kernel density estimation

on yit
a using the weights Tit

a instead of Tit.  The counterfactual is not visually very different from

the counterfactual in Figure 2b, suggesting that differences in the distribution of the covariates in

the two provinces have a modest impact on the wage distribution.  Differences in the distribution

of covariates clearly cannot account for the fact that the distribution of wages in bimodal is

British Columbia but unimodal in Alberta.  

The order of the decomposition procedure is reversed in Figure 2d.  This figure compares

the actual Alberta density to the density that would prevail in British Columbia if both the

regression coefficients and the distribution of the covariates were as in Alberta.  As in Figures 2b

and 2c, the counterfactual density lines up much better in terms of location with the actual

density for the other province than in Figure 2a.  But once again, neither b nor the distribution of

covariates can account for the twin-peaks in the BC density.  

The impact of the various counterfactual exercises on summary measures of the

distribution are reported in rows 6, 7 and 8 of Table 2.  Consistent with the figures, most of the

13 percent gap in average wages is due to differences in the regression coefficients (row 6). 

Differences in the regression coefficients also account for .008 (row 6, column 2) of the .019

difference in variances, and for more than half (.036) of the .057 difference in the 90-10 gap.18

The effect of differences in the distribution of covariates between the two provinces is

reported in row 7 of Table 2.  This accounts for the remaining -.027 difference in mean log

wages, suggesting that BC workers are more “skilled” (higher education and experience) than

their Alberta counterparts.  More interestingly, the effect of differences in the distribution of

covariates has the “wrong sign” for the variance.  It helps explain why the variance is lower, not

higher, in Alberta than in British Columbia because of two offsetting effects.  On the one hand,

the distribution of age and education in British Columbia is more compressed than in Alberta. 

The variance of the predicted part of wages in Alberta is .002 higher (column 3) than it would be

with the BC distribution of covariates.  On the other hand, the residual variance is .005 lower 

(column 4) because of composition effects.  Remember from Section 3 that this last effect is

given by E
j

(2jt - 2js )Fjt
2, where 2jt and 2js represent the sample proportions in Alberta and in

British Columbia in this setting.  What happens is that there are systematically more workers in
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“high-dispersion” cells (Fjt
2) in British Columbia than in Alberta.  More specifically, workers are

older and more educated in British Columbia and, as predicted by the human capital model of

Section 2, residual wage dispersion is larger for these groups than for younger and less educated

workers.  These composition effects are substantial since they increase by 50 percent (from .009

in row 5 to .014 in row 8) the Alberta-British Columbia gap in the residual variance.

5. Skill prices and residual wage dispersion

In the previous example, the systematic part of the wage equation (xb) could not account for

most of the Alberta-British Columbia difference in wage dispersion and in the shape of wage

distributions.  This is perhaps not surprising since most of the cross-sectional variance in wages

remains typically unexplained in a standard Mincer-type wage regression.  For instance, the R-

square of the regressions estimated in Section 4 is around 35 percent, which is typical for these

types of models.19

Under an unstructural interpretation of a regression equation, there is nothing else to be

said about this last (residual) component of the decomposition.  The residual is just the part of

the dependent variable that cannot systematically be accounted for by the covariates.  By

contrast, the human capital approach presented in Section 2 has a variety of implications for the

residual variation in wages.  To the extent that residual wage dispersion is due to unmeasured

differences in human capital investment, the residual dispersion should increase when the “price”

or “return” to human capital increases.  For instance, when the return to years of schooling

increases, it is reasonable to expect that the return to (unmeasured) school quality would increase

too.  

To put this in a more explicit context, a large number of studies have documented a steep

increase in both the return to education and residual dispersion in wages in the United States over

the last two decades.20  Under a strict human capital interpretation of wages, it is tempting to

conclude that both of these phenomena are direct consequences of a pervasive increase in the

return to human capital resulting from skill-biased changes in the demand for labour.  This case

that was first made forcefully by Juhn, Murphy and Pierce (1993) has become the standard

explanation for the changes in wage inequality in the United States (see, for example, Acemoglu
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(2002) and Katz and Autor (2000)).  

JMP argue that residual wage dispersion is mostly a consequence of the fact that human

capital or skills are imperfectly measured in standard data sets.  Under the assumption that the

distribution of the unmeasured skills is stable over time, increasing residual wage dispersion must

be a consequence of an increase in the return to these unmeasured skills.  

From an empirical point of view, however, it is not clear how this human capital-based

theory of the growth in residual wage dispersion can be distinguished from other explanations.

One alternative explanation is simply that the extent of measurement error in wages has

increased over time.  Another possible explanation suggested by DFL is the decline in the real

value of the minimum wage during the 1980s.  Later work by Lee (1999) and Teulings (2002)

indeed suggested that most of the increase in residual wage dispersion can be linked to this

factor.  

Just stating that the increase in residual wage dispersion is due to an increase in skill

prices is not enough to establish that this is indeed the right explanation for this phenomena.

Other empirical implications of this “skill price” theory needs to be established in order to test it

against alternative explanation.  Otherwise, this theory is a mere tautology with no empirical

content.

To fix ideas, consider the following model for the wage residual uit:

uit = pt 0it + ,it, (14)

where 0it is unmeasured human capital, pt is the price (or return) of this unmeasured human

capital, and ,it is a random error component not linked with skills and productivity (e.g. a

measurement error).  The variance of uit, Ft
2, is given by:

Ft
2 = pt

2 F0,t
2 + F,,t

2 , 

where F0,t
2 = Var(0it) and F,,t

2 = Var(,it). The most extreme version of the skill price story is that

F0,t
2 is stable over time (F0,t

2 = F0
2) and F,,t

2 is either zero or stable over time.  It follows that:

Ft
2 - Fs

2 = (pt
2-ps

2)F0
2.

In this setting skill prices are the only source of change in residual dispersion, by assumption.  

It is possible to introduce some empirical content to this model by looking at its

implication for various group of workers.  For instance, if residual skill dispersion F0
2 is larger
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for more experienced than less experienced workers, then the residual variance should increase

more for the former group than the latter.  This follows directly from

Fjt
2 - Fjs

2 = (pt
2-ps

2)Fj0
2,

where Fj0
2 is the variance of unmeasured skills for group j.  Chay and Lee (2000) consider a

version of this model in which they also assume that the variance of the measurement error, F,,t
2,

is constant across skill groups.  Using detailed data on the variance of wage by skill groups, they

find evidence that the return to unmeasured skills, pt
2-ps

2, has indeed increased during the 1980s.  

This approach can be pushed further when panel data is available.  In this setting, it is

natural to think of the 0 component of the residual as a time-invariant person-specific

unmeasured skill factor.  Baker (1997) and Baker and Solon (2002) both find that the return to

this unmeasured skill factor, pt, has increased over time.  

One drawback of these two approaches is that they only focus on the implications of

changing skill prices for the residual variance.  A more flexible approach is required to go

beyond a variance decomposition to see whether changes in the price of unmeasured skills can

also account for more general distribution changes such as those illustrated in Section 4.   The

key limitation of equation (14) in this regard is that the wage residual uit is assumed to be a linear

function of unmeasured skills.  This linear transformation strongly restricts the ways in which

changes in the price of unmeasured skills can affect the wage distribution, holding the

distribution of unmeasured skills constant.  

Consider a more general setting in which the price pt is replaced by a non-linear pricing

scheme

uit = pt(0it) + ,it, (15)

where pt(.) is a monotonic and continuous function.  For simplicity, assume from now on that ,it

is equal to zero.  

This model is completely flexible in the sense that any distribution of uit can be generated

from an arbitrary distribution of skills 0it.  For example, assume that 0it follows a uniform

distribution over the [0,1] interval.  This choice of distribution is convenient since

0it = Ft(uit),

where Ft(.) is the cumulative distribution function of uit.  It follows that 
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uit = pt(0it) = Ft
-1(0it).

In this setting, 0it can be interpreted as the rank (normalized from 0 to 1) of observation i in the

distribution of residuals, while the non-linear skill price function pt(.) is the inverse of the

cumulative distribution function of uit.  This approach is a special case of the procedure first

suggested by Juhn, Murphy and Pierce (1993).  I discuss their decomposition approach in more

detail in Section 6 and 8.

This model has no empirical content in single cross-section because pt(.) is left

completely unrestricted.  However, the model does impose restrictions on the change in the entire

wage distribution from a period to another.  To see this, substitute equation (15) into equation

(2):

yit = xitbt + uit =   xitbt + pt(0it).

Section 3 showed how to construct a counterfactual distribution of wages that accounts for

changes in bt and in the distribution of xit from period t to s.  The natural next step of the

decomposition is to replace the residuals at time t by the residuals that would have prevailed if

the skill pricing function had been ps(.) instead of pt(.).  This amounts to replacing the

counterfactual wage

yit
a = xitbs + uit =  xitbs + pt(0it).

with

yit
b = xitbs + ps(0it) = xitbs + uit

b, 

where uit
b = ps(0it) = Fs

-1Ft(uit) is a counterfactual residual.  It is now clear why the model has

some empirical content.  If changes in the skill pricing function can account for all the changes in

the wage distribution that changes in bt and in the distribution of xit could not account for, then

the distribution of yit
b reweighted by the factor Ri should be the same as the raw distribution of

wages in period s. 

Figure 3 illustrates a simple example that shows why this needs not be the case.  Consider

two groups of workers, L and H.  Type L workers earn an average of 4 dollars in both periods s

and t, while type H workers earn an average of 8 dollars in each period.  In both periods, each

group represent half of the sample.  In terms of the notation of Section 3, this means that

2Lt=2Ls=2Ht=2Hs = .5,  y - Lt =   y - Ls = 4, and  y - Ht =   y - Hs = 8.  I use this simple case where the
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regression coefficients (i.e. the y - ’s) and the distribution of the covariates (i.e. the 2’s) play no

role in changes in the overall wage distribution to illustrate more clearly the role of changes in

the distribution of the residuals.

Assume that in period t, the residuals follow a uniform distribution over [-3,3] for type L

workers (density of 1/6) and over [-1,1] for type H (density of ½).  The resulting wage

distribution, which is skewed to the left, is shown in Figure 3a.  Now assume that the distribution

of the residuals switches between the two groups from period t to s (uniform distributions over  [-

1,1] and [-3,3] for type H and L, respectively).  The resulting distribution in period s, which is

now skewed to the right, is illustrated in Figure 3b.  However, the overall distribution of

residuals remains unchanged since it just a mixture of the same uniforms distributions in both

periods.  Figure 3c shows that this mixture distribution has a density of 1/12 over the range [-3,-

1] and [1,3], and a density of 4/12 over the range [-1,1].  Since the cumulative distribution of

residuals does not change over time, Fs
-1Ft(uit) = uit and changes in the pricing function pt(.) fail to

explain any of the difference between the wage distributions in period t and s.

The problem is that the same transformation function Fs
-1Ft(.) cannot explain both the

narrowing in the residual distribution for group L and the widening in the residual distribution for

group L.  Another way to put this is that the transformation function Fs
-1Ft(.) is a flexible

monotonic function that does not, however, change the rank 0it of each residual in the

distribution of residuals.  Consider, for example, the rank in the overall distribution of residuals

of the type H worker with the lowest possible residual in period t (-1).  It is clear from Figure 3c

that the rank of this worker is 1/6 in period t.  In period s, however, the residual for the same type

H worker is now -3 with a rank of 0.  In other words, it is not possible to transform the wage

distribution of period t to the one of period s without changing the rank of the residuals of

individual workers.  By assumption, the skill pricing function does not affect the rank of the

residuals.  Therefore, changes in the skill pricing function cannot explain the changes in the wage

distribution.

Obviously, the story about changes in the price of unmeasured skills can be rescued by

assuming different changes in prices for H and L type workers.  One justification for this

assumption is that the nature of unmeasured skills may not be the same for the two types of
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workers.  Perhaps we are dealing with unmeasured “cognitive” skills for type H workers and

unmeasured “manual” skills for type L workers.  Under this scenario, changes in the wage

distribution can fully be accounted for by a decline in the price of manual skills (by a factor of 3

to 1) and an increase in the price of cognitive skills (by a factor of 1 to 3).  

The problem with this alternative skill price story is that it is no longer imposes any

testable restrictions on the changes in the distribution of wages.  By assumption, changes in the

residual distribution of wages within each sub-group of the population are now explained by

changes in skill prices specific to this particular sub-group.  While this may be true, this is an

empirically untestable explanation that does not help understand the observed distributional

changes.

6. Accounting for changes in the residual pricing function in the decomposition. 

This section shows how to compute empirically a counterfactual distribution that

accounts for changes in the skill pricing function pt(.).  The idea of constructing a counterfactual

wage like yit
b = xitbs + uit

b (see Section 5) was first suggested by JMP who suggest a simple

procedure for computing the counterfactual residual uit
b.  Their idea is to first compute the rank

0it = Ft(uit) from the empirical distribution of residuals and then select the residual at the same

rank in the empirical distribution of residuals in period s:21

uit
b = Fs

-1(0it).  

These imputed values of uit
b and  yit

b = xitbs + uit
b can now be used to generate a

counterfactual wage distribution that would have prevailed in period t if the price of measured

human capital and the pricing function of unmeasured skills had been at their period s level (i.e.

bs and ps(.) instead of bt and pt(.) ).  As before, these counterfactual wages can be combined with

the counterfactual weight Tit
a to also control for changes in the distribution of covariates.  This

extends JMP’s procedure that does not account explicitly for changes in the distribution of

covariates.  The resulting counterfactual distribution should now account for all the changes from

period t to s except for those involving a change in the rank of the residual in the overall

distribution of residuals.  Remember from Section 5 that those are the changes that cannot be

reconciled by a change in a single pricing function of unmeasured skills.  This happens when the
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distributions of residuals for different groups change differently in a way that cannot be captured

by a common transformation function.  

An alternative interpretation of this decomposition exercise is that the transformation

uit
b = Fs

-1Ft(uit) 

yields a counterfactual distribution of residuals for period t that is the same as in period s, just

like replacing bt by bs and reweighting by  Tit
a yields a distribution of the predicted wage xitbs

which is the same as in period s.  However, combining the counterfactual wage residual with the

counterfactual predicted wage does not generally yield the same (counterfactual) distribution as

the actual distribution in period s.    

The theoretical reason for this is that when a random variable y is the sum of two random

variables xb and u, knowledge of the marginal distributions of xb and u is not generally sufficient

to characterize the marginal distribution of y.  In general, an infinite number of marginal

distributions of y is compatible with given marginal distributions of xb and u.  The exception is

the case where xb and u are independent.  A unique marginal distribution of y can then be

obtained from the convolution of the distributions of xb and u.  Since independence means that

the distribution of residuals is the same for all values of xb, there is no scope for the rank of

residuals to change over time.  

By construction, xb and u are uncorrelated in the regression model.  On the one hand,

since zero correlation is much weaker than independence, an infinite number of wage

distributions (including the period t counterfactual and the actual period s distribution) are

compatible with the marginal distributions of  xb and u in period s.  On the other hand, zero

correlation implies that the variance of the marginal distribution of wage is just the sum of the

variance of xb and u (covariance term is zero).  The variance of the counterfactual wage

distribution obtained using yit
b weighted by  Tit

a should thus be the same as the variance in period

s.  

This is another way of illustrating the empirical content of this last counterfactual

exercise.  Changes in the pricing function pt(.) are such that they explain all the remaining change

in the variance of wages between two periods.  The question is whether they can also explain

more detailed aspects of distributional changes such as inter-percentile gaps or the shape of the
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distribution?  This is an empirical question that I address in the second example in the next

section.

7. Empirical application no. 2: Changes in wage inequality in the United States.

Following Juhn, Murphy, and Pierce (1993), the consensus in the literature is that residual

or within-group inequality has increased steadily since the 1970s as a result of an increase in the

return to unmeasured skills (Katz and Autor, 2000, Acemoglu, 2002).  This case is thus well-

suited to the extended decomposition method proposed in Section 5 and 6.  

I re-examine this question using hourly wage data from the May 1973 Current Population

Survey (CPS) and from the 1979, 1989 and 1999 outgoing rotation group files of the CPS. 

(These data are only available in the May supplement of the CPS from 1973 to 1978).  The

sample used and summary statistics are broadly similar to those of DFL, Katz and Autor (2000), 

and Card and DiNardo (2002).  Following these studies, I weight all observations by the CPS

sample weight multiplied by usual weekly hours of work.  Details about data construction are

provided in Appendix 1.

Unlike the Canadian LFS, the public-use files of the CPS provide detailed age and

education categories.  Following most of the literature, I also include marital status and race to

the list of covariates.  As a result, it is not longer feasible to use the cell-by-cell approach of

Section 4 because there are too many cells.  I use instead a flexible functional form for both the

regression model and the logit model used to construct the reweighting factor.  In both cases, the

covariates used are a set of six education dummies fully interacted with a quartic function in

experience, years of schooling, a marital status dummy and a race (white/non-white) dummy. 

The marital status and race dummies are also interacted with years of experience.  Separate

models are estimated for men and women.  

Figure 4 plots kernel density estimates for men in 1973, 1979, 1989 and 1999.  Consistent

with previous studies, there is a clear widening in the wage distribution over this time period. 

Another noticeable fact is the impact of the minimum wage at the lower end of the distribution. 

In 1979 dollars, the minimum wage increased from 2.62 in 1973 to 2.9 in 1979, declined sharply

to 1.96 in 1989 and recovered to 2.24 in 1999.22  Consistent with DFL, panel b shows a clear
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spike around the relatively high minimum wage of 1979.  By 1989, however, the minimum wage

is so low is has no noticeable impact on the lower end of the wage distribution.  The increase in

the minimum wage in the 1990s also appears to have an impact on the density of wages around 2

dollars.  

As in DFL, Figure 5 shows that the minimum wage has a much larger visual impact for

women than men.  Since women earn lower wages, on average, the minimum wage is relatively

much higher for women than men.  In particular, the minimum wage has a huge visual impact on

the wage distribution in 1979.  The minimum wage spike is in fact the mode of the distribution in

that year.  The dramatic change in the shape of the distribution between 1979 and 1989 appears

to be driven by the steep decline of the minimum wage during the 1980s.  As in the case of men,

the recovery in the real value of the minimum wage during the 1990s helped move up the lower

tail of the distribution.

Table 3 reports the results of the decompositions for the variance and the 90-10, 50-10,

and 90-50 gaps.  As documented in many other studies, there is a sharp increase in all dimensions

of wage inequality during the 1980s for both men and women.  Both the variance and the 90-10

increase at a much slower pace during the 1990s.  This is consistent with a smaller number of

studies like Card and DiNardo (2002) and Gosling and Lemieux (2002) that look at recent

changes in wage inequality.  For both men and women, however, the modest growth in the 90-10

gap in the 1990s masks a decline in the 50-10 gap and a substantial increase in the 90-50 gap. 

The recovery in the real value of the minimum wage during the 1990s is consistent with the

decline of the 50-10 gap during this period.  More generally, the 50-10 gap for women appears to

be strongly linked to the real value of the minimum wage.  The 50-10 gap decreases during both

the 1970s and the 1990s when the real value of the minimum wage increases.  By contrast, it

expands dramatically as the real value of the minimum wage collapses during the 1980s. 

For the 1970s, measures of inequality are stable for men but tend to decline for women

because of the substantial decline in the 50-10 gap.  This finding is more or less consistent with

the limited number of studies that have looked at inequality in hourly wages.23  By contrast, most

other studies look at earnings inequality and conclude that inequality increased significantly

during the 1970s.24  Reconciling the behavior of hourly wage and earnings (wage times hours)
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inequality during the 1970s is beyond the scope of this paper.  Since theories of wage

determination including human capital theory typically focus on the hourly price of labor, I only

analyze the inequality in hourly wages in this paper. 

The decomposition results for men in the 1980s (column 2) are very similar to those of

JMP for 1979-88.  JMP find that the 90-10 gap increased by .208 compared to .169 here.  As in

Table 3, they find that changes in the “prices of observables” (bt) account for more than half of

the change and that the role of changes in the distribution of “observables” (distribution of x) is

negligible.  In their setting, residual changes in inequality account for about 40 percent of the

total change, which is similar to the contribution of changes in the pricing function of

unmeasured skills in Table 3.    I discuss in more detail in Section 8 how the decomposition

procedure of JMP compares to the one used here.  

Consistent with the existing literature, the results thus suggest that the increase in

inequality for men in the 1980s is due to an increase in both the return to measured

characteristics and the pricing function of unmeasured skills.  The results in column 6 suggest

that a broadly similar conclusion could be reached for women.  

Those conclusions change substantially, however, when the period of analysis is

expanded beyond the 1980s.  Most importantly, the role of changes in the pricing function of

unmeasured skills for men becomes very small when the whole 1973-99 period is considered in

column 4.  For both the variance and the 90-10 gap, this source of change now accounts for less

than 10 percent of the increase in inequality between 1973 and 1999.  By contrast, changes in the

distribution of x now account for about a third of the change in inequality, leaving the

contribution of changes in bt over 60 percent, as in the 1980s.  

Panel B shows that this reversal in the role of pt(.) and the distribution of x is due to

composition effects in the variance of residuals.  In the 1980s, 0.021 of the 0.030 increase in the

residual variance is attributable to the rise in price of unmeasured skills while composition

effects only account for 0.009.  However, composition effects are also important in the 1970s

(0.004) and the 1990s (0.010) while the variance of the residuals is relatively stable.  Over the

whole 1973-99 period, composition effects now account for a 0.023 growth in the variance,

leaving only 0.004 to changes in skill prices.  A more detailed analysis of the variance of the
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residuals by groups of workers indicates that it is systematically higher for more experienced and

more educated workers.25  The composition effects are due to the fact that the working age

population is getting older and more educated.  Increasingly more weight is thus put on groups

with higher residual variances.26  

Results for women are qualitatively similar. Over the 1973-99 period, changes in the

price of unmeasured skills account for only a small fraction of the growth in inequality. The bulk

of the change is explained by changes the prices of measured skills or in their distribution.  Note

also that part of the change (0.037) in the 90-10 gap cannot be explained by any of these three

factors.  As discussed in Section 5, this suggests that changes in the skill pricing function of

unmeasured skills cannot account for all the residual change in the wage distribution.  Panels E

and F show that a large fraction of changes in the 50-10 and 90-10 gaps cannot be explained by

the three factors either.  Clearly, there are some changes in the shape of the wage distribution that

those three factors have a hard time explaining.  

These changes in shape are examined in more detail in Figure 6.  The figure shows

changes in real wages at each percentile of the wage distribution.  This useful way of

summarizing wage changes at different points of the distribution was used extensively by JMP. 

One minor difference relative to JMP is that I use the “normits” of the different centiles (inverse

of the cumulative standard normal distribution) on the x-axis.27  Figure 6 shows both the overall

changes by percentiles for each of the three sub-periods as well as the unexplained change that

cannot be accounted for by any of the three factors.  

If the three factors explained perfectly all the change in the wage distribution, then the

residual change would be a horizontal line.  Departures from the flat line indicate the extent to

which the three factors fail to explain changes in the shape of the wage distribution. A simple

characterization of Figure 6 is that the three factors are quite successful at explaining the linear

trend in wage changes as a function of the normits.  They are much less successful, however, at

explaining departures from linearity.  For example, for men in the 1980s, the three factors

explain virtually all the change in wages by percentiles above the 10th percentile where the wage

changes are more or less a linear function of the normits.  By contrast, changes in the minimum

wage induce some non-linearity at the very bottom of the distribution that ends up in the
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unexplained changes.  Not surprisingly, the three factors have an even harder time explaining the

drop in female wages around the 5-10th centile during the 1980s which is also likely linked to the

decline in the real value of the minimum wage.  By contrast, changes above the 20th percentile

are well explained by the three factors.  Unexplained changes in the lower end of the distribution

in the 1970s are a mirror image of what happened in the 1980s since there is an unexplained

wage gain at the lower end of both the male and female distributions.  This unexplained gain is

consistent with wages at the low end going up because of the increase in the minimum wage. 

The 1990s is another interesting case since wage changes by percentiles are U-shaped

during this period, with both the lower and higher wage percentiles growing more than the

median.  Most of the U-shape remains in the unexplained part of the change, suggesting once

again that the three factors have a hard time capturing the non-linear part of the changes by

percentiles.  

Figure 7 shows the changes in the wage distribution by percentiles over the whole 1973-

99 period.  For both men and women, there is a clear expansion in wage inequality above the 25th

percentile (Figures 7a and 7c).  Below the 25th percentile, however, the wage gains tend to be

more substantial at the lower end.  Except below the 5th percentile, wage changes are thus a

convex function of the normits.  Much of this convexity remains in the unexplained part of the

wage changes.  

Figures 7b and 7d show the contribution of the three factors to overall changes in wages

by percentile for men and women, respectively.  Consistent with the results in Table 3, changes

in unmeasured skill prices (the pt(.) function) explains little of the change in the male wage

distribution.  It accounts, however, for some of the convexity in wage changes.  By contrast,

change in the regression coefficients bt account for most of the growth in inequality above the

25th percentile.  Wage changes due to changes in the distribution of the covariates are not as

systematically linked to the overall change in wages.  Most of the impact of this factor on

inequality is below the 50th percentile, which is not the place where most of the growth in

inequality takes place.  In fact, Panel E of Table 3 (column 4) shows that the effect of changes in

the distribution of covariates (0.068) is larger than the overall change in the 50-10 gap (0.038). 

As a result, the three factors over explain the change in the 50-10 and the unexplained change is
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large and negative.  By contrast, the three factors under explain the change in the 90-50 gap

(Panel F).  So while unexplained changes not accounted by the three factors are negligible for the

90-10 gap, they play a substantial role in changes in the 50-10 and 90-50 gaps.  This confirms the

overall message that the three factors do not explain very well changes in the shape of the wage

distribution.

Figure 7d shows the impact of the three factors for women.  The results are generally

similar to those for men.  As in the case of men, changes in the regression coefficients bt are the

most important explanation for overall changes in wages in the middle and upper part of the

wage distribution.  Similarly, the impact of changes in unmeasured skill prices is convex while

the impact of changes in the distribution of covariates is concentrated below the 50th percentile. 

As in the case of men too, Table 3 shows that the three factors over explain changes in the 50-10

gap but under explain changes in the 90-50 gap.

In summary, the main findings of this empirical application are:

A) Changes in the regression coefficients is the most important explanation for changes in

wage inequality between 1973 and 1999.

B) Over the same period, most of the increase in the variance of the residuals is due to

composition effects as opposed to an increase in the price of unmeasured skills.  This is in

sharp contrast with the 1979-89 period in which prices of unmeasured skills account for

most of the increase in the variance of residuals.

C) The three systematic factor (changes in bt, pt(.), and in the distribution of covariates) do

not explain very well the non-linear aspects of changes in wages by percentile.  In

particular, they fail to account for minimum wage effects at the lower end of the

distribution.  This is particularly clear in the case of women in the 1980s.

The finding that most of the increase in the variance of the residuals is due to composition effects

as opposed to an increase in the price of unmeasured skills is at odd with most of the existing

literature summarized by Katz and Autor (2000) and Acemoglu (2002). As illustrated in Table 3,

part of this discrepancy stems from the fact that I use data up to the late 1990s.  Another source

of difference is that, unlike most other studies, I account explicitly for composition effects in the

dispersion of residuals.
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8. Other decompositions methods

In this section, I contrast the proposed decomposition methods with other regression-based

methods as well as more general procedures.

8.1. Juhn, Murphy and Pierce (JMP) method.

The JMP methods aims at decomposing change in the wage distribution in three

components: changes in observable prices (bt here), changes in observable quantities (changes in

the distribution of covariates here), and residual changes.  As mentioned earlier, there is no

difference between the way JMP and Section 3 deal with bt, the idea being simply to replace bt by

some counterfactual b.  The main difference is that the JMP procedure does not account

explicitly for changes in the distribution of the covariates.  What JMP do instead is to account for

changes in the distribution of wage residuals using their residual imputation procedure described

in Section 6, and then define the effect of changes in covariates as what is left unexplained by the

first two factors.  By contrast, the procedure proposed in Section 3 accounts explicitly for

changes in the distribution of covariates.

The outcome of this decomposition depends critically on how changes in the distribution

of residuals is modelled.  To see this, note that JMP formally allow for the distribution of

residuals to depend on the covariates:

uit = Ft
-1(0it|xit). (16)

From Section 5, it is easy to see what the JMP decomposition would yield if the distribution of

residuals were not allowed to depend on the x’s, i.e. if we had uit = Ft
-1(0it) instead of equation

(16).  This is a special case of the JMP decompositions that has been used in several studies such

as Blau and Kahn (1997).  Call this first version of the decomposition JMP1.28  Leaving aside

issues linked to the order of the decomposition, the residual imputation procedure of JMP1

would only capture what I call in Section 5 the effect of changes in the pricing function of

unmeasured skills (changes in the pt(.) function).  What JMP call the effect of observable

quantities (distribution of covariates) would then be a mix of the true effect of changes in the

distribution of covariates plus the change unexplained by the three factors.  It is clear from the

example of Section 7 that this unexplained change can be quite substantial. 
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At the other extreme, if the residuals are allowed to depend on the x’s in a very flexible

way, then the residual imputation procedure should capture all the residual change in the

distribution of Section 3.  Call this second version of the JMP procedure JMP2.  It is easier to see

how the procedure works in the cell-by-cell case considered earlier.  In this case, the

counterfactual residual

uit
b = Fs

-1(0it|xit)

can be obtained by applying the residual imputation procedure within each cell.  In other words,

the rank 0it of the residual uit can be computed within the relevant cell.  The imputed residual uit
b

is the residual at the same rank in the period s distribution of residual for the same cell.  As a

result, the distribution of residuals for observations with a given value of xit is being replaced by

the period s distribution.  This is equivalent to starting with the wage distribution in period s and

reweighting with the factor 1/Ri to get the same distribution of x as in period t.  The reweighted

distribution now has the same distribution of x’s as in period t but the distribution of residuals

(within each cell) of period s is preserved. 

It would be more difficult to implement JMP2 in the case where it is not feasible or

desirable to divide the data in a relatively small number of cells.  Some alternative estimation

procedures discussed below would have to be used to estimate the distribution of the residuals,

conditional on the x’s.  While some estimation issues are also involved in construction the

reweighting factor, the estimation problem linked with finding an appropriate functional form for

a logit or a probit remains much simpler than carrying over some flexible estimation of

conditional wage distributions.  Note that Juhn, Murphy, and Pierce (1993) do not discuss how

they exactly condition on x when implementing their procedure empirically.  It is therefore

difficult to know whether they use what I call the JMP2 procedure or something which is in-

between JMP1 and JMP2.  

In summary, the JMP2 procedure is equivalent to the re-weighting procedure of Section

3.  The main advantage of the reweighting approach is that it is much easier to implement

empirically.  For reasons discussed in Section 5, it does not seem appropriate to attach particular

economic interpretations, such as an increase in prices of unmeasured skills, to the residual part

of the decomposition that comes out of these procedures.  By contrast, it is legitimate to interpret
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as evidence of an increase in the price of unmeasured skills the outcome of the residual

imputation procedure in JMP1.  The problem with JMP1 is that the effect of changes in the

distribution of covariates and changes that are unexplained by the three factors of Section 5 are

mixed together.  

8.2. Modelling the conditional distribution of wages.

When the data can be divided in a limited number of cells, the decomposition procedure of

Section 3 can be implemented automatically without worrying about specification issues.  I also

argue that when the data cannot be divided into a small enough number of cells, the same

decomposition method can be used by estimating flexible functional forms for the regression

equation and the logit or probit re-weighting model.  However, both the decomposition results

and their statistical properties depend on how those functional forms are chosen.  Other

decomposition methods that involve different parametric restrictions are also available in the

literature. 

For example, Gosling, Machin and Meghir (2000) and Machado and Mata (2002) propose

an alternative decomposition procedure based on the estimation of quantile regressions.  They

consider the following regression model for the 2th quantile of y conditional on the covariates x

(2 goes from 0 to 1):

Q2(y,x) = x$(2). (17)

It is easier to understand how quantile regressions work in the cell-by-cell case.29  Consider, for

example, the median (2=.5).  The median regression can be estimated by first computing the

median within each cell and then running a standard regression of the medians on x.  This yields

an estimate of $(.5).  Similar regressions can also be run for all other quantiles including the 10th,

the 90th, etc.  In theory, running regressions for all possible quantiles should describe the whole

conditional distribution of wages.30  It is then possible to use the models estimated for various

periods to construct counterfactual distributions.  

Donald, Green, and Paarsch (2000) use an alternative method based on the estimation of

hazard models.  The hazard function for y given x is:

h(y|x) = f(y|x)/S(y|x), 
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where f(y|x) is the conditional density and S(y|x) = 1- F(y|x) is the survivor function.  Since the

survivor is a function of the density, estimates of the density (or of the cumulative distribution)

can be inferred back from the hazard.  Donald, Green, and Paarsch then rely on the large

literature on the estimation of duration models to estimate the hazard function.  The estimates

can then be used to generate a variety of counterfactual distributions.  

It is beyond the scope of the paper to compare in details the performance of the various

methods in actual applications.  The method proposed in Section 3 is the simplest to implement,

but other methods may have particular advantage depending on the setting.  For example, when

the dependent variable is an actual duration (like the duration of unemployment spells), the

Donald, Green, and Paarsch is the most natural method to use since the hazard function plays a

role similar to the regression function in wage determination models.  

8.3. Index models

When looking at the distribution of wages, a natural generalization of the Mincer-type

human capital equation is the following index model:

yit = pt(xita + 0it). (18)

In economic terms, the function pt(.) represents a general skill pricing function while xita + 0it is

human capital (both measured and unmeasured).  Relative to the model I consider in Section 5,

the flexible pricing function  pt(.) now applies to both measured and unmeasured human capital

instead of unmeasured human capital only.  Which specification is more accurate depends on the

underlying version of the human capital model.  The earlier approach of using different pricing

schemes for measured and unmeasured human capital is based on the idea that these are two very

different types of human capital.  

However, this is not necessarily consistent with a Mincer type model.  For instance, in the

pure OJT model there is only one type of human capital (training).  The x variable (potential

experience here) captures the mean value while residuals capture dispersion in OJT investments

for individuals with same level of experience.  Since there is only one type of human capital in

this setting, it is appropriate to use a single pricing function.  

In terms of equation (18), Mincer focuses on the case where the pricing function pt is
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linear when yit is log wages.  One possible generalization is to use a Box-Cox specification (see

Heckman and Polachek, 1974) which is consistent with a range of functional forms for pt(.). 

More recently, Fortin and Lemieux (1998) and Teulings (2000, 2002) have used flexible methods

to estimate the function pt(.).  Fortin and Lemieux assume that  0it is distributed i.i.d. normal and

discretize yit in 200 intervals.  In this setting, the model can be estimated using an ordered probit

model and the function pt(.) can be recovered from the estimated thresholds of the ordered probit. 

Interestingly, they find that pt(.) is relatively linear except around the value of the minimum

wage.

Teulings uses instead high order polynomials as a flexible function form for  pt(.). 

Instead of assuming a specific distribution for 0it, he allows for a flexible distribution for yit. The

main advantage of Teulings approach relative to others is that it can be shown to be consistent

which an underlying production function where the elasticity of substitution between skill groups

is distance-dependent.  This enables him to interpret within a well-specified general equilibrium 

model the large distributional impacts of the minimum wage.   

An informal examination of the evidence in Fortin and Lemieux (1998) and Teulings

(2002) suggest that these single-index models are more successful at capturing changes in the

shape of wage distributions than the regression-based method of Section 5.  It is easy to

understand why this is the case in the presence of minimum wage.  Rewriting equation (18) as:

pt
-1(yit) = xita + 0it

shows that the pricing function allows to transform the distribution of wages in a flexible way,

just like pt(0it) allowed to transform the distribution of residuals in a flexible way in Section 5. 

Since the minimum wage has a specific impact at a particular point in the wage distribution, this

can be easily captured by the pt(.) function in the index models.  By contrast, the impact of the

minimum wage on the distribution of residuals in a standard wage regression depends on the

value of the covariates.  For workers with low education and experience, the minimum wage has

an impact higher up in the distribution of residuals than for more skilled workers.  A unique

pricing function for the residuals are all groups pooled together cannot, therefore, capture the

effect of the minimum wage adequately. 

Nonetheless, the decomposition methods suggested in Section 3 and 5 remain a useful
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first step in analyzing the effect of various factors on changes in the distribution of wages.  They

help establish a diagnostic for which particular features of the distribution may require further

modelling using more complicated approaches like these index models.

9. Concluding comments 

The main contribution of this paper is to propose a simple procedure for decomposing changes in

the wage or other distributions into three factors: changes in regression coefficients, changes in

the distribution of covariates, and residuals changes.  The procedure is easy to implement as it

only requires estimating standard OLS regressions augmented by a logit or probit model.  I also

show how the procedure can be extended by modelling residuals as a function of unmeasured

skills and skill prices.   

The proposed procedure helps clarify some of the conflicting results in the literature on

changes in wage inequality over the last decades.  Like most other studies, I find that increases in

the returns to measured skills like experience and education play a major role in secular increases

in wage inequality in the United States.  I also find, however, that this explanation does not

account well for the changes at the bottom end of the wage distribution.  More importantly, I find

that much of the increase in residual wage inequality is due to changes in the composition of the

workforce.   This suggests that increases in the price of unmeasured skills does not play much of

a role in the overall growth in wage inequality since 1973.  There is an interesting parallel

between these findings and those of Lee (1999) and Teulings (2002) who find that, in the 1980s,

changes in the minimum wage explain essentially all the change in the lower end of wage

distribution and in the residual wage inequality.  However, both of these authors still find, as I

do, that changes in the returns to measured skills play a significant role in the growth in

inequality.  

The proposed procedure can also be viewed as an extension to the distributional case of

the well-known Oaxaca-Blinder decomposition.  I show in an empirical example how differences

in the whole wage distribution of women in Alberta and British Columbia can be divided into the

effect of the regression coefficients and covariates, just like it is commonly done in

decompositions of the mean. 
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Finally, I only focus on estimation in this paper.  What about statistical inference?  Given

the nature of the decomposition procedure used, the most natural way of conducting statistical

inference is to use a bootstrap procedure, i.e. resample with replacement from the data sets for

both time periods. The whole decomposition procedure is then repeated on these new samples

over and over again to construct an empirical distribution of the statistics of interest.  It would be

particularly important to go through such procedures in cases where the number of observations

available is limited.  



38

References

Acemoglu, Daron (2002) ‘Technical Change, Inequality, and the Labor Market,’ Journal

of Economic Literature 40, 7-72

Atkinson, Anthony (1970) ‘On the Measurement of Inequality,’ Journal of Economic

Theory 2, 244-63.

Baker, Michael (1997) ‘Growth-Rate Heterogeneity and the Covariance Structure of

Life-Cycle  Earnings,’ Journal of Labor Economics 15, 338-75

Baker, Michael and Gary Solon (2002) ‘Earnings Dynamics and Inequality among

Canadian Men, 1976-1992: Evidence from Longitudinal Income Tax Records,” forthcoming in

the Journal of Labor Economics

Barsky, Robert, John Bound, Kerwin Charles, and Joseph Lupton (2001) ‘Accounting for

the Black-White Wealth Gap: A Nonparametric Approach,’ NBER working paper no. 8466

Beaudry, Paul, Fabrice Collard and David Green (2002), ‘Decomposing the Twin-Peaks:

A Study of Changing World Distribution of Output-per-Worker,’ University of British Columbia

mimeo.

Beaudry, Paul, and David Green (2002) ‘Changes in U.S. Wages 1976-2000: Ongoing

Skill Bias or Major Technological Change?,’ NBER Working paper no. 8787

Becker, Gary (1975) Human Capital: A Theoretical and Empirical Analysis with Special

Reference to Education, 2nd edition (New York: NBER) 

Ben-Porath, Yoram (1967) ‘The Production of Human Capital and the Life-Cycle of

Earnings,’ Journal of Political Economy 75, 352-65

Blau, Francine D., and Lawrence M. Kahn (1997) “Swimming Upstream: Trends in the

Gender Wage Differential in 1980s”, Journal of Labor Economics 15, 1-42

Blinder, Alan (1973) ‘Wage Discrimination: Reduced Forms and Structural Estimation,’

Journal of Human Resources 8, 436-455

Bound, John, and George Johnson (1992) ‘Changes in the Structure of Wages in the

1980s: An Evaluation of Alternative Explanations,’ American Economic Review 82, 371-92

Buchinsky, Moshe (1994) ‘Changes in the U.S. Wage Structure 1963-1987: Application

of Quantile Regression,’ Econometrica 62, 405-458



39

Card, David, and John DiNardo (2002) ‘Skill Biased Technological Change and Rising

Wage Inequality: Some Problems and Puzzles,’ NBER Working paper no. 8769

Card, David, and Thomas Lemieux (1996) ‘Wage Dispersion, Returns to Skill, and

Black-White Wage Differentials,’  Journal of Econometrics, Vol. 74, No. 2, October 1996, pp.

319-361.

— (2001a) ‘Can Falling Supply Explain the Rising Return to College for Younger Men?

A Cohort-Based Analysis,’ Quarterly Journal of Economics 116, 705-46

— (2001b), ‘Dropout and Enrollment Trends in the Post War Period: What Went Wrong

in the 1970s?,’ in An Economic Analysis of Risky Behavior Among Youth, ed. Jonathan Gruber

(Chicago: University of Chicago Press for NBER)

Chamberlain (1994) ‘Quantile Regression, Censoring, and the Structure of Wage,’ in

Advances in Econometrics, ed. C. Sims (Cambridge: Cambridge University Press)

Chay, Kenneth and David Lee (2000) ‘Changes in Relative Wages in the 1980s: Returns

to Observed and Unobserved Skills and Black-White Wage Differentials,’ Journal of

Econometrics 99, 1-38

Dehejia, R., and S. Wahba (1999) ‘Causal Effects in Non-Experimental Studies: Re-

Evaluating the Evaluation of Training Programs,’ Journal of the American Statistical Association

94, 1053-62

Deschênes, Olivier (2001) ‘Unobserved Ability, Comparative Advantage, and the Rising

Return to Education in the United States: A Cohort-Based Approach,’ Princeton University

Industrial Relations Section Working Paper No. 456

DiNardo, John, Nicole M. Fortin, and Thomas Lemieux (1996) ‘Labor Market

Institutions and the Distribution of Wages, 1973-1992: A Semiparametric Approach,’

Econometrica 65, 1001-46

Donald, Stephen, David Green, and Harry Paarsch (2000) ‘Differences in Wage

Distributions between Canada and the United States: An Application of a Flexible Estimator of

Distribution Functions in the Presence of Covariates,’ Review of Economic Studies 67, 609-33

Fortin, Nicole, and Thomas Lemieux (1998) ‘Rank Regressions, Wage Distributions, and

the Gender Gap,’ Journal of Human Resources 33, 610-43



40

Green, David, Barton Hamilton and Harry Paarsch (1997) ‘Decomposing Trends in

Earnings Inequality: Methods and Interpretation,’ University of British Columbia mimeo

Gosling, Amanda, and Thomas Lemieux (2002) ‘Labor Market Reforms and Wage

Inequality in the United Kingdom and the United States,’ forthcoming in Seeking a Premier

League Economy, ed. R. Blundell, D. Card, and R. Freeman (Chicago: University of Chicago

Press for NBER).

Gosling, Amanda, Steve Machin and Costas Meghir (2000) ‘The changing distribution of

male wages in the UK,’ Review of Economic Studies 67, 635-86

Heckman, James, Hidehiko Ichimura, and Petra Todd (1997) “Matching as an

Econometric Evaluation Estimator: Evidence from Evaluating a Job Training Programme,”

Review of Economic Studies 64, 605-54

Heckman, James and Solomon Polachek (1974) ‘Empirical Evidence on the Functional

Form of the Earnings-Schooling Relationship,’ Journal of the American Statistical Association

69, 350-54

Hirano, Keisuke, Guido Imbens, and Geert Ridder (2000) ‘Efficient Estimation of

Average Treatment Effects Using the Estimated Propensity Score,’ NBER technical working

paper no. T0251 

Hirsch, Barry, and Edward Schumacher (2001) ‘Match Bias in Wage Gap Estimates Due

to Earnings Imputation,’ Trinity University mimeo

Juhn, Chinhui, Kevin M. Murphy, and Brooks Pierce (1993) ‘Wage Inequality and the

Rise in Returns to Skill,’ Journal of Political Economy 101, 410-42

Karoly, Lynn (1993) ‘The Trend in Inequality Among Families, Individuals, and Workers

in the United States: A Twenty-Five Year Perspective,’ in Uneven Tides: Rising Inequality in

America, ed. S. Danziger and P. Gottschalk (New York: Russell Sage Foundation)

Katz, Lawrence, and David Autor (2000) ‘Changes in the Wage Structure and Earnings

Inequality,’ in Handbook of Labor Economics, ed. O. Ashenfelter and D. Card (Amsterdam:

Elsevier Science)

Katz, Lawrence, and Kevin Murphy (1992) ‘Changes in Relative Wages, 1963-1987:

Supply and Demand Factors,’ Quarterly Journal of Economics 107, 35-78



41

Koenker, Roger and G. Bassett (1978) ‘Regression Quantiles,’ Econometrica 46, 33-50

Lee, David (1999) ‘Wage Inequality in the United States during the 1980s: Rising

Dispersion or Falling Minimum Wage?,’ Quarterly Journal of Economics 114, 977-1023

Machado, José and José Mata (2002) ‘Counterfactual Decompositions of Changes in

Wage Distributions using Quantile Regression,’ Universidade Nova de Lisboa mimeo

Mincer, Jacob (1974) Schooling, Experience, and Earnings (New York: NBER)

Mincer, Jacob (1997) ‘Changes in Wage Inequality, 1970-1990,’ Research in Labor

Economics 16, 1-18.

Oaxaca, Ronald (1973) ‘Male-Female Wage Differentials in Urban Labor Markets,’

International Economic Review 14, 693-709

Quah, Danny (1996) ‘Twin-Peaks: Growth and Convergence in Models of Distributional

Dynamics,’ Economic Journal 106, 1045-55

Rosen, Sherwin (1977) ‘Human Capital: A Survey of Empirical Research,’ in Research in

Labor Economics, volume 1, ed. R. Ehrenberg (Greenwich Connecticut, JAI Press)

Teulings, Coen (2000) ‘Aggregation Bias in Elasticities of Substitution and the Minimum

Wage Paradox,” International Economic Review 41, 359-98

— (2002) ‘The Contribution of Minimum Wages to Increasing Wage Inequality,’

forthcoming in the Economic Journal



42

Appendix 1

In the May 1973 CPS and the 1979, 1989, and 1999 outgoing rotation group files of the CPS, all

workers paid by the hour are asked to report their usual hourly wage on their main job.  All wage

and salary workers are also asked to provide their usual weekly earnings and usual weekly hours

of work on their main job.31 The measure of hourly wages I use is the hourly wage for workers

paid by the hour and average hourly earnings (weekly earnings divided by hours) for others. 

Since self-employed workers are not asked about their earnings they are not part of these wage

samples.  I use a broad sample of all workers age 16 to 64 but weight observations by hours of

work to avoid putting too much weight on workers marginally attached to the labor market like

full-time students.  Following other studies, I trim extreme values below 1 dollar or above 100

dollars (deflated to 1979 dollars using the CPI-U) and multiply the wage of workers whose

earnings are top-coded by an adjustment factor of 1.4.  In the May 1973, the wage is missing for

workers who do not report their earnings.  In 1979 and 1999, missing earnings are imputed by the

U.S. Census Bureau and allocation flags indicate which observations have been imputed. 

Missing earnings are also imputed in 1989 but accurate allocation flags are not available (see

Hirsch and Schumacher, 2001, for a detailed discussion of allocation issues in the CPS).  For the

sake of consistency, allocated earnings are used to look at changes in the wage distribution

between 1979 and 1989 and 1989 and 1999, while allocated earnings are excluded from 1979 to

look at changes between 1973 and 1979.  Changes from 1973  to 1999 are computed as the sum

of the changes for 1973-79, 1979-89, and 1989-99.  The six education categories I use in the

regression and logit models are 0-8, 9-11, 12, 13-15, 16, and 17+.
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Table 1: Summary of the procedure of Section 3 for generating counterfactual distributions

Variable: Weight: Resulting distribution:

yit Tit Distribution at period t

yit
a Tit Period t distribution with b of period s

yit Tit
a Period t distribution with distribution of covariates of period s

yit
a Tit

a Period t distribution with b and distribution of covariates of period
s

yis Tis Distribution at period s

yis
a Tis Period s distribution with b of period s

yis Tis
a Period s distribution with distribution of covariates of period t

yis
a Tis

a Period s distribution with b and distribution of covariates of period
t

Note: yit
a = xitbs + uit , yis

a = xisbt + uis , Tit
a =  Ri Tit, and Tis

a = (1/ Ri )Tit, where Ri is the
reweighting factor.
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Table 2: Log Wage Distribution of Women in Alberta and British Columbia

Mean Variance Wage gap by percentiles
-------- ---------------------- -----------------------

Total xb Residual 90-10 50-10 90-50

(1) (2) (3) (4) (5) (6) (7)

1. Alberta 2.522 0.218 0.076 0.142 1.253 0.577 0.676

2. Alberta 2.627 0.210 0.068 0.142 1.217 0.576 0.641
with BC’s b

3. Alberta with 2.654 0.213 0.066 0.147 1.230 0.599 0.631
BC’s b and X

4. British 2.654 0.199 0.066 0.133 1.196 0.643 0.553
Columbia (BC)

5. Alberta-BC -0.132 0.019 0.010 0.009 0.057 -0.066 0.123
Difference

Effect of:

6. b -0.105 0.008 0.008 --- -0.036 0.001 0.015
(Row 1 - row 2)

7. x -0.027 -0.003 0.002 -0.005 0.013 -0.023 0.010
(Row 2 - row 3)

8. Residual --- 0.014 --- 0.014 0.034 -0.044 0.076
(Row 3 - row 4)

Note: Computed using data from January to October 2000 Labour Force Survey.  Sample
includes all female wage and salary workers age 15-64 with hourly wages between 3 and 75
dollars.  Workers of all age groups with 8 years of schooling and less are excluded from the
sample.  Workers age 15-19 with a university degree and workers age 20-24 with a post-graduate
university degree are also excluded from the sample.  Total number of observations for Alberta
and British Columbia are 19319 and 20587, respectively.
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Table 3: Change in wage inequality in the United States, 1973-1999

Men Women

                            --------------------------------------------           --------------------------------------------
73-79 79-89 89-99 73-99 73-79 79-89 89-99 73-99
(1) (2) (3) (4) (5) (6) (7) (8)

A. Variance of wages
Total chg: -0.002 0.070 0.011 0.079 -0.026 0.086 0.017 0.077
Effect of:
b -0.004 0.043 0.013 0.053 -0.016 0.039 0.016 0.039
x 0.009 0.007 0.008 0.024 0.005 0.013 0.007 0.025
p -0.007 0.021 -0.009 0.006 -0.015 0.033 -0.005 0.014

Unexpl. chg: 0.000 -0.001 -0.002 -0.003 -0.001 0.001 -0.001 0.000

B. Variance of wage residuals
Total chg: -0.003 0.030 0.000 0.027 -0.014 0.043 0.002 0.031
Effect of:
x 0.004 0.009 0.010 0.023 0.002 0.009 0.007 0.018
p -0.007 0.021 -0.010 0.004 -0.016 0.034 -0.005 0.014

C. 90-10 gap in wages
Total chg: 0.003 0.169 0.028 0.200 -0.077 0.328 0.030 0.280
Effect of:
b -0.008 0.102 0.035 0.129 -0.054 0.126 0.031 0.103
x 0.021 0.015 0.027 0.063 0.018 0.056 0.029 0.104
p -0.003 0.056 -0.037 0.016 -0.031 0.096 -0.028 0.037

Unexpl. chg: -0.006 -0.005 0.003 -0.008 -0.011 0.049 -0.002 0.037

D. 90-10 gap in wage residuals
Total chg: 0.001 0.104 -0.015 0.089 -0.034 0.183 -0.015 0.134
Effect of:
x 0.003 0.019 0.025 0.047 0.004 0.038 0.025 0.068
p -0.003 0.084 -0.040 0.042 -0.038 0.145 -0.040 0.066

E. 50-10 gap in wages
Total chg: 0.019 0.063 -0.044 0.038 -0.093 0.231 -0.039 0.099
Effect of:
b -0.006 0.051 -0.018 0.026 -0.024 0.063 -0.001 0.038
x 0.020 0.008 0.040 0.068 0.022 0.059 0.039 0.121
p -0.006 0.033 -0.035 -0.008 -0.042 0.059 -0.025 -0.008

Unexpl. chg: 0.012 -0.029 -0.031 -0.047 -0.049 0.050 -0.052 -0.051

F. 90-50 gap in wages
Total chg: -0.016 0.106 0.072 0.162 0.016 0.096 0.069 0.181
Effects of:
b -0.002 0.052 0.053 0.103 -0.030 0.063 0.032 0.065
x 0.001 0.007 -0.012 -0.005 -0.004 -0.003 -0.010 -0.017
p 0.003 0.023 -0.002 0.024 0.012 0.037 -0.003 0.046

Unexpl. chg: -0.018 0.024 0.034 0.040 0.038 -0.001 0.050 0.088
Note: Sample contains wage and salary workers age 16-64. See Appendix 1 for
more details.
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Figure 1: Residual wage dispersion in OJT model
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Figure 2: Log wage densities in Alberta and British Columbia, women
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Figure 3: Example with two types of workers
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Figure 4: Density of log wages ($1979) for U.S. men
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Figure 5: Density of log wages ($1979) for U.S. women
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Figure 6: Change in real wages by percentile
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Figure 7: Sources of wage change by percentile, 1973-99
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1.In the early studies like Katz and Murphy (1992), skill-biased technological change was viewed

as an exogenous factor.  More recent papers like Acemoglu (2002) and Beaudry and Green

(2002) propose richer models where technological innovation and adoption are endogenous

responses to other factors including supply. 

2.See Card and DiNardo (2002) and Beaudry and Green (2002) for more recent evidence on
these trends.  

3.There is a large literature on this starting with Atkinson (1970).

4.Mincer’s equation is such a standard tool of empirical labour economics that it is quite difficult

to quantify the number of studies that have used it.  As a benchmark, the Social Sciences Citation

Index reports that between January 1989 and May 2002, over 1,300 studies had cited Mincer

(1974)’s book Schooling, Experience, and Earnings.  Mincer’s original study used data from the

1960 U.S. Census.  While many studies used more recent data for the United States, many others

looked at other developed or developing countries.  

5.See also Becker (1975) and Ben-Porath (1967).

6.Both Mincer (1974) and Rosen (1977) make this point.  Recent work by Mincer (1997) and

Deschênes (2001) shows that the log wage-education relationship has become more convex over

the last twenty years.  

7.For example, the variance of xijt is equal to 2jt (1- 2jt).  It is easy to show that in this model the

between group variance can be written as E
j
2jt ( y 

- 
jt -  y 

- 
t )2 = bt’Sx,t bt .

8. The correction factor Pt / (1-Pt) is of little practical importance since it only changes the

reweighting factor in a proportional way and most statistical packages automatically normalize

FOOTNOTES

Lead footnote: Innis Lecture delivered at the 2002 Meetings of the Canadian Economic

Association in Calgary.  I would like to thank Jean-Marie Dufour for inviting me to give this

lecture, Paul Beaudry, John DiNardo, David Green, Nicole Fortin and Jennifer Hunt for their

helpful comments, David Card for his help with the 1999 CPS data, and SSHRC and NICHD for

financial support.
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the sum of weights when computing weighted statistics.

9.Barsky, Bound, Charles and Lupton (2001) suggest using the re-weighting approach as a non-

parametric alternative to the usual Oaxaca-Blinder decomposition. 

10.Table 1 shows how to perform the decomposition of Section 3 in different orders.  This can be

used, for example, to compute the decomposition in the same order as JMP who first look at the

effect of the regression coefficients, followed by the residuals and the effect of the distribution of

covariates.  A similar decomposition can be obtained by reweighting the distribution of period s

using Tis
a (see Table 1) instead of reweighting the counterfactual distribution yit

a with Tis
a. 

11.It is straightforward to look at the impact of changes in a single regression coefficient instead

of the whole vector of coefficients by computing a counterfactual wage yit
a in which only this

particular coefficient has been switched from its period t value to its period s value. 

Interestingly, a similar procedure can be used to look at changes in the distribution of a single

covariate xj. Say the logit or probit coefficient for this covariate is cj. The relevant counterfactual

is then obtained by setting all the other coefficients but this one to zero when constructing the

reweighting factor (using the logit or probit predicted probabilities).

12.See Heckman, Ichimura and Todd (1997) and Dehejia and Wahba (1999) for a recent

application of propensity score methods to training programs.

13.More detailed age categories (2 or 3 years bands) are provided for individuals under the age of

30.  This information is not used here.

14. Note that experience rather than age is typically used in the Mincer equation.  Since measures

of actual experience are rarely available in micro data sets, Mincer suggested using potential

experience defined as age - S - 6, where S represents years of schooling.  Since potential

experience is just a linear function of age and education, age-education and experience-education

cells can be used interchangeably.  

15.Only a very small fraction of the adult population in these two provinces has the lowest coded

value of schooling which is 0 to 8 years.  All observations with 0 to 8 years of schooling are

removed to ensure there is a reasonably large number of observations in each age-education cells. 
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For similar reasons, I also remove individuals age 15-19 who report holding a university

bachelor’s degree (second highest education category) and individuals age 15-24 who report

holding a post-graduate degree (highest education category).  Finally, observations with hourly

wages of less than 3 dollars or more than 75 dollars are removed from the sample.  

16.These densities are estimated using a normal kernel with a bandwidth of 0.06.  See DiNardo,

Fortin, and Lemieux (1996) for more details on kernel density estimation of wage distributions

and on the choice of bandwidth.  

17.The bi-modal feature of the distribution is robust to the choice of bandwidth.  The expression

“twin-peaks” comes from the growth literature where it is well documented that the distribution

of world income went from unimodal to bimodal over the last decades.  See, for example, Quah

(1996).

18.  Though the regression coefficients are not reported here, a closer examination of the

evidence indicates that the main difference between the two provinces is that return to education

are substantially lower in British Columbia than in Alberta.

19.A low R-square does not necessarily mean that differences in the shape of the distributions

cannot be explained by xb.  For example, Beaudry, Collard, and Green (2002) find that secular

changes in regression coefficients explain well the emergence of the twin-peaks in the

distribution of output-per-capita across countries despite the fact that their R-squares are similar

to those in Section 4.

20.See Katz and Autor (2000), Acemoglu (2002) and Card and DiNardo (2002) for recent

surveys of the large existing literature.

21. One minor computational issue is that it is not generally possible to exactly match period t

and period s residuals at a specific rank 0it.  One exception is when the two samples are equally

weighted and have the same number of observations.  A simple solution is to discretize the

distribution of residuals in k intervals containing an equal (or close to equal) number of weighted

observations.  For example, in the next Section I use k=500 and replace the actual residuals by

the average residual in each interval.  This amounts to approximating Ft by a step function with k

steps.  Since the skill pricing function is defined as the inverse of the cumulative distribution, this
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means that the change in the skill pricing function pspt
-1(.) =  Fs

-1Ft(.), is also being approximated

by a step function with k steps.

22.The corresponding figures in nominal dollars are $1.60 in 1973, $2.90 in 1979, $3.35 in 1989,

and $5.15 in 1999. 

23.The findings reported in Table 3 are very similar to those of Card and Lemieux (1996) and

DiNardo, Fortin and Lemieux (1996) for the 1973-79 period.  Using the May CPS data for 1973

and 1979, Katz and Autor (2000) find that the variance of log wages increased by 0.01 for men

and declined by 0.03 for women during the 1970s, which is quite close to the numbers reported

in Table 3.  Inequality in average hourly wages can also be computed using data from the March

CPS starting in 1975.  Both Karoly (1993) and Card and DiNardo (2002) find little change in

inequality from 1975 to 1980 using this alternative measure of hourly wage inequality.

24.See, for example, Juhn, Murphy, and Pierce (1993), Katz and Autor (2000), and Acemoglu

(2002).   Prior to 1973, no direct measures of hourly wages were available in the CPS.  The

closest proxy to an hourly wage before 1973 is weekly earnings of full-time workers (35 hours or

more) working full-year. One drawback of this measure is that it is not representative of the

whole workforce.  Inequality in the wage measure also depends on the distribution of weekly

hours of work among full-time workers.  Since direct measures of hourly wages have now been

available for 30 years, the benefits of extending the sample prior to 1973 are no longer as clear as

they were when wage inequality became a major topic of interest in the mid- to late-1980s.   

25.Controlling for experience, the variance of the residuals for workers with a post-graduate

degree is about twice as high as for high-school graduates or dropouts in a the sample years

considered.  The residual variance also grows steadily as a function of experience.  It increases by

about 50 percent in the first 20 years of experience and keep growing at a slower rate thereafter.

26.Interestingly, these composition effects could have been predicted ex-ante to a large extent

from the detailed analysis of residual wage dispersion of Mincer (1974).  Using data from the

1959 U.S. Census, Mincer found that residual wage dispersion generally grew with experience

(past the overtaking point).  Mincer also found that education increased dispersion for

experienced workers but decreased dispersion for older workers.  As is well known, average
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experience increased substantially since the early 1980s with the aging of the baby-boom cohort. 

While average education increased rapidly for more experienced workers since the mid-1970s, it

remained relatively constant for younger workers throughout this period (Card and Lemieux,

2001a and 2001b).  Combined together, all these factors contributed to increasing the variance of

residuals. 

27.When the normits are not used, plotting wages by centiles simply traces down the inverse of

the cumulative distribution which is highly non-linear (unless the distribution is uniform) and

difficult to interpret.  When the distribution is log normal, then the function is linear which is

very convenient.  Since most distributions of log wages look much more like a normal than a

uniform distribution, it is more convenient to use normits on the x-axis. 

28.See Green, Hamilton and Paarsch (1997) who also consider these two possible versions of the

JMP decomposition.  They also compare the JMP procedure to the method of Donald, Green and

Paarsch (2000) discussed below.

29.See Chamberlain (1994) and Buchinsky (1994) for more details.  Koenker and Bassett (1978)

suggest a now standard estimation method that involves solving a linear programming problem

in cases where the data cannot be divided into cells.

30.In practice, Machado and Mata (2002) use a bootstrap approach to stochastically impute a

counterfactual (or simulated wage) to each observation. The idea is to draw a random value of 2

for each observation, estimate the corresponding quantile regression (in a different period when

performing the counterfactual exercise), and compute the predicted quantile at the actual value of

x for this observation.  One drawback of this approach is that it requires estimating a large

number of quantile regressions, which is computationally involved.  Gosling, Machin and Meghir

(2000) aggregate directly the conditional quantiles into an unconditional wage distribution.

31.Note that starting in 1994, workers have the option of reporting the wages and earnings on a

more convenient basis like monthly or annual earnings.  Weekly earnings are then obtained by

dividing earnings by the appropriate number of weeks.  Starting in 1994 workers can also report

variable hours instead of a given number of usual hours of work.  In the 1999 CPS, I impute

hours for these workers using an algorithm suggested by Anne Polivka of the U.S. Census
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Bureau.


