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UNCONDITIONAL QUANTILE REGRESSIONS

BY SERGIO FIRPO, NICOLE M. FORTIN, AND THOMAS LEMIEUX1

We propose a new regression method to evaluate the impact of changes in the distri-
bution of the explanatory variables on quantiles of the unconditional (marginal) distrib-
ution of an outcome variable. The proposed method consists of running a regression of
the (recentered) influence function (RIF) of the unconditional quantile on the explana-
tory variables. The influence function, a widely used tool in robust estimation, is easily
computed for quantiles, as well as for other distributional statistics. Our approach, thus,
can be readily generalized to other distributional statistics.

KEYWORDS: Influence functions, unconditional quantile, RIF regressions, quantile
regressions.

1. INTRODUCTION

IN THIS PAPER, we propose a new computationally simple regression method
to estimate the impact of changing the distribution of explanatory variables,
X , on the marginal quantiles of the outcome variable, Y , or other functional
of the marginal distribution of Y . The method consists of running a regres-
sion of a transformation—the (recentered) influence function defined below—
of the outcome variable on the explanatory variables. To distinguish our ap-
proach from commonly used conditional quantile regressions (Koenker and
Bassett (1978), Koenker (2005)), we call our regression method an uncondi-
tional quantile regression.2

Empirical researchers are often interested in changes in the quantiles, de-
noted qτ , of the marginal (unconditional) distribution, FY(y). For example, we
may want to estimate the direct effect dqτ(p)/dp of increasing the proportion
of unionized workers, p = Pr[X = 1], on the τth quantile of the distribu-
tion of wages, where X = 1 if the workers is unionized and X = 0 otherwise.
In the case of the mean μ, the coefficient β of a standard regression of Y
on X is a measure of the impact of increasing the proportion of unionized

1We thank the co-editor and three referees for helpful suggestions. We are also indebted
to Joe Altonji, Richard Blundell, David Card, Vinicius Carrasco, Marcelo Fernandes, Chuan
Goh, Jinyong Hahn, Joel Horowitz, Guido Imbens, Shakeeb Khan, Roger Koenker, Thierry
Magnac, Ulrich Müller, Geert Ridder, Jean-Marc Robin, Hal White, and seminar participants
at CESG2005, UCL, CAEN–UFC, UFMG, Econometrics in Rio 2006, PUC-Rio, IPEA-RJ, SBE
Meetings 2006, Tilburg University, Tinbergen Institute, KU Leuven, ESTE-2007, Harvard–MIT
Econometrics Seminar, Yale, Princeton, Vanderbilt, and Boston University for useful comments
on earlier versions of the manuscript. Fortin and Lemieux thank SSHRC for financial support.
Firpo thanks CNPq for financial support. Usual disclaimers apply.

2The “unconditional quantiles” are the quantiles of the marginal distribution of the outcome
variable Y . Using “marginal” instead of “unconditional” would be confusing, however, since
we also use the word “marginal” to refer to the impact of small changes in covariates (marginal
effects).
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workers on the mean wage, dμ(p)/dp. As is well known, the same coeffi-
cient β can also be interpreted as an impact on the conditional mean.3 Un-
fortunately, the coefficient βτ from a single conditional quantile regression,
βτ = F−1

Y (τ|X = 1) − F−1
Y (τ|X = 0), is generally different from dqτ(p)/dp

= (Pr[Y > qτ|X = 1]−Pr[Y > qτ|X = 0])/fY (qτ), the effect of increasing the
proportion of unionized workers on the τth quantile of the unconditional dis-
tribution of Y .4 A new approach is therefore needed to provide practitioners
with an easy way to compute dqτ(p)/dp, especially when X is not univariate
and binary as in the above example.

Our approach builds upon the concept of the influence function (IF),
a widely used tool in the robust estimation of statistical or econometric mod-
els. As its name suggests, the influence function IF(Y ;ν�FY ) of a distributional
statistic ν(FY) represents the influence of an individual observation on that dis-
tributional statistic. Adding back the statistic ν(FY) to the influence function
yields what we call the recentered influence function (RIF). One convenient fea-
ture of the RIF is that its expectation is equal to ν(FY).5 Because influence
functions can be computed for most distributional statistics, our method easily
extends to other choices of ν beyond quantiles, such as the variance, the Gini
coefficient, and other commonly used inequality measures.6

For the τth quantile, the influence function IF(Y ;qτ�FY) is known to be
equal to (τ− 1{Y ≤ qτ})/fY (qτ). As a result, RIF(Y ;qτ�FY) is simply equal to
qτ + IF(Y ;qτ�FY). We call the conditional expectation of the RIF(Y ;ν�FY )
modeled as a function of the explanatory variables, E[RIF(Y ;ν�FY )|X] =
mν(X), the RIF regression model.7 In the case of quantiles, E[RIF(Y ;qτ�
FY )|X] = mτ(X) can be viewed as an unconditional quantile regression. We
show that the average derivative of the unconditional quantile regression,
E[m′

τ(X)], corresponds to the marginal effect on the unconditional quantile
of a small location shift in the distribution of covariates, holding everything
else constant.

Our proposed approach can be easily implemented as an ordinary least
squares (OLS) regression. In the case of quantiles, the dependent variable in
the regression is RIF(Y ;qτ�FY) = qτ + (τ − 1{Y ≤ qτ})/fY (qτ). It is easily

3The conditional mean interpretation is the wage change that a worker would expect when
her union status changes from non-unionized to unionized, or β = E(Y |X = 1) − E(Y |X = 0).
Since the unconditional mean is μ(p) = pE(Y |X = 1) + (1 − p)E(Y |X = 0), it follows that
dμ(p)/dp =E(Y |X = 1)−E(Y |X = 0)= β.

4The expression for dqτ(p)/dp is obtained by implicit differentiation applied to FY (qτ) =
p · (Pr[Y ≤ qτ|X = 1] − Pr[Y ≤ qτ|X = 0])+ Pr[Y ≤ qτ|X = 0].

5Such property is important in some situations, although for the marginal effects in which we
are interested in this paper the recentering is not fundamental. In Firpo, Fortin, and Lemieux
(2007b), the recentering is useful because it allows us to identify the intercept and perform
Oaxaca-type decompositions at various quantiles.

6See Firpo, Fortin, and Lemieux (2007b) for such regressions on the variance and Gini.
7In the case of the mean, since the RIF is simply the outcome variable Y , a regression of

RIF(Y ;μ) on X is the same as an OLS regression of Y on X .
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computed by estimating the sample quantile qτ , estimating the density fY (qτ)
at that point qτ using kernel (or other) methods, and forming a dummy variable
1{Y ≤ qτ}, indicating whether the value of the outcome variable is below qτ .
Then we can simply run an OLS regression of this new dependent variable on
the covariates, although we suggest more sophisticated estimation methods in
Section 3.

We view our approach as an important complement to the literature con-
cerned with the estimation of quantile functions. However, unlike Imbens
and Newey (2009), Chesher (2003), and Florens, Heckman, Meghir, and Vyt-
lacil (2008), who considered the identification of structural functions defined
from conditional quantile restrictions in the presence of endogenous regres-
sors, our approach is concerned solely with parameters that capture changes in
unconditional quantiles in the presence of exogenous regressors.

The structure of the paper is as follows. In the next section, we define the
key object of interest, the “unconditional quantile partial effect” (UQPE) and
show how RIF regressions for the quantile can be used to estimate the UQPE.
We also link this parameter to the structural parameters of a general model and
the conditional quantile partial effects (CQPE). The estimation issues are ad-
dressed in Section 3. Section 4 presents an empirical application of our method
that illustrates well the difference between our method and conditional quan-
tiles regressions. We conclude in Section 5.

2. UNCONDITIONAL PARTIAL EFFECTS

2.1. General Concepts

We assume that Y is observed in the presence of covariates X , so that Y
and X have a joint distribution, FY�X(·� ·) : R × X → [0�1], and X ⊂ R

k is the
support of X . By analogy with a standard regression coefficient, our object of
interest is the effect of a small increase in the location of the distribution of the
explanatory variable X on the τth quantile of the unconditional distribution
of Y . We represent this small location shift in the distribution of X in terms of
the counterfactual distribution GX(x). By definition, the unconditional (mar-
ginal) distribution function of Y can be written as

FY(y) =
∫

FY |X(y|X = x) · dFX(x)�(1)

Under the assumption that the conditional distribution FY |X(·) is unaffected by
this small manipulation of the distribution of X , a counterfactual distribution
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of Y , G∗
Y , can be obtained by replacing FX(x) with GX(x)

8:

G∗
Y (y)≡

∫
FY |X(y|X = x) · dGX(x)�(2)

Our regression method builds on some elementary properties of the influ-
ence function, a measure introduced by Hampel (1968, 1974) to study the in-
finitesimal behavior of real-valued functionals ν(FY), where ν : Fν → R, and
where Fν is a class of distribution functions such that FY ∈ Fν if |ν(F)| < +∞.
Let GY be another distribution in the same class. Let FY�t·GY

∈ Fν represent
the mixing distribution, which is t away from FY in the direction of the proba-
bility distribution GY : FY�t·GY

= (1− t) ·FY + t ·GY = t · (GY −FY)+FY , where
0 ≤ t ≤ 1. The directional derivative of ν in the direction of the distribution GY

can be written as

lim
t↓0

ν(FY�t·GY
)− ν(FY)

t
= ∂ν(FY�t·GY

)

∂t

∣∣∣∣
t=0

(3)

=
∫

IF(y;ν�FY) · d(GY − FY)(y)�

where IF(y;ν�FY) = ∂ν(FY�t·Δy )/∂t|t=0, with Δy denoting the probability mea-
sure that puts mass 1 at the value y . The von Mises (1947) linear approximation
of the functional ν(FY�t·GY

) is

ν(FY�t·GY
) = ν(FY)+ t ·

∫
IF(y;ν�FY) · d(GY − FY)(y)

+ r(t;ν;GY�FY)�

where r(t;ν;GY�FY) is a remainder term. We define the recentered influence
function (RIF) more formally as the leading terms of the above expansion for
the particular case where GY = Δy and t = 1. Since

∫
IF(y;ν�FY) · dFY(y) = 0

by definition, it follows that

RIF(y;ν�FY) = ν(FY)+
∫

IF(s;ν�FY) · dΔy(s)

= ν(FY)+ IF(y;ν�FY)�

Finally, note that the last equality in equation (3) also holds for RIF(y;ν�FY).
In the presence of covariates X , we can use the law of iterated expecta-

tions to express ν(FY) in terms of the conditional expectation of RIF(y;ν�FY)

8Instead of assuming a constant conditional distribution FY |X(·|·), we could allow the condi-
tional distributions to vary as long as they converge as the marginal distributions of X converge
to one another.
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given X:

ν(FY) =
∫

RIF(y;ν�FY) · dFY(y)(4)

=
∫ ∫

RIF(y;ν�FY) · dFY |X(y|X = x) · dFX(x)

=
∫

E[RIF(Y ;ν�FY )|X = x] · dFX(x)�

where the first equality follows from the fact that the influence function inte-
grates to zero, and the second equality comes from substituting in equation (1).

Equation (4) shows that when we are interested in the impact of covari-
ates on a specific distributional statistic ν(FY) such as a quantile, we simply
need to integrate over E[RIF(Y ;ν�FY )|X], which is easily done using regres-
sion methods. By contrast, in equation (1) we need to integrate over the whole
conditional distribution FY |X(y|X = x), which is, in general, more difficult to
estimate.9

We now state our main result on how the impact of a marginal change in the
distribution of X on ν(FY) can be obtained using the conditional expectation
of the RIF(Y ;ν�FY ). Note that all proofs are provided in the Appendix.

THEOREM 1—Marginal Effect of a Change in the Distribution of X: Sup-
pose we can induce a small perturbation in the distribution of covariates, from FX

in the direction of GX , maintaining the conditional distribution of Y given X un-
affected. The marginal effect of this distributional change on the functional ν(FY)
is given by integrating up the conditional expectation of the (recentered) influence
function with respect to the changes in distribution of the covariates d(GX − FX):

∂ν(FY�t·G∗
Y
)

∂t

∣∣∣∣
t=0

=
∫

E[RIF(Y ;ν�FY)|X = x] · d(GX − FX)(x)�

where FY�t·G∗
Y

= (1 − t) · FY + t ·G∗
Y .

We next consider a particular change, a small location shift t, in the distribu-
tion of covariates X . Let Xj be a continuous covariate in the vector X , where

9Most other approaches, such as the conditional quantile regression method of Machado and
Mata (2005), have essentially proposed to estimate and integrate the whole conditional distribu-
tion, FY |X(y|X = x) over a new distribution GX of X to obtain the counterfactual unconditional
distribution of Y . See also Albrecht, Björklund, and Vroman (2003) and Melly (2005). By con-
trast, we show in Section 3 that our approach requires estimating the conditional distribution
FY |X(y|X = x) = Pr[Y > y|X = x] only at one point of the distribution. Note that these ap-
proaches do not generate a marginal effect parameter, but instead a total effect of changes in the
distribution of X on selected features (e.g., quantiles) of the unconditional distribution of Y .
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1 ≤ j ≤ k. The new distribution GX will be the distribution of a random k× 1
vector Z, where Zl =Xl for l �= j and l = 1� � � � �k, and Zj =Xj + t. In this spe-
cial case, let αj(ν) denote the partial effect of a small change in the distribution
of covariates from FX to GX on the functional ν(FY). Collecting all j entries,
we construct the k×1 vector α(ν)= [αj(ν)]kj=1. We can write the unconditional
partial effect α(ν) as an average derivative.

COROLLARY 1—Unconditional Partial Effect: Assume that dX , the boundary
of the support X of X, is such that if x ∈ dX , then fX(x) = 0. Then the vector
α(ν) of partial effects of small location shifts in the distribution of a continuous
covariate X on ν(FY) can be written using the vector of average derivatives10

α(ν)=
∫

dE[RIF(Y ;ν)|X = x]
dx

· dF(x)�(5)

2.2. The Case of Quantiles

Turning to the specific case of quantiles, consider the τth quantile qτ =
ντ(FY ) = infq{q :FY(q) ≥ τ}. It follows from the definition of the influence
function that

RIF(y;qτ) = qτ + IF(y;qτ)

= qτ + τ − 1{y ≤ qτ}
fY (qτ)

= c1�τ · 1{y > qτ} + c2�τ�

where c1�τ = 1/fY (qτ), c2�τ = qτ − c1�τ · (1 − τ), and fY (qτ) is the density of Y
evaluated at qτ. Thus

E[RIF(Y ;qτ)|X = x] = c1�τ · Pr[Y > qτ|X = x] + c2�τ�

From equation (5), the unconditional partial effect, that we denote α(τ) in the
case of the τth quantile, simplifies to

α(τ)= ∂ντ(FY�t·G∗
Y
)

∂t

∣∣∣∣
t=0

= c1�τ ·
∫

dPr[Y > qτ|X = x]
dx

· dFX(x)�(6)

where the last term is the average marginal effect from the probability response
model Pr[Y > qτ|X]. We call the parameter α(τ) = E[dE[RIF(Y�qτ)|X]/dx]
the unconditional quantile partial effect (UQPE), by analogy with the Wool-
ridge (2004) unconditional average partial effect (UAPE), which is defined as
E[dE[Y |X]/dx].11

10The expression dE[RIF(Y ;ν)|X = x]/dx is the k vector of partial derivatives [∂E[RIF(Y ;
ν)|X = x]/∂xj]kj=1.

11The UAPE is a special case of Corollary 1 for the mean (ν = μ), where α(μ) = E[dE[Y |
X]/dx] since RIF(Y�μ) = y .
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Our next result provides an interpretation of the UQPE in terms of a gen-
eral structural model, Y = h(X�ε), where the unknown mapping h(·� ·) is in-
vertible on the second argument, and ε is an unobservable determinant of the
outcome variable Y . We also show that the UQPE can be written as a weighted
average of a family of conditional quantile partial effects (CQPE), which is the
effect of a small change of X on the conditional quantile of Y :

CQPE(τ�x) = ∂Qτ[h(X�ε)|X = x]
∂x

= ∂h(x�Qτ[ε])
∂x

�

where Qτ[Y |X = x] ≡ infq{q :FY |X(q|x) ≥ τ} is the conditional quantile oper-
ator. For the sake of simplicity and comparability between the CQPE and the
UQPE, we consider the case where ε and X are independent. Thus, we can
use the unconditional form for Qτ[ε] in the last term of the above equation.12

In a linear model Y = h(X�ε) = Xᵀβ + ε, both the UQPE and the CQPE
are trivially equal to the parameter βj of the structural form for any quantile.
While this specific result does not generalize beyond the linear model, useful
connections can still be drawn between the UQPE and the underlying struc-
tural form, and between the UQPE and the CQPE. To establish these con-
nections, we define three auxiliary functions. The first function, ωτ : X → R

+,
is a weighting function defined as the ratio between the conditional density
given X = x and the unconditional density: ωτ(x) ≡ fY |X(qτ|x)/fY (qτ). The
second function, ετ : X → R, is the inverse function h−1(·� qτ), which shall ex-
ist under the assumption that h is strictly monotonic in ε. The third function,
ζτ : X → (0�1), is a “matching” function indicating where the unconditional
quantile qτ falls in the conditional distribution of Y :

ζτ(x) ≡ {s :Qs[Y |X = x] = qτ} = FY |X(qτ|X = x)�

PROPOSITION 1—UQPE and the Structural Form:
(i) Assuming that the structural form Y = h(X�ε) is strictly monotonic in ε

and that X and ε are independent, the parameter UQPE(τ) will be

UQPE(τ)=E

[
ωτ(X) · ∂h(X�ετ(X))

∂x

]

(ii) We can also represent UQPE(τ) as a weighted average of CQPE(ζτ(x)�x):

UQPE(τ)=E
[
ωτ(X) · CQPE(ζτ(X)�X)

]
�

12In this setting, the identification of the UQPE requires Fε|X to be unaffected by changes in
the distribution of covariates. The identification of the CQPE requires quantile independence
between ε and X , that is, the τ-conditional quantile of ε given X equals the τ-unconditional
quantile of ε. Independence between ε and X guarantees, therefore, that both the UQPE and
the CQPE parameters are identified.
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Result (i) of the Proposition 1 shows formally that UQPE(τ) is equal to
a weighted average (over the distribution of X) of the partial derivatives of the
structural function. In the simple case of the linear model mentioned above, it
follows that ∂h(X�ετ(X))/∂x = β and UQPE(τ) = β for all τ. More gener-
ally, the UQPE will typically depend on τ in nonlinear settings. For example,
when h(X�ε)= h̃(Xᵀβ+ ε), where h̃ is differentiable and strictly monotonic,
simple algebra yields UQPE(τ)= β · h̃′(h̃−1(qτ)), which depends on τ. Finally,
note that independence plays a crucial role here. If, instead, we had dropped
the independence assumption between ε and X , we would not be able, even
in a linear model, to express UQPE(τ) as a simple function of the structural
parameter β.13

Result (ii) shows that UQPE(τ) is a weighted average (over the distribu-
tion of X) of a family of CQPE(ζτ(X)�X) at ζτ(X), the conditional quan-
tile corresponding to the τth unconditional quantile of the distribution of
Y , qτ. But while result (ii) of Proposition 1 provides a more structural in-
terpretation of the UQPE, it is not practical from an estimation point of
view as it would require estimating h and Fε, the distribution of ε, us-
ing nonparametric methods. As shown below, we propose a simpler way
to estimate the UQPE based on the estimation of average marginal ef-
fects.

3. ESTIMATION

In this section, we discuss the estimation of UQPE(τ) using RIF regres-
sions. Equation (6) shows that three components are involved in the estima-
tion of UQPE(τ): the quantile qτ, the density of the unconditional distribution
of Y that appears in the constant c1�τ = 1/fY (qτ), and the average marginal
effect E[dPr[Y > qτ|X]/dX]. We discuss the estimation of each component
in turn and then briefly address the asymptotic properties of related estima-
tors.

The estimator of the τth population quantile of the marginal distribution
of Y is q̂τ, the usual τth sample quantile, which can be represented, as in
Koenker and Bassett (1978), as

q̂τ = arg min
q

N∑
i=1

(τ − 1{Yi − q ≤ 0}) · (Yi − q)�

13These examples are worked in detail in the working paper version of this article. See Firpo,
Fortin, and Lemieux (2007a).
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We estimate the density of Y , f̂Y (·), using the kernel density estimator14

f̂Y (q̂τ)= 1
N · b ·

N∑
i=1

KY

(
Yi − q̂τ

b

)
�

where KY (z) is a kernel function and b a positive scalar bandwidth.
We suggest three estimation methods for the UQPE based on three ways,

among many, to estimate the average marginal effect E[dPr[Y > qτ|X]/dX].
As discussed in Firpo, Fortin, and Lemieux (2009), the first two estimators
will be consistent if we correctly impose functional form restrictions. The third
estimator involves a fully nonparametric first stage and, therefore, will be con-
sistent quite generally for the average derivative parameter.

The first method estimates the average marginal effect E[dPr[Y > qτ|
X]/dX] with an OLS regression, which provides consistent estimates if Pr[Y >
qτ|X = x] is linear in x. This method, that we call RIF-OLS, consists of regress-
ing R̂IF(Y ; q̂τ) = ĉ1�τ ·1{Y > q̂τ}+ ĉ2�τ on X . The second method uses a logistic
regression of 1{Y > q̂τ} on X to estimate the average marginal effect, which is
then multiplied by ĉ1�τ. Again, the average marginal effect from this logit model
will be consistent if Pr[Y > qτ|X = x] =Λ(xᵀθτ), where Λ(·) is the cumulative
distribution function (c.d.f.) of a logistic distribution and θτ is a vector of coef-
ficients. We call this method RIF-Logit. In the empirical section, we use these
two estimators and find that, in our application, they yield estimates very close
to the fully nonparametric estimator.

The last estimation method, called RIF-NP, is based on a nonparametric esti-
mator that does not require any functional form assumption on Pr[Y > qτ|X =
x] to be consistent. We use the method discussed by Newey (1994) and estimate
Pr[Y > qτ|X = x] by polynomial series. As the object of interest is the average
of dPr[Y > qτ|X = x]/dx, once we have a polynomial function that approxi-
mates the conditional probability, we can easily take derivatives of polynomials
and average them. As shown by Stoker (1991) for the average derivative case
and later formalized in a more general setting by Newey (1994), the choice of
the nonparametric estimator for the derivative is not crucial in large samples.
Averaging any regular nonparametric estimator with respect to X yields an es-
timator that converges at the usual parametric rate and has the same limiting
distribution as other estimators based on different nonparametric methods.15

14In the empirical section we propose using the Gaussian kernel. The requirements for the
kernel and the bandwidth are described in Firpo, Fortin, and Lemieux (2009). We propose using
the kernel density estimator, but other consistent estimators of the density could be used as well.

15Nonparametric estimation of Pr[Y > qτ|X = x] could also be performed by series approx-
imation of the log-odds ratio, which would keep predictions between 0 and 1 (Hirano, Imbens,
and Ridder (2003)). Note, however, that we are mainly interested in another object, the deriva-
tive dPr[Y > qτ|X = x]/dx, and imposing that the conditional probability lies in the unit interval
does not necessarily add much structure to its derivative.
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We study the asymptotic properties of our estimators in detail in Firpo,
Fortin, and Lemieux (2009), where we establish the limiting distributions of
these estimators, discuss how to estimate their asymptotic variances, and show
how to construct test statistics. Three important results from Firpo, Fortin,
and Lemieux (2009) are summarized here. The first result is that the asymp-
totic linear expression of each one of the three estimators consists of three
components. The first component is associated with uncertainty regarding the
density; the second component is associated with the uncertainty regarding
the population quantile; and the third component is associated with the aver-
age derivative term E[dPr[Y > qτ|X]/dX]. The second result states that be-
cause the density is nonparametrically estimated by kernel methods, the rate
of convergence of the three estimators will be dominated by this slower term.
In Firpo, Fortin, and Lemieux (2009), we use a higher order expansion type
of argument to allow for the quantile and the average derivative components
to be explicitly included. By doing so, we can introduce a refinement in the
expression of the asymptotic variance. Finally, the third result is that to test
the null hypothesis that UQPE = 0, we do not need to estimate the density, as
E[dPr[Y > qτ|X]/dX] = 0 ⇔ UQPE = 0. Thus, we can use test statistics that
converge at the parametric rate. In this case, the only components that con-
tribute to the asymptotic variance are the quantile and the average derivative.

As with standard average marginal effects, we can also estimate the UQPE
for a dummy covariate by estimating E[Pr[Y > qτ|X = 1]] −E[Pr[Y > qτ|X =
0]] instead of E[dPr[Y > qτ|X]/dX] using any of the three methods discussed
above. Like in the example of union status mentioned in the Introduction, the
UQPE in such cases represents the impact of a small change in the probability
p = Pr[X = 1], instead of the small location shift for a continuous covariate
considered in Section 2.16

4. EMPIRICAL APPLICATION

In this section, we present an empirical application to illustrate how the un-
conditional quantile regressions work in practice using the three estimators
discussed above.17 We also show how the results compare to standard (con-
ditional) quantile regressions. Our application considers the direct effect of
union status on male log wages, which is well known to be different at different
points of the wage distribution.18 We use a large sample of 266,956 observa-

16See Firpo, Fortin, and Lemieux (2007a) for more detail.
17A Stata ado file that implements the RIF-OLS estimator is available on the author’s website,

http://www.econ.ubc.ca/nfortin/.
18See, for example, Chamberlain (1994) and Card (1996). For simplicity, we maintain the

assumption that union coverage status is exogenous. Studies that have used selection mod-
els or longitudinal methods to allow the union status to be endogenously determined (e.g.,
Lemieux (1998)) suggest that the exogeneity assumption only introduces small biases in the esti-
mation.

http://www.econ.ubc.ca/nfortin/
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tions on U.S. males from the 1983–1985 Outgoing Rotation Group (ORG)
supplement of the Current Population Survey.19

Looking at the impact of union status on log wages illustrates well the differ-
ence between conditional and unconditional quantiles regressions. Consider,
for example, the effect of union status estimated at the 90th and 10th quan-
tiles. Finding that the effect of unions (for short) estimated using conditional
quantile regressions is smaller at the 90th than at the 10th quantile simply
means that unions reduce within-group dispersion, where the “group” consists
of workers who share the same values of the covariates X (other than union
status). This does not mean, however, that increasing the rate of unionization
would reduce overall wage dispersion as measured by the difference between
the 90th and the 10th quantiles of the unconditional wage dispersion. To an-
swer this question we have to turn to unconditional quantile regressions.

In addition to the within-group wage compression effect captured by condi-
tional quantile regressions, unconditional quantile regressions also capture an
inequality-enhancing between-group effect linked to the fact that unions in-
crease the conditional mean of wages of union workers. This creates a wedge
between otherwise comparable union and non-union workers.20 As a result,
unions tend to increase wages for low wage quantiles where both the between-
and within-group effects go in the same direction, but can decrease wages for
high wage quantiles where the between- and within-group effects go in oppo-
site directions.

As a benchmark, Table I reports the RIF-OLS estimated coefficients of the
log wages model for the 10th, 50th, and 90th quantiles. The results (labeled
UQR for unconditional quantile regressions) are compared with standard OLS
(conditional mean) estimates and with standard (conditional) quantile regres-
sions (CQR) at the corresponding quantiles. For the sake of comparability, we
use simple linear specifications for all estimated models. We also show in Fig-
ure 1 how the estimated UQPE of unions changes when we use the RIF-Logit
and RIF-NP methods instead.

Interestingly, the UQPE of unions first increases from 0.198 at the 10th
quantile to 0.349 at the median, before turning negative (−0.137) at the 90th
quantile. These findings strongly confirm the point discussed above that unions

19We start with 1983 because it is the first year in which the ORG supplement asked about
union status. The dependent variable is the real log hourly wage for all wage and salary workers,
and the explanatory variables include six education classes, married, non-white, and nine experi-
ence classes. The hourly wage is measured directly for workers paid by the hour and is obtained
by dividing usual earnings by usual hours of work for other workers. Other data processing details
can be found in Lemieux (2006).

20In the case of the variance, it is easy to write down an analytical expression for the between-
and within-group effects (see, for example, Card, Lemieux, and Riddell (2004)) and find the
conditions under which one effect dominates the other. It is much harder to ascertain, however,
whether the between- or the within-group effect tends to dominate at different points of the wage
distribution.
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TABLE I

COMPARING OLS, UNCONDITIONAL QUANTILE REGRESSIONS (UQR), AND CONDITIONAL
QUANTILE REGRESSIONS (CQR); 1983–1985 CPS DATA FOR MENa

10th Centile 50th Centile 90th Centile

OLS UQR CQR UQR CQR UQR CQR

Union status 0�179 0�195 0�288 0�337 0�195 −0�135 0�088
(0�002) (0�002) (0�003) (0�004) (0�002) (0�004) (0�003)

Non-white −0�134 −0�116 −0�139 −0�163 −0�134 −0�099 −0�120
(0�003) (0�005) (0�004) (0�004) (0�003) (0�005) (0�005)

Married 0�140 0�195 0�166 0�156 0�146 0�043 0�089
(0�002) (0�004) (0�004) (0�003) (0�002) (0�004) (0�003)

Education
Elementary −0�351 −0�307 −0�279 −0�452 −0�374 −0�240 −0�357

(0�004) (0�009) (0�006) (0�006) (0�005) (0�005) (0�007)
HS dropout −0�190 −0�344 −0�127 −0�195 −0�205 −0�068 −0�227

(0�003) (0�007) (0�004) (0�004) (0�003) (0�003) (0�005)
Some college 0�133 0�058 0�058 0�179 0�133 0�154 0�172

(0�002) (0�004) (0�003) (0�004) (0�003) (0�005) (0�004)
College 0�406 0�196 0�252 0�464 0�414 0�582 0�548

(0�003) (0�004) (0�005) (0�005) (0�004) (0�008) (0�006)
Post-graduate 0�478 0�138 0�287 0�522 0�482 0�844 0�668

(0�004) (0�004) (0�007) (0�005) (0�004) (0�012) (0�006)

Constant 1�742 0�970 1�145 1�735 1�744 2�511 2�332
(0�004) (0�005) (0�006) (0�006) (0�004) (0�008) (0�005)

aRobust standard errors (OLS) and bootstrapped standard errors (200 replications) for UQR and CQR are given
in parentheses. All regressions also include a set of dummies for labor market experience categories.

have different effects at different points of the wage distribution.21 The con-
ditional quantile regression estimates reported in the corresponding columns
show, as in Chamberlain (1994), that unions shift the location of the condi-
tional wage distribution (i.e., positive effect on the median) but also reduce
conditional wage dispersion.

The difference between the estimated effect of unions for conditional and
unconditional quantile regression estimates is illustrated in more detail in
panel A of Figure 1, which plots both conditional and unconditional quan-
tile regression estimates of union status at 19 different quantiles (from the 5th
to the 95th).22 As indicated in Table I, the unconditional union effect is highly
nonmonotonic, while the conditional effect declines monotonically. More pre-
cisely, the unconditional effect first increases from about 0.1 at the 5th quan-
tile to about 0.4 at the 35th quantile, before declining and eventually reaching

21Note that the effects are very precisely estimated for all specifications and the R-squared
(close to 0.40) are sizeable for cross-sectional data.

22Bootstrapped standard errors are provided for both estimates. Analytical standard errors for
the UQPE are nontrivial and derived in Firpo, Fortin, and Lemieux (2009).
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FIGURE 1.—Unconditional and conditional quantile regression estimates of the effect of union
status on log wages.

a large negative effect of over −0.2 at the 95th quantile. By contrast, stan-
dard (conditional) quantile regression estimates decline almost linearly from
about 0.3 at the 5th quantile to barely more than 0 at the 95th quantile.

At first glance, the fact that the effect of unions is uniformly positive for
conditional quantile regressions, but negative above the 80th quantile for un-
conditional quantile regressions may seem puzzling. Since Proposition 1 states
that the UQPE is a weighted average of the CQPEs, for the UQPE to be neg-
ative it must be that some of the CQPEs are negative too. Unlike the UQPE,
however, the CQPE generally depends on X . For the sake of clarity, in Fig-
ure 1 we report the conditional quantile regressions using a highly restricted
specification where the effect of unions is not allowed to depend on a rich
set of other covariates (no interaction terms). When we relax this assumption,
we find that conditional quantile regressions estimates are often negative for
more “skilled” workers (in high education/high labor market experience cells).
However, these negative effects are averaged away by positive effects in the
more parsimonious conditional quantile regressions. On the other hand, be-
cause the matching function ζτ(x) from Proposition 1 reassigns some of the
negative union effects from the s-conditional quantiles to the τ-unconditional
quantiles at the top of the wage distribution and because the weighting func-
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tion ωτ(x) puts more weight on these workers, the UQPE becomes negative
for workers at the top end of the wage distribution.

Panel B shows that the RIF-OLS and RIF-Logit estimates of the UQPE are
very similar, which confirms the “folk wisdom” in empirical work that, in many
instances, using a linear probability model or a logit gives very similar average
marginal effects. More importantly, Figure 1 shows that the RIF-NP estimates
are also very similar to the estimates obtained using these two simpler meth-
ods.23 This suggests that, at least for this particular application, using a simple
linear specification for the unconditional quantile regressions provides fairly
accurate estimates of the UQPE. The small difference between RIF-OLS and
RIF-NP estimates stands in sharp contrast to the large differences between
the RIF-OLS estimates and the conditional quantile regression estimates in
panel A.

The large differences between the conditional and unconditional quan-
tile regressions results have important implications for understanding recent
changes in wage inequality. There is a long tradition in labor economics of
attempting to estimate the effect of unionization on the (unconditional) distri-
bution of wages.24 The unconditional quantile regressions provide a simple and
direct way to estimate this effect at all points of the distribution. The estimates
reported in Figure 1 show that unionization progressively increases wages in
the three lower quintiles of the distribution, peaking around the 35th quantile,
and actually reduces wages in the top quintile of the distribution. As a result,
the decline in unionization over the last three decades should have contributed
to a reduction in wage inequality at the bottom end of the distribution and to
an increase in wage inequality at the top end. This precisely mirrors the ac-
tual U-shaped changes observed in the data.25 By contrast, conditional quan-
tile regressions results describe a positive but monotonically declining effect
of unionization on wages, which fails to account for the observed pattern of
changes in the wage distribution.

5. CONCLUSION

In this paper, we propose a new regression method to estimate the effect
of explanatory variables on the unconditional quantiles of an outcome vari-
able. The proposed unconditional quantile regression method consists of run-
ning a regression of the (recentered) influence function of the unconditional
quantile of the outcome variable on the explanatory variables. The influence

23The RIF-NP is estimated using a model fully saturated with all possible interactions (up
to 432 parameters) of our categorical variables, omitting for each estimated quantile the interac-
tions that would result in perfect predictions. For the RIF-OLS, the figure graphs the estimated
coefficients, while for the RIF-Logit and RIF-NP, the average unconditional partial effects are
displayed.

24See, for example, Card (1996) and DiNardo, Fortin, and Lemieux (1996).
25See, for example, Autor, Katz, and Kearney (2008) and Lemieux (2008).
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function is a widely used tool in robust estimation that can easily be computed
for each quantile of interest. We show how standard partial effects, that we
call unconditional quantile partial effects (UQPE), can be estimated using our
regression approach.

Another important advantage of the proposed method is that it can be easily
generalized to other distributional statistics such as the Gini, the log variance,
or the Theil coefficient. Once the recentered influence function for these sta-
tistics is computed, all that is required is running a regression of the resulting
RIF on the covariates. We discuss in a companion paper (Firpo, Fortin, and
Lemieux (2007b)) how our regression method can be used to generalize tra-
ditional Oaxaca–Blinder decompositions, devised for means, to other distribu-
tional statistics.

Finally, our method can be useful even when the independence assumption
is relaxed. However, the interpretation of the identified parameter in terms of
its relation to the structural function linking observed and unobserved factors
to the dependent variable would change. Yet, the UQPE parameter would still
be defined by holding unobserved variables and other components of X fixed
when evaluating the marginal effect of changes in the distribution of Xj on
a given quantile of the unconditional distribution of Y . Such structural aver-
aged marginal effects can be useful in practice. We plan to show in future work
how our approach can be used when instrumental variables are available for
the endogenous covariates and how consistent estimates of marginal effects
can be obtained by adding a control function in the unconditional quantile re-
gressions.

APPENDIX

PROOF OF THEOREM 1: The effect on the functional ν of the distribution
of Y of an infinitesimal change in the distribution of X from FX toward GX is
defined as ∂ν(FY�t·G∗

Y
)/∂t|t=0. Given that equation (3) also applies to RIF(y;ν),

it follows that

∂ν(FY�t·G∗
Y
)

∂t

∣∣∣∣
t=0

=
∫

RIF(y;ν) · d(G∗
Y − FY)(y)�

Substituting in equations (1) and (2), and applying the fact that E[RIF(Y ;
ν)|X = x] = ∫

y
RIF(y;ν) · dFY |X(y|X = x) yields

∂ν(FY�t·G∗
Y
)

∂t

∣∣∣∣
t=0

=
∫ (∫

RIF(y;ν) · dFY |X(y|X = x)

)
· d(GX − FX)(x)

=
∫

E[RIF(Y ;ν)|X = x] · d(GX − FX)(x)� Q.E.D.
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PROOF OF COROLLARY 1: Consider the distribution G̃X(·; t) of the random
vector Z = X + tj , where tj = t · ej and ej = [0� � � � �0�1�0� � � � �0]ᵀ, which is
a k vector of zeros except at the jth entry, which equals 1. The density of Z
is g̃X(x; t) = fX(x − tj).26 The counterfactual distribution G̃∗

Y (·; t) of Y using
FY |X and G̃X(·; t) will be

G̃∗
Y (y; t) =

∫
FY |X(y|x) · fX(x− tj) · dx

=
∫

FY |X(y|x) · fX(x) · dx

− t ·
∫

FY |X(y|x) · ∂fX(x)/∂xj

fX(x)
· fX(x) · dx+χt

= FY(y)+ t ·
∫

FY |X(y|x) · eᵀ
j · lX(x) · fX(x) · dx+χt�

where the second line is obtained using a first-order expansion, where lX(x) =
−d ln(fX(x))/dx= −f ′

X(x)/fX(x), and f ′
X(x)=[∂fX(x)/∂xl]kl=1 is the k vector

of partial derivatives of fX(x). Therefore, χt =O(t2). Now, define

gX(x)= fX(x) · (1 + eᵀ
j · lX(x)) and GX(x)=

∫ x

gX(ξ) · dξ�

By the usual definition of the counterfactual distribution G∗
Y of Y using FY |X

and GX , we have

G∗
Y (y) =

∫
FY |X(y|x) · gX(x) · dx

= FY(y)+
∫

FY |X(y|x) · eᵀ
j · lX(x) · fX(x) · dx�

Thus we can write

G̃∗
Y (y; t)= FY(y)+ t · (G∗

Y (y)− FY(y))+χt = FY�t·G∗
Y

+χt�

Hence,

αj(ν) ≡ lim
t↓0

ν(G̃∗
Y (·; t))− ν(FY)

t

= lim
t↓0

(
ν(FY�t·G∗

Y
)− ν(FY)

t

)
+ lim

t↓0

(
ν(G̃∗

Y (·; t))− ν(FY�t·G∗
Y
)

t

)

= ∂ν(FY�t·G∗
Y
)

∂t

∣∣∣∣
t=0

+ lim
t↓0

(
ν(FY�t·G∗

Y
+χt)− ν(FY�t·G∗

Y
)

t

)
�

26The density of X is fX(·) and, by definition of densities,
∫ x

fX(ξ) · dξ = FX(x).
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where the last term vanishes:

lim
t↓0

(
ν(FY�t·G∗

Y
+χt)− ν(FY�t·G∗

Y
)

t

)
= lim

t↓0

(
O(χt)

t

)
= lim

t↓0

(
O(|t|)) =O(1) · lim

t↓0
t�

Using Theorem 1, it follows that

αj(ν) = ∂ν(FY�t·G∗
Y
)

∂t

∣∣∣∣
t=0

=
∫

E[RIF(Y ;ν)|X = x] · d(GX − FX)(x)

=
∫

E[RIF(Y ;ν)|X = x] · eᵀ
j · lX(x) · fX(x) · dx�

Applying partial integration and using the condition that fX(x) is zero at the
boundary of the support yields

eᵀ
j ·

∫
E[RIF(Y ;ν)|X = x] · lX(x) · fX(x) · dx

=
∫

eᵀ
j · dE[RIF(Y ;ν)|X = x]

dx
· fX(x) · dx

=
∫

∂E[RIF(Y ;ν)|X = x]
∂xj

· fX(x) · dx�

Hence

αj(ν)=
∫

∂E[RIF(Y ;ν�F)|X = x]
∂xj

· fX(x) · dx�
Q.E.D.

PROOF OF PROPOSITION 1:
(i) Starting from equation (6),

UQPE(τ)= − 1
fY (qτ)

·
∫

dPr[Y ≤ qτ|X = x]
dx

· dFX(x)�

and assuming that the structural form Y = h(X�ε) is monotonic in ε, so that
ετ(x) = h−1(x�qτ), we can write

Pr[Y ≤ qτ|X = x] = Pr[ε≤ ετ(X)|X = x]
= Fε|X(ετ(x)|x) = Fε(ετ(x))�

Taking the derivative with respect to x, we get

d
Pr[Y ≤ qτ|X = x]

dx
= fε(ετ(x)) · ∂h

−1(x�qτ)

∂x
�
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Defining H(x�ετ(x)�qτ)= h(x�ετ(x))− qτ , it follows that

∂h−1(x�qτ)

∂x
= ∂ετ(x)

∂x
= − ∂H(x�ετ�qτ)/∂x

∂H(x�ετ�qτ)/∂ετ

= − ∂h(x�ετ)/∂x

∂h(x�ετ)/∂ετ

= −∂h(x�ετ)

∂x
·
(
∂h(x�ε)

∂ε

∣∣∣∣
ε=ετ

)−1

�

Similarly,

∂h−1(x�qτ)

∂qτ

= −∂H(x�ετ�qτ)/∂qτ

∂H(x�ετ�qτ)/∂ετ

=
(
∂h(x�ε)

∂ε

∣∣∣∣
ε=ετ

)−1

�

Hence,

fY |X(qτ;x) = d
Pr[Y ≤ qτ|X = x]

dqτ

= d
Fε(h

−1(x�qτ))

dqτ

= fε(ετ(x)) · ∂h
−1(x�qτ)

∂qτ

=
(
∂h(x�ε)

∂ε

∣∣∣∣
ε=ετ

)−1

· fε(ετ(x))�

Substituting in these expressions yields

UQPE(τ)

= −(fY (qτ))
−1 ·

∫
d

Pr[Y ≤ qτ|X = x]
dx

· dFX(x)

= (fY (qτ))
−1

·
∫ (

fε(ετ(x)) · ∂h(x�ετ)

∂x
·
(
∂h(x�ε)

∂ε

∣∣∣∣
ε=ετ

)−1)
· dFX(x)

= (fY (qτ))
−1 ·E

[
fY |X(qτ|X) · ∂h(X�ετ(X))

∂x

]

=E

[
fY |X(qτ|X)

fY(qτ)
· ∂h(X�ετ(X))

∂x

]

=E

[
ωτ(X) · ∂h(X�ετ(X))

∂x

]
�

(ii) Let the CQPE be defined as

CQPE(τ�x)= d
Qτ[Y |X = x]

dx
�
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where τ denote the quantile of the conditional distribution: τ = Pr[Y ≤
Qτ[Y |X = x]|X = x]. Since Y = h(X�ε) is monotonic in ε,

τ = Pr[Y ≤ Qτ[Y |X = x]|X = x]
= Pr

[
ε≤ h−1(X�Qτ[Y |X = x])|X = x

]
= Fε

(
h−1(x�Qτ[Y |X = x]))�

Thus, by the implicit function theorem,

CQPE(τ�x)

= −fε(h
−1(x�Qτ[Y |X = x])) · ∂h−1(x�Qτ[Y |X = x])/∂x

fε(h−1(x�Qτ[Y |X = x])) · ∂h−1(x�q)/∂q|q=Qτ [Y |X=x]

= −(−∂h
(
x�h−1(x�Qτ[Y |X = x]))/∂x)

·
(
∂h(x�ε)

∂ε

∣∣∣∣
ε=h−1(x�Qτ[Y |X=x])

)−1/(
∂h(x�ε)

∂ε

∣∣∣∣
ε=h−1(x�Qτ[Y |X=x])

)−1

= ∂h(x�h−1(x�Qτ[Y |X = x]))
∂x

�

Using the matching function ζτ(x) ≡ {s :Qs[Y |X = x] = qτ}, we can write
CQPE(s�x) for the τth conditional quantile at a fixed x (Qs[Y |X = x]) that
equals (matches) the τth unconditional quantile (qτ) as

CQPE(s�x) = CQPE(ζτ(x)�x)

= ∂h(x�h−1(x�Qs[Y |X = x]))
∂x

= ∂h(x�h−1(x�qτ))

∂x
= ∂h(X�ετ(X))

∂x
�

Therefore,

UQPE(τ) = E

[
ωτ(X) · ∂h(X�ετ(X))

∂x

]
= E[ωτ(X) · CQPE(ζτ(X)�X)]� Q.E.D.
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