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Abstract

This paper proposes a bridge between the Herding literature and the literature
on Rational Expectations under asymmetric information. In particular we examine
how the presence of discrete investment decisions affects the properties of a market
equilibrium where information is costly to acquire. We choose to focus on the case
where individual decisions are discrete since this appears to be the key element behind
herding results. Our objective is to examine whether the equilibrium occurrence of
herding type phenomena is likely to arise when actions are simultaneous (as opposed
to sequential) and when prices can convey information. Our main result is that,
as long as acquiring information is not too costly, the unique equilibrium outcome
of our model is characterized by fluctuations in investment that resemble herding
behavior. Specifically, equilibrium realizations of prices and investment may be high
simply because uninformed investors are buying under the impression that the high
price is a signal of good investment opportunities. Moreover, we find an interesting
tradeoff between the size and the frequency of aggregate allocative errors, whereby as
the cost of gathering information declines the size of allocative errors increases, even
though there occurrence decreases. We believe these results provide new impetus
for the view that herding type behavior may be relevant for understanding market
fluctuations and even eventually business cycle phenomena.
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1 Introduction

Understanding fluctuations in aggregate investment is a key element towards a better compre-

hension of business cycle phenomena. Over the last twenty five years, there has been enormous

research effort devoted to this task. As discussed by Caballero (1997), these efforts have involved

the examination of non-convex adjustment costs, credit market constraints and imperfect infor-

mation. In this paper, we pursue this line of research one step further by illustrating how certain

aspects of aggregate fluctuations in investment may be better understood when some of these

elements are allowed to interact. In particular, we examine the equilibrium determination of

aggregate investment in a market where information is costly to acquire and individual invest-

ment decisions are discrete (or at least bounded). Our analysis explores how the allocation of

investment in this environment is affected by the information revealed in prices. We have chosen

to focus on the particular case where individual investment decisions are discrete for two rea-

sons. First, as suggested by the investment literature, many investment decisions are lumpy and

credit constraints may limit individuals from infinitely replicating such projects. Hence, if such

is the case, it appears appropriate to model individual investment decisions as discrete. Second,

the herding literature suggests that information may aggregate improperly when decisions are

discrete (see Gale (1996) for a summary of work in this area). However, since the herding liter-

ature generally examines situations where investors act sequentially, it is of interest to examine

whether the insights derived in this literature extend to a market (non-sequential) situation.

The main finding of this paper is that the interaction between decentralized information

gathering and discreteness of investment decisions at the individual level greatly affects how

equilibrium prices reveal information and how this translates into aggregate investment fluctua-

tions. In effect, we show how the equilibrium forces that shape the aggregation and acquisition

of information in our environment give rise to an outcome which necessarily involves equilibrium

randomness; that is, occasional and unpredictable periods in which the behavior of aggregate

investment is primarily driven by the mass behavior of uninformed investors as opposed to being

driven by the decisions of informed traders. In a sense, our model explains as an equilibrium

outcome what may be interpreted by an observer as herding behavior or animal spirits. However,

as we will discuss, this equilibrium randomness is not due to multiple equilibria, but instead
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is more akin to the randomness arising endogenously in games involving mixed strategies. It

should be emphasized that we are not the first to note the possibility of endogenous equilibrium

randomness in a market with dispersed information. In particular, this has been previously

discussed in the rational expectations literature by Dutta and Morris (1997) and DeMarzo and

Skiadas (1998); however, to our knowledge this is the first paper in which such randomness

arises as the unique equilibrium outcome and in which it clearly reflects a necessary balancing

of equilibrium forces.

Although our model is very simple and stylized, it offers interesting insight into the forces

determining fluctuations in aggregate investment. For example, our model provides an equilib-

rium explanation to occasional but large allocative errors in investment even when investors are

sophisticated. In effect, we show why the probability of a large allocative error is actually higher

when individuals can engage in information gathering activities than when they have no access

to information. Hence, the model offers an explanation to a type of boom and bust phenomena

– that is, periods of excessively high or low investment when interpreted after the fact – even

when economies are informationally advanced. The reason for such booms and busts in invest-

ment is closely related to the reason for the Grossman and Stiglitz’s (1980) result regarding

the impossibility of informationally efficient markets; that is, booms and busts arise endoge-

nously in our model as a means of maintaining incentives to acquire information. Therefore, our

model indicates that occasional large errors in aggregate investment may be inherent to the well

functioning of a market economy since it is only in these periods that informed individuals can

reap the benefits of gathering information. However, in contrast to Grossman and Stiglitz’s, the

equilibrium outcome of our model does not converge to the informationally efficient outcome as

noise trading goes to zero. Instead, even as the importance of noise traders go to zero, we show

that the information revealed in prices remains bounded away from full information revelation

and the possibility of large allocative errors in aggregate investment remains the norm.

This paper can be viewed as bridging the gap between two segments of literature and high-

lights the resulting implications for the behavior of aggregate investment. In particular, on the

one hand our approach is clearly in the tradition of the rational expectations literature which

emphasizes the role of prices in aggregating and transmitting information, as well as the inter-
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action of this process with the incentives to acquire and use private information. On the other

hand, by focusing on a situation where individual level decisions are discrete, our approach is

also related to the literature on social learning and herding, which focuses on situations where

information is dispersed and individual investment decisions are discrete. Work in this area

includes Banerjee (1992), Bikhchandani, Hirshleifer and Welch (1992), Caplin and Leahy (1993,

1994), Chamley and Gale (1994) and Zeira (1994). However, in contrast to this latter literature

which generally adopts a sequential approach and favors a game theoretic analysis, our approach

is firmly anchored in Walrasian and Rational Expectation tradition in that market outcomes are

analyzed as stable outcome of a situation with simultaneous determination of prices and quan-

tities. In short, our paper examines the implications for aggregate investment of embedding

in the rational expectations literature an element found to be important in the social learning

literature; that is, discrete decisions. Finally, it should be noted that our paper is very close in

spirit to that of Avery and Zemsky (1997) since they have examined whether results found in

the herding literature extend to situations in which prices can reveal information. However, the

modeling approach we adopt is methodologically very different than that of Avery and Zemsky,

whereby they maintain a sequential framework while we adopt a market equilibrium approach.

The remaining sections of the paper are structured as follows. In Section 2, we present

the environment under study. 1 In Section 3, we characterize equilibrium behavior. We begin

by analyzing a benchmark case in which individuals cannot acquire private information. This

benchmark case allows us to introduce the notion of equilibrium we use throughout our analysis.

In particular, we follow the work of Dutta and Morris (1997) and DeMarzo and Skiadas (1998)

in using an extension of the standard notion of rational expectations equilibria which does not

exclude the possibility of endogenous randomness. In Section 3.2 we provide the main results

of the paper regarding the determination of prices and aggregate investment when information

can be acquired at a cost and individual decisions are discrete. Section 4 concludes. Proofs of

all propositions are provided in an appendix.

1The environment we study is similar to that analyzed by Barlevy and Veronesi (1999) in several dimensions.
However, the two differ in at least one essential dimension. Our analysis concentrates on the case where noise
traders are a small fraction of the market, while Barlevy and Veronesi focus on the opposite case.
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2 The Model

It is helpful to introduce our model by referring to a specific example.

Period 1 Period 2

developers: acquire information developers: sell office building

buy office building

construction workers: sell office building firms: buy office building

The setting is one where there is a set of developers who must each decide whether to order

the construction of an office building from one of many firms in the construction sector. Before

doing so, each developer may engage into research about future demand conditions in the office

rental market. The objective of a developer is to profit from her investment by meeting future

demand for office space. Thus, we think of a developer as an intermediary who profits from

transferring goods across time, bringing the supply of office space (say, from the construction

sector) and the demand for office space (say, from the services sector) together. Our focus is on

the determination of aggregate investment by the developers in a context where the expectation

they hold about future demand is fundamental to their behavior. In particular, we will examine

this problem in a market economy where there is initially noise trading, but the amount of

noise trading is small (in a well defined sense) and will eventually be taken to zero. Hence, our

analysis is one where aggregate investment activity is essentially dominated by rational actors.

All other aspects of the problem will be kept as simple as possible as to ease exposition.

Formally, we consider a two-period economy. In the first period a continuum of potential

investors, with unit measure, must decide whether to purchase or not one unit of capital (a

building) at the price p1. Investment decisions are denoted by xi ∈ {0, 1}, for each agent

i ∈ [0, 1]. The price of capital is determined by a supply function p1 = s Q1 (s > 0) where

Q1 is the aggregate quantity in the market. In the second period, each investor has access to

a common production technology which transforms one unit of capital into one unit of output.

The only decision to be made is how much output yi to sell at the price p2 so as to maximize

profits. Markets in both periods are competitive and agent i’s profits are simply given by
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p2yi − p1xi, where yi ≤ xi. Before going further, it is worth noting that our main results will

carry through under continuous but bounded investment decisions, as we will discuss later, or

under risk aversion with discrete decisions.

The price of the second period consumption good is given by a function p2 = θ−dQ2 (d ≥ 0),

where Q2 is the aggregate quantity in the market and θ denotes the state of the world and it is

assumed to be a random variable

θ̃ =




θh with probability µ

θl with probability 1− µ,

(2.1)

where θh > θl > 0 and µ ∈ (1/2, 1). Throughout the paper we will adopt the convention

that random variables will be denoted with a tilde, while the same variables without a tilde

denote particular realizations. In order to guarantee that solutions are interior we assume that

(s + d) > θh.

Before investment decisions are made, the value of θ̃ is determined and potential investors

can learn the realization of θ̃ at a cost of c > 0. We denote agent i’s information acquisition

decision by zi ∈ {0, 1}. At the time investment decisions are made, thus, each agent will be

either (perfectly) informed, if zi = 1, or uninformed, if zi = 0. 2 In addition to rational investors,

there is noise trading. We assume that there is a measure k̃ of noise traders investing in the first

period and selling output in the second period, where

k̃ =




k̄ with probability ρ

0 with probability 1− ρ,

(2.2)

with ρ ∈ (0, 1
2) 3 and 0 < (1 + ρ) k̄ < min {θl/(s + d), 1 − θh/(s + d)}. This last condition makes

2While allowing for noisy signals does not change our main results, it obscures the analysis as it adds exogenous
randomness to the economy.

3This restriction is not necessary for our main results but allows the statement of Proposition 4 to be much
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sure that noise trading is small relative to the market, thus allowing us to concentrate on those

instances where market activity is dominated by rational investments. The following tabulation

summarizes the exogenous distribution of states of demand and noise:

Table 1: Prob. Dist. of Exogenous States (Pr (θ, k))

k̃ = k̄ k̃ = 0

θ̃ = θh µ ρ µ (1− ρ)

θ̃ = θl (1− µ) ρ (1− µ) (1− ρ)

The timing of the model is as follows. In the first period, the investment market opens.

When this market is open, there is a simultaneous determination of information acquisition

decisions, the first period prices, and the investment decisions. In period 2, demand is realized

and investors supply the market, with the second period price adjusting to equate supply and

demand. Investors’ profits are realized at the end of the second period.

Second Period

Since the interesting aspect of our analysis relates to the outcome in the first period, it is best

to immediately solve for the equilibrium outcome of the second period and use the resulting

relationship to simplify the analysis throughout the paper. To this end, note that as long as

the price of the consumption good p2 is positive, optimal behavior in the second period implies

that every investor supplies all of her output to the market. Market clearing in period 2 then

requires that

p̃2 = θ̃ − d

(∫ 1

0
xi di + k̃

)
, (2.3)

and market clearing in period 1 implies

p̃1 = s

(∫ 1

0
xi di + k̃

)
. (2.4)

simpler.



7

Together, the market clearing conditions (2.3) and (2.4) implicitly define the price of the

consumption good as a function of the price of capital (p1) and the state of demand (θ). Let

p2

(
p̃1, θ̃

)
denote such a function. Each investor’s profit is then given by

p2

(
p̃1, θ̃

)
− p̃1 = θ̃ − s + d

s
p̃1. (2.5)

It is worth noting that aggregate investment in period 1 will have an impact on period

2’s price which in turn will affect the profitability of period 1’s individual investments. This

interaction is captured by (2.5) and will be used throughout the paper without further reference.

3 Equilibrium Analysis

As is standard in the rational expectations literature, our goal is to determine the equilibrium

properties of the set of endogenous random variables – the price p̃1, the investment levels x̃i and

the information acquisition decisions z̃i— as a function of the exogenous random variables (θ̃

and k̃). In particular, we want to characterize the joint distribution of these variables under the

requirements that, for all realizations of the random variables, the first-period investment market

clears and individual investors are satisfied with their allocations (xi, zi). 4 Moreover, we want

to impose the additional weak requirements that allocations are anonymous (the distributions

of x̃i and z̃i are independent of i) and that the price cannot reveal what no one knows, that is,

if zi = 0 for all i and for all p1, then p̃1 must be independent of θ̃. In other words, we want to

characterize the joint distribution of p̃1, x̃i, z̃i (conditional on all realizations of θ̃ and k̃) which

satisfies these conditions. However, as noted by Dutta and Morris (1997) and DeMarzo and

Skiadas (1998), these requirements alone do not necessarily imply that the mapping from states

to prices is deterministic. For example, it is possible that the conditional distribution of the

price, which we will denote by δ(p̃1 | θ, k), be non-degenerate. Hence, one must take a stand

on whether or not it is desirable to force such a distribution to be degenerate. Our choice is to

follow Dutta and Morris (1997) and DeMarzo and Skiadas (1998), among others, and not to a

4In the interest of clarity of exposition, our discussion no longer refers to the individual rationality and market
clearing conditions for period 2 since these are implicit in our definition of p2

(
p̃1, θ̃

)
, as it has been explained

above.
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priori force such a deterministic mapping since such a restriction does not appear warranted.

This opens the possibility of endogenous randomness to arise as an equilibrium phenomenon,

where by endogenous randomness we mean randomness that is not a deterministic function

of fundamentals. We think that allowing such a possibility is important in our context since

herding type behavior, if it is to arise in a simultaneous-market setting, it is likely to take the

form of endogenous randomness.

In order to clearly expose the notion of equilibrium we use in the paper, we will proceed in

two steps. In Section 3.1, we consider the case where agents in the economy do not have access to

private information. This eliminates momentarily the choice of whether to acquire information

or not and hence the presence of informed investors in the market. This simplification will

allow us to illustrate the equilibrium concept we use. Our case of interest, where information

acquisition is endogenous, is the focus of Section 3.2.

3.1 A Benchmark: The Economy Without Private Information

In this section we examine the case where no one in the economy has access to information.

Thus, the economy consists only of rational uninformed agents and noise traders. The object is

to characterize the joint distribution of p̃1 and x̃i conditional on θ and k. Given the discreteness

of the allocations, any equilibrium that treats individuals equally will necessarily require that

individuals receive the good with a probability strictly between zero and one. Hence, it is

necessary to discuss the appropriate notion of individual rationality to be used in this case.

The standard notion of individual rationality would simply impose that for all realizations

of x̃i, xi should optimize the agents objective given prices as indicated below.

xi ∈ arg max
x̂∈{0,1}

{
E
[(

p2

(
p̃1, θ̃

)
− p̃1

)
x̂ | p1

]}
.

However, in the case where there can be information revelation by equilibrium outcomes and

where individual allocations have a random component, it appears most reasonable to impose

that agents remain satisfied with there allocation even after they observe the realization of x̃i.

In other words, in a market setting where agents are ex ante indifferent between receiving or not
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a good, agents should not want to change (or re-optimize) their allocation after it is delivered to

them. The most obvious way to guarantee that such ”regret” does not occur is to also require

the following ex post individual rationality condition

xi ∈ arg max
x̂∈{0,1}

{
E
[(

p2

(
p̃1, θ̃

)
− p̃1

)
x̂ | p1, xi

]}
.

It is worth noting that ex ante individual rationality immediately implies ex post individual

rationality whenever the optimal allocations are not random. The extra requirement of ex post

individual rationality only has bite whenever the distribution of x̃i conditional on the price is

non-degenerate.

With this extended notion of individual rationality in mind, we can now present a concise

definition of equilibrium.

Definition 1 An equilibrium for the benchmark economy is a joint distribution for p̃1 and x̃i

conditional on θ and k, such that for all realizations of both endogenous and exogenous variables

(a) Individual rationality is satisfied.

(b) The investment market clears.

As is standard in the rational expectations literature, an equilibrium consists of a conditional

distribution for the endogenous variables which are the price and the allocations. Condition (a)

requires that individual allocations are optimal given the information revealed in the price and,

if relevant, the information revealed in the realization of x̃i. Note that, in addition, we are

imposing an anonymity condition which requires all individuals to be treated ex ante identically

irrespective of their identity i.

The equilibrium analysis of this simple benchmark economy is designed to illustrate the

following phenomena. First, that randomness in individual allocations arise naturally, and often

necessarily, as an equilibrium outcome in the presence of discrete decisions. Secondly, that

our generalization of the conventional notion of a rational expectations equilibrium to allow
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for endogenous randomness in prices does not necessarily give rise to such non-fundamental

randomness. In effect, in this case, it will not give rise to an endogenous randomness in prices.

In what follows, it will be helpful to have defined the prices that would prevail in period 1 if

all agents had perfect information about future demand. Therefore, let pf (θ) ≡ θs/(s + d), for

θ ∈ {θl, θh}, and note that pf (θ) is the unique price p1 that solves p2 (p1, θ)− p1 = 0. We will

refer to pf (θ) as the full-information price in state θ.

Proposition 1 The unique equilibrium of the benchmark economy is such that 5 6

supp[δ] = pn = µ pf (θh) + (1− µ) pf (θl) ,

P r(p1 = pn | k, θ) = δ (pn | k, θ) = 1, ∀ k θ,

Pr (xi = 1 | θ, k, pn) =




s−1pn − k̄ if k = k̄

s−1pn if k = 0.

Thus, the equilibrium in this case is rather simple and intuitive, with the price obviously

not conveying any information about the state of demand since no one has such information.

What is interesting to note about the benchmark economy is how the market equilibrium is

supported. In particular, we emphasize the absence of randomness in aggregate investment

despite the presence of noise traders in the economy. The reason is that sophisticated investors

will go in and out of the market to accommodate the (unobserved) movements in noise trading.

This implies that allocation rules must be necessarily random, at least if one insists that market

allocations must treat individuals symmetrically. Note that aggregate investment in period 1 is

given by s−1pn and is deterministic even though the aggregate investment made by the noise

traders is random.

To highlight the nature of the equilibrium, Figure 1 plots investment demand for the out-

5As is common in the literature, we are disregarding the possibility of equilibria which reveal information that
no one has.

6We denote the support of prices by supp[δ] =
{
p1 ∈ <++ | δ (p1 | k) > 0 for some k ∈

{
0, k̄
}}

.
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comes where k̃ = 0 and k̃ = k̄. The important feature is that the market price is insensitive to

the behavior of the uninformed. Two elements are driving this result. First, it must be that k̄

is sufficiently small. If noise traders can take over the entire market, then aggregate investment

will trivially fluctuate above s−1pn when k̃ = k̄. Second, note that demand by the uninformed

is perfectly elastic at the market price pn. Otherwise, if the uninformed agents’ market demand

were downward sloping, the market price would react to changes in the behavior of the unin-

formed. For example, this would happen if individuals were risk averse and investment decisions

continuous. Conversely, the price will not fluctuate if investment decisions are discrete (as as-

sumed here) or if agents are risk neutral with continuous but bounded decisions (this latter case

will be discussed below). This elastic property of the market demand, which is a direct implica-

tion of discrete individual decisions, will be key to understanding the equilibrium derived in the

following section. We now turn to discussing the notion of allocative errors for this economy.

Definition 2 For any p1 ∈ supp[δ] and θ ∈ {θl, θh}, an allocative error is defined as s−1p1 −
s−1pf (θ).

We find it informative to define allocative errors relative to the first-best allocation s−1pf
(
θ̃
)

which would be attained under full information. It follows from Proposition 1 that, in equilib-

rium, allocation errors are given by

s−1pn − s−1pf (θ) =




−(1− µ)
(
s−1pf (θh)− s−1pf (θl)

)
if θ̃ = θh

µ
(
s−1pf (θh)− s−1pf (θl)

)
if θ̃ = θl.

(3.1)

Allocative errors are a fraction of the maximum feasible error s−1pf (θh)−s−1pf (θl), weighted

by the extent to which the realization of the state of demand was unexpected. Of course, the

presence of ex post allocative errors in an economy with exogenous noise is expected. However,

anticipating our results below, it turns out that even larger allocative errors than that given

by (3.1) occur with positive probability when individuals have the possibility of purchasing

information before making investment decisions. This is the case we examine in what follows.
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3.2 Endogenous Information Acquisition

In this section we want to reintroduce the possibility of information gathering at a cost c > 0.

This extension requires us to simply extend our previous definition of equilibrium as to express

the restrictions to be satisfied by the joint distribution of all three endogenous random variables

x̃i, z̃i and p̃i conditional on θ and k. Once again, the only important step is to establish the

appropriate individual rationality requirements for x̃i, z̃i. This is set out in the following.

Definition 3 The joint distribution of x̃i, z̃i and p̃i satisfies individual rationality if for all

realizations

(a) xi is optimal given the information set {p1, ziθ}, that is

xi ∈ arg max
x̂∈{0,1}

{
E
[(

p2

(
p̃1, θ̃

)
− p̃1

)
x̂ | p1, ziθ

]}

and

(a.1) xi remains optimal with respect to the information set {p1, ziθ, xi}, that is, when the

information set is expanded to include xi.

(b) zi is optimal given the information set {p1}, that is

zi ∈ arg max
ẑ∈{0,1}


(1− ẑ) max

x̂∈{0,1}

{
E
[(

p2

(
p̃1, θ̃

)
− p̃1

)
x̂ | p1

]}

+ ẑ E


 max

x̂∈{0,1}

{
E
[(

p2

(
p̃1, θ̃

)
− p̃1

)
x̂− c | p1, θ

]}
| p1




 .

and

(b.1) zi remains optimal with respect to the information set {p1, zi}, that is, when the informa-

tion set is expanded to include zi.

The notion of individual rationality we use here is very close to that presented earlier. In

particular, Conditions (a) and (b) incorporate the standard optimality conditions, where in (a)



13

we include θ in i’s information set if zi = 1. Note that Condition (b) implies that we are in effect

allowing information acquisition decisions to be determined simultaneously with prices since the

optimality of zi is set conditional on the price. Note that the added condition (a.1) and (b.1)

only has bite if allocations or information acquisition decisions are random conditional on the

price, in which case, it insures that if agents are indifferent about either the outcome xi or zi

conditional on the price, they remain satisfied with their allocations after learning the outcome.

With this notion of individual rationality, we can now easily proceed to define an equilibrium

for the case with endogenous information acquisition.

Definition 4 An equilibrium is a joint distribution for p̃1, x̃i and z̃i conditional on the different

realizations of θ and k, such that for all realizations of the random variables (both endogenous

and exogenous)

(a) Allocations satisfy individual rationality.

(b) The market for the investment good clears.

(c) If zi = 0 for all i and for all p1 ∈ supp[δ], then Pr(θh | p1) = µ for all p1 ∈ supp[δ].

As before, an equilibrium consists simply of a joint distribution for the endogenous variables

which satisfy individual rationality and market clearing. Once again, we restrict attention to

anonymous allocation rules, whereby all individuals are treated according to their information

and we make explicit that prices cannot convey information that no one has obtained (Condition

(c)).

The equilibrium object under study, which is a joint distribution for z̃i, x̃i and p̃1, is rather

complex. In order to describe its properties, we therefore proceed in two steps. We begin

by focusing on the properties of the price and the aggregate level of investment. This has

the advantage of immediately pointing out the most relevant properties of the equilibrium. In

particular, these are the features that are most interesting from an aggregate point of view and

these properties happen to be uniquely defined by the model. Once these properties are described

and explained, we then illustrate how the joint distribution of all three endogenous variables can
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be constructed. That is, we will show how to construct micro-allocations (xi, zi) that support

the noted price distribution and the aggregate allocations as an equilibrium phenomenon. It

should be once again emphasized that the approach we adopt is clearly in the Walrasian and

Rational Expectations tradition in that we will not explain how the equilibrium price distribution

comes about; instead we will simply describe the price distribution that satisfies the equilibrium

requirements. 7

The first aspect of the equilibrium we want to emphasize relates to the support for the price

p̃1 and its relationship to whether or not there is information acquisition. This is done in the

following proposition.

Proposition 2 If c ≥ c̄ ≡ µ(1− µ) (θh − θl), there is no information acquisition and the equi-

librium support of p̃1 is the singleton given by

pn = µ pf (θh) + (1− µ) pf (θl) .

If c < c̄, then there is always some information acquisition and the equilibrium support of p̃1

is the couple
{
pl, ph

}
∈ R2

++ given by

ph =


1

2
+

1
2

√
1− 4c

θh − θl


 pf (θh) +


1

2
− 1

2

√
1− 4c

θh − θl


 pf (θl) ,

pl =


1

2
− 1

2

√
1− 4c

θh − θl


 pf (θh) +


1

2
+

1
2

√
1− 4c

θh − θl


 pf (θl) .

The first aspect to note from Proposition 2 is that, if the cost of information acquisition

is too high (c ≥ c̄ ≡ µ(1 − µ) (θh − θl)), there will be no information acquisition and the

7Recently, there has been substantial effort at providing a non-cooperative game-theoretic foundation to Ratio-
nal Expectations Equilibria. See, for example, Pesendorfer and Swinkels (2000) and Jackson (1999). In principle,
it would be of interest to also provide an explicit non-cooperative foundation to the equilibrium presented here.
However, we view this as beyond the scope of the current paper.
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equilibrium will replicate the one discussed in the previous section. Since this case is now well

understood, we will focus on the case where c < c̄. In this latter case, the proposition indicates

that the equilibrium will be characterized by a two-point price distribution. As can be easily

seen, this price distribution is characterized by a high price ph which is above the pooling price

pn = µ pf (θh)+ (1−µ) pf (θl) but below the full information price pf (θh). Accordingly, the low

price pl will be below the pooling price but above the full information price pf (θl). Moreover,

as c converges either to 0 or c̄, these prices converge respectively to the full information prices

or the single pooling price.

An immediate implication of Proposition 2 is that, as long as the cost of acquiring information

is sufficiently low (c < c̄), the aggregate level of investment will also be characterized by a two-

point distribution. In effect, the market clearing condition implies that aggregate investment

must fluctuate between the two quantities on the supply curve given by s−1 ph and s−1 pl.

Hence, from an aggregate point of view Proposition 2 indicates that, for sufficient low costs of

information, the equilibrium will be characterized by fluctuations in the price and quantity of

investment goods. The obvious next step is to characterize the properties of these fluctuations

in terms of the information they convey regarding the underlying state of future demand θ.

Proposition 3 When c < c̄, the information content of prices (as captured by Pr (θh | p1)) is

given by :

Pr
(
θh | ph

)
=


1

2
+

1
2

√
1− 4c

θh − θl


 and Pr

(
θh | pl

)
=


1

2
− 1

2

√
1− 4c

θh − θl


 ,

where

1 > Pr
(
θh | ph

)
> µ and µ > Pr

(
θh | pl

)
> 0.

Proposition 3 indicates that prices are informative but nevertheless noisy. In particular, the

high price ph indicates that the state θh is more likely to arise than what is expected based

only on priors, but it does not indicate for sure that the high state of future demand will

arise. Similarly, the low price indicates that the low state of future demand is more likely to
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arise than what is expected based on priors, but pl does not indicate θl for sure. At a first

pass, the observation of a noisy equilibrium appears natural given there are noise traders in

the system. However, this type of intuition is somewhat misleading. In effect, it can be seen

that the properties laid out by Propositions 1 and 2 are entirely invariant to the amount of

noise traders in the system, that is, the extent of price (and aggregate investment) fluctuations

and their informativeness are independent of the measure of noise traders. As we will later

make precise (after we show how to construct an equilibrium), the presence of noise in the

equilibrium price should not be thought as being driven by the noise traders since the amount

of noise will remain intact even as we take a limit whereby the importance of noise traders is set

to zero. In fact, the noise in the price system should be viewed as an equilibrium response to

balance the incentive for information acquisition with the information revelation in prices. To see

this, note that Propositions 2 and 3 are essentially derived from the two individual rationality

constraints (evaluated at the equilibrium) given below by (?) and (??). The equation given

by (?) is the condition associated with being indifferent between acquiring or not information.

The equation given by (??) corresponds to the condition, for an uninformed investor, of being

indifferent between acquiring or not the investment good. Both of these conditions have to be

associated with indifferences in equilibrium since there cannot exist equilibria where everyone

gathers information, or where all the uninformed want the good.

Pr (θh | p1)
(

θh − s + d

s
p1

)
= c (?)

Pr (θh | p1)
(

θh − s + d

s
p1

)
+ (1− Pr (θh | p1))

(
θl − s + d

s
p1

)
= 0. (??)

Simple manipulations of these two equations allows one to derive the price support given

in Proposition 2 as well as the information content of prices given in Proposition 3. Hence,

the properties given by Proposition 2 and 3 should be viewed as equilibrium properties meant

to balance the amount of information revealed by prices with the incentives for information

gathering. However, before going into more detail regarding such intuition and its relationship

with the Grossman-Stiglitz (1981) paradox, it is best to discuss how an entire equilibrium can
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be constructed. In particular, this will allow us to highlight the important role of noise traders

in supporting the equilibrium but their very limited role in influencing the price process.

A complete description of the equilibrium requires us to specify the joint distribution of

x̃i, z̃i and p̃1 conditional on all realizations of θ̃ and k̃. As pointed out in Propositions 2 and

3, in equilibrium the most relevant aggregate features of the model are determined uniquely.

However, this is not the case for the more detailed aspects of the model. In fact, the model

does not uniquely determine the entire joint distribution of the endogenous variables (i.e. there

is more than one way to support the outcomes described in Propositions 2 and 3). Hence,

our objective in what follows will be to build one such joint distribution in a manner that both

illustrates the equilibrium forces at play and indicates the extent to which other equilibrium joint

distributions can be constructed. To this end, let us begin by assuming that the information

gathering decision z̃i is simply an i.i.d random variable which generates a mass N of informed

traders in all situations (N is therefore also the probability of zi = 1). For now, let us assume

only that N < k̄. Given this distribution for z̃i, it is rather trivial to derive the equilibrium

distribution of x̃i. First, conditional on becoming informed zi = 1 (and conditional on being at

an equilibrium price), the individual rationality constraints imply that xi must be equal to 1

when θ̃ = θh and must equal 0 when θ̃ = θl, since otherwise it would not be optimal to gather

information. This distribution is given by (3.2).

Pr(xi = 1 | θ, k, p1) =




1 if θ = θh

0 if θ = θl.
(3.2)

The distribution of x̃i for the uninformed (zi = 0) is also easy to derive since it directly follows

from the market clearing conditions and the anonymity requirement which induces randomness

in the allocation. In particular, the probability that xi = 1 is given as follows for p1 equal to

either ph or pl:
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Pr(xi = 1 | θ, k, p1) =




s−1p1−N−k̄
1−N if (θ, k) =

(
θh, k̄

)
s−1p1−N

1−N if (θ, k) = (θh, 0)
s−1p1−k̄

1−N if (θ, k) =
(
θl, k̄

)
s−1p1

1−N if (θ, k) = (θl, 0).

(3.3)

The one object that remains to be constructed in order to complete the description of the

equilibrium is the distribution of the price conditional on the realizations of both θ̃ and k̃.

Recall that we denote this conditional distribution by δ(p1 | θ, k), where p1 ∈
{
pl, ph

}
. There

are two sets of equilibrium requirements that must be satisfied by this conditional distribution.

First, it must generate an information content of prices that is consistent with that specified

by Proposition 3. This gives rise to the two following conditions, which are simple and direct

applications of Bayes’ rule. In the following, we use the shorthand δθ,k to denote δ(ph | θ, k).

Pr
(
θh | ph

)
=

µ
(
ρδθh,k̄ + (1− ρ)δθh,0

)
µ
(
ρδθh,k̄ + (1− ρ)δθh,0

)
+ (1− µ)

(
ρδθl,k̄

+ (1− ρ)δθl,0

) , (3.4)

Pr
(
θh | pl

)

=
µ
(
ρ
(
1− δθh,k̄

)
+ (1− ρ) (1− δθh,0)

)
µ
(
ρ
(
1− δθh,k̄

)
+ (1− ρ) (1− δθh,0)

)
+ (1− µ)

(
ρ
(
1− δθl,k̄

)
+ (1− ρ) (1− δθl,0)

) . (3.5)

There are two other conditions that must be satisfied in equilibrium and these also restrict

the conditional distribution of prices δ. These two conditions are the ones implied by the

requirement that the realizations of x̃i be uninformative. 8 This requirement, which corresponds

to E[θ̃ | p1] = E[θ̃ | p1, xi] or equivalently to Pr[θ | p1, xi] = Pr[θ | p1], can be written (using

Bayes rule and the distribution for x̃i given in (3.3)) as follows.

N

k̄
=

δθl,k̄
ρ

ρδθl,k̄
+ (1− ρ)δθl,0

− δθh,k̄ ρ

ρδθh,k̄ + (1− ρ)δθh,0
, (3.6)

8Note that the realizations of z̃i are uninformative by the fact the z̃i is i.i.d..
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N

k̄
=

(
1− δθl,k̄

)
ρ

ρ
(
1− δθl,k̄

)
+ (1− ρ) (1− δθl,0)

−
(
1− δθh,k̄

)
ρ

ρ
(
1− δθh,k̄

)
+ (1− ρ) (1− δθh,0)

. (3.7)

In the Appendix, we show that the δs that solve equations (3.4) to (3.7) are always between 0

and 1 and that these solutions are consistent with (3.2) and (3.3). Hence, the above construction

provides an equilibrium joint distribution for z̃1, x̃i and p̃1 which, to summarize, is given by

(1) an i.i.d distribution for z̃i where Pr(zi = 1) ∈ (0, k̄), (2) a conditional distribution for x̃i

(conditional on p1, zi, θ, k) given by (3.2) if zi = 1 and given by (3.3) if zi = 0, and (3) a

conditional distribution of prices δ(p1 | θ, k) given by the solution to equations (3.4) to (3.7).

This joint distribution satisfies the equilibrium requirement since by construction the market

always clears, the allocations optimize the agents decision problem conditional on prices (since

the indifferences (?) and (??) are satisfied), and the realizations of z̃i and x̃i by construction

do not contain information regarding θ̃ beyond that contained in the realization of p̃1. As

mentioned previously, this equilibrium is not unique since the distribution of z̃i is not uniquely

pinned down. Nevertheless, the set of equilibria generates a unique joint distribution for the

price, the aggregate level of investment and the fundamental θ̃.

Given the above description of an equilibrium, it is now possible to discuss the micro-behavior

that supports the market outcome described in Proposition 2 and Proposition 3. First there is

the information acquisition decision. Since prices are such that agents are indifferent between

whether or not to obtain information, they are satisfied with the randomness in zi. Second, there

is the outcomes for the uninformed investor. Just as in the benchmark case without information

acquisition, uninformed investors need to move in and out of the market to accommodate the

(unobserved) behavior of noise traders. However, now the uninformed investors must also take

into account the (unobserved) aggregate behavior of informed individuals. In equilibrium, when

the price is high, an uninformed individual does not know whether it is high because of a

large demand by informed traders or a large demand by the uninformed. In effect, at the

equilibrium price, the uninformed trader is indifferent between receiving or not the good; hence

he is acceptant of the fact that he does not receive the good with probability 1. Moreover, upon

realizing whether or not he is served by the market, he remains satisfied with the outcome since



20

the realization has not revealed any additional information. In particular, not being served by

the market is interpreted by an uninformed agent as reflecting either the presence of many noise

traders or many informed individuals. Finally, informed agents are satisfied with the allocation

of goods since they receive the good only when they strictly want it, which corresponds to the

situations where θ̃ = θh.

In order to further help comprehend the nature of the equilibrium, Figure 2 plots the demand

for and supply of capital in period 1. Recall that in the presence of asymmetric information,

demand itself depends on the actual realization of the market price, hence we have plotted

investment demand conditional on the equilibrium price p̃1 = ph. The two figures correspond to

the case where noise traders are in and out of the market, respectively.

The interesting feature is that the equilibrium price is insensitive to the specific behavior

of the different individuals in the economy. The critical assumption behind this result is that

individual investment decisions are discrete, which assures that informed investors remain “in-

formationally small” and gives rise to an elastic demand. It is worth noting that the same would

be true if investors were risk neutral and investment decisions bounded. In particular, with risk

neutral investors, it is easy to see that there can be no private incentives to purchase information

unless individual investors are “small”. Investment demand would still be flat (as depicted in

Figure 2), but a necessary condition for an equilibrium to exist is that risk neutral investors be

prevented from taking over the market. In effect, with risk neutral investors, individual action

spaces must be bounded. For otherwise, informed investors would take over the entire market

when the state of demand is high, in which case they would affect prices, thus making all pri-

vate information public and eliminating the private incentives to acquire information. This is of

course the well-known paradox discussed by Grossman and Stiglitz (1980), which would arise in

the present setting if allocations where neither bounded nor discrete.

However, in our setting the Grossman and Stiglitz non-existence problem does not arise

due to the discreteness of the action space and due to the fact that we allow for equilibrium

randomness in the price process. In particular, note that in the equilibrium of our model market

prices do take into account the private incentives to purchase costly information. Mechanically,
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this can be seen by noting that the indifference condition (?) for private information acquisition

has been explicitly used to calculate market prices. This is in contrast with the standard

rational expectations equilibrium model, as described in Grossman and Stiglitz (1980), where

market prices are determined as a function of the mass of informed agents without reference to

the value of private information. Ex ante, every agent takes the mapping from the measure of

informed agents to the price as given and decides whether to acquire information. An equilibrium

is then a fixed point where the measure of agents who purchase information gives raise to a price

which justifies those information acquisition decisions in the first place. In the absence of noise

traders, then, the competitive equilibrium breaks down because prices do not maintain the

private incentives to acquire information and informed agents become “informationally large”.

In effect, an informed agent can see her own private information reflected in the prices and at

the same time believe that she can have no effect on those prices. The present model escapes

these two problems by the fact that, when there are discrete decisions, informed agents always

remain informationally small and thereby the market can aggregate information imperfectly in

the sense that prices remain noisy even as the importance of noise traders goes to zero (as will

be shown below); hence, this resolves the fundamental conflict between information revelation

and information acquisition.

The equilibrium behavior described by Propositions 2 and 3 provides instances which can be

interpreted as herding behavior within a market context. It is in this sense that we believe our

analysis provides a link between the herding literature and the rational expectations literature.

In particular, in equilibrium, there are realizations where the price p1 is high as a result of

the mass behavior of uninformed individuals, that is, investment demand is high even though

neither informed agents or noise traders are contributing to the demand. In such cases, the

price is high because many uninformed agents are acquiring the investment good, and many

uninformed agents are acquiring the good because they believe that the high price is a signal

of high future demand (θh). This, to us, has the flavor of herding. Moreover, it should be

emphasized that such an outcome is not a multiple-equilibrium type result. In particular, in

a static sense, it is not an equilibrium in our model to have high demand just because other

uninformed individuals have a high demand. It is only an equilibrium realization because it is
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part of a larger stochastic equilibrium in which individuals sometimes make errors. Furthermore,

the occurrence of herds in our model, as given for example by Pr(ph | θl)), is not indeterminate

as would often be the case in situations of multiple equilibria. Instead, it is uniquely pinned

down by equilibrium conditions as indicated in Proposition 3. In this sense, the endogenous

equilibrium randomness in prices that arises in our model is somewhat similar in structure to

that associated with mixed strategies in games.

At this point, certain natural questions arise. How does such equilibrium come about?

Where does this equilibrium randomness come from? Our analysis in this section does not give

direct answers to these questions, in the same sense that, our analysis in the previous section

did not give an explicit explanation to how, at constant prices, uninformed agents moved in

and out of the market to accommodate the needs of noise traders. As mentioned previously,

our analysis throughout the paper is strictly in the equilibrium tradition as we characterize the

properties of outcomes that appear stable in the sense defined by the equilibrium. This has

the advantage that our results are not dependent on a particular and very precise description

of an order of play (as would be the case with a game-theoretic analysis), and our analysis

takes into account potential feedbacks between price and actions. However, it has the clear

disadvantage of not offering an explicit non-cooperative description of the price determination

process. We view these advantages and disadvantages as suggesting a need to pursue both

avenues as means of understanding market behavior. Hence, we view the contribution of this

paper as highlighting how certain insights about herding found in a sequential context may carry

over to a simultaneous context if the action space is discrete (or bounded).

We now turn to examining some additional properties of the equilibria. As mentioned previ-

ously, the unique equilibrium outcome characterized in Propositions 2 and 3 can be supported in

a set of ways. A natural question at this point is therefore whether the equilibrium outcome can

be supported in a “sensible” way independent of the amount of noise imposed on the market.

The next proposition provides an affirmative answer to this question.

Proposition 4 For 0 < c < c̄, there always exists an equilibrium with the property that

δ
(
ph | θh, k̄

)
= 1 and where , as ρ → 0, the sequence of equilibria indexed by ρ converges
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to an equilibrium where δ (· | θh, k) dominates δ (· | θl, k) in the first-order stochastic sense, for

k ∈ {0, k̄}, and δ
(· | θ, k̄

)
dominates δ (· | θ, 0) in the first-order stochastic sense, for θ ∈ {θl, θh}.

Proposition 4 identifies the existence of an equilibrium with interesting properties regarding

the distribution δ even when noise trading is essentially eliminated from the model. In particular,

the proposition shows that there always exists an equilibrium with the property that, whenever

both informed investors and noise traders are in the market, the price is high (i.e., p̃1 = ph with

probability one); that is, there always exists an equilibrium where maximum demand always

leads to the high price. Moreover, the proposition characterizes a sequence of equilibria indexed

by ρ and its limit as ρ approaches zero. Recall that from Proposition 3 we know that as

noise trading in the economy becomes negligible, the price system does not become perfectly

informative since the Pr(θ | p1) is independent of ρ. The additional insight from Proposition 4

is that, as noise trading becomes negligible, the conditional distribution on prices δ can always

be constructed to have the property that

δ
(
ph | θh, k̄

)
≥ δ

(
ph | θl, k̄

)
≥ δ

(
ph | θl, 0

)
, (3.8)

δ
(
ph | θh, k̄

)
≥ δ

(
ph | θh, 0

)
≥ δ

(
ph | θl, 0

)
. (3.9)

In words, even when noise trading is small there always exists an equilibrium with the

property that higher market prices signal higher levels of noise traders in the market for any

given state of demand and higher future demand for any given level of noise traders in the

market. It is also worth noting that this equilibrium has the property that δ
(
ph | θl, 0

)
> 0 for

c ∈ (0, c̄) and ρ ∈ (0, 1/2). Thus, it is possible that all investors participating in the market are

uninformed even though the future demand is low. When this happens, aggregate investment

is being entirely driven by the mass behavior of uninformed investors. This event has a distinct

flavor of herding in that the “reason” why each of the uninformed is in the market is because

the price is high. But it is precisely the behavior of the uninformed that pushes the price up!
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Up to now, we have assumed that individual investment decisions are discrete and equal to

either 0 or 1, which may seem a rather restrictive assumption. Therefore, we want to briefly

discuss how our results extend to the case where individual investments are no longer restricted

to being discrete but instead are assumed to be continuous and bounded, that is, the case with

xi ∈ [0, b], where b is maximum level of investment for an individual. The interesting fact about

this case is that our previous results carry over almost unchanged. In particular, to account for

this modification, Propositions 2 and 3 need to be restated only to the extent of replacing the

cost of information gathering c in the determination of prices and probabilities with the ratio

of c/b. Moreover, it can be easily verified that one can construct an equilibrium to support the

unique outcome described by such a modification of Propositions 2 and 3 (when c is replaced

by c/b) using the same type of allocation rules we previously presented. The one minor change

is that informed investors now receive an allocation b and therefore their aggregate demand is

now given by Nb, instead of N , and uninformed individuals now receive either an allocation b

or 0. The one insightful observation that is implied by this case relates to the limits as this

bound b goes to 0 or infinity. For example, as the bound goes to infinity (which acts as if

information gathering costs go to zero), the analogs to Proposition 2 and 3 would imply that the

equilibrium tends to a fully revealing outcome. In contrast, when the bound declines towards

0, the equilibrium converges towards the non-revealing equilibrium described in the benchmark

case. Hence, in an extended version of our model which allows for continuous but bounded

decisions, we get the interesting result that the extent to which a market is informationally

efficient depends precisely on the extent to which individual agents can take large positions in

the market.

Allocative Errors

We now argue that the possibility of large allocative errors is inherent to the market equilibrium,

and that the key property of the distribution of allocative errors is that, in order to achieve the

balance between the private incentives to acquire information and its revelation, the price system

trades off the probability of making an allocative error and its size. Recall, from Definition 2,

that an allocative error takes place whenever there is a difference between the equilibrium level

of aggregate investment and that associated with the first-best, which would arise in the full-
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information economy. 9

From Proposition 3 and the definition of pf (θ), the magnitudes of allocative errors are given

by

s−1p1 − s−1pf (θ)

=




−

1

2 − 1
2

√
1− 4c

θh−θl


(s−1pf (θh)− s−1pf (θl)

)
when θ = θh and p1 = ph


1

2 + 1
2

√
1− 4c

θh−θl


(s−1pf (θh)− s−1pf (θl)

)
when θ = θl and p1 = ph

−

1

2 + 1
2

√
1− 4c

θh−θl


(s−1pf (θh)− s−1pf (θl)

)
when θ = θh and p1 = pl


1

2 − 1
2

√
1− 4c

θh−θl


(s−1pf (θh)− s−1pf (θl)

)
when θ = θl and p1 = pl.

(3.10)

There are four types of errors corresponding to the four possible realizations of
(
θ̃, p̃1

)
. The

nature of these errors is better understood in terms of the comparative statics of changes in

the cost of information, for c ∈ (0, c̄). Note first that the errors associated with
(
θh, ph

)
and(

θl, p
l
)

are both declining in size as the cost of information declines. Indeed, s−1ph− s−1pf (θh)

and s−1pl − s−1pf (θl) are simply the natural errors associated with incomplete information,

very much the analog of those errors found in the benchmark economy without information.

What is interesting, however, is the presence of the other two errors, s−1ph − s−1pf (θl) and

s−1pl − s−1pf (θh), and their dependence on the cost of information. As the cost of information

becomes smaller, the size of each of these two errors increases in absolute value. Furthermore,

9Note that our main results would remain valid if the supply of capital were perfectly inelastic, in which case
changes in prices would not induce changes in aggregate investment. Nevertheless, we wish to emphasize the
implications of our model for understanding aggregate investment fluctuations.



26

their size is always larger in absolute value than the maximum error when information acquisition

is not allowed (see equation (3.1) above).

Of course, one has to inquire about the probability distribution of the errors as well. The

conditional probability of allocative errors given the state of demand θ̃ is derived in the Appendix.

Its main properties are illustrated in Figure 3, which shows the probability and the size of

each of the four types of errors for a given c ∈ (0, c̄). In addition, the figure shows the two

errors in the benchmark economy in which no individual has access to information, where el ≡
µ
(
s−1pf (θh)− s−1pf (θl)

)
is the benchmark error which takes place when θ̃ = θl and eh ≡

−(1− µ)
(
s−1pf (θh)− s−1pf (θl)

)
is the benchmark error which takes place when θ̃ = θh. Note

that, the conditional probability of each of these two errors, given θ, is equal to 1. The arrows

in the figure indicate how the size of each error moves as the cost of information declines below

c̄, where we use e(p1, θ) to denote the allocation error s−1p1 − s−1pf (θ).

While the likelihood of large allocative errors, that is, s−1ph − s−1pf (θl) and s−1pl −
s−1pf (θh), approaches zero as c becomes negligible, it remains positive so long as c > 0 and

the size of each of these two errors increases as c declines, approaching the maximum feasible

error
∣∣∣(s−1pf (θh)− s−1pf (θl)

)∣∣∣ as c vanishes. In Figure 3, ef
l = −ef

h =
(
s−1pf (θh)− s−1pf (θl)

)
denote the maximum feasible errors associated with θl and θh. These results reflect the fact

that, in order to achieve the balance between the private incentives to acquire information and

the revelation of information, the price system trades off the probability of making an alloca-

tive error and its size. As the cost of information vanishes the probability of an error becomes

negligible, but the magnitude of aggregate errors must increase so that private information has

positive value.

4 Conclusion

In this paper, we have examined the equilibrium determination of prices and aggregate invest-

ment in a market where information is costly to acquire and individual decisions are discrete.

We have shown why, in such a setting, non-fundamental randomness in the market price (and

thereby in the aggregate level of investment) necessarily arises as an equilibrium phenomenon.
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In particular, we have shown that this randomness acts as a balancing mechanism that allows

prices to convey information while maintaining the private incentives to acquire information.

Moreover, we have argued that this phenomenon is conceptually akin to herding type behavior

which has previously been shown to arise in environments with sequential interactions and dis-

crete decisions. Hence, we view our analysis as providing a bridge between the herding literature

and the rational expectations literature; with our bridge indicating that herding type behavior in

markets may intrinsically be linked to discreteness or boundedness of individual level decisions.
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A Appendix

Proof of Proposition 1

Our assumptions on pf (θ) and k̄ guarantee that it is not profitable for all agents to invest and

there is profit to be made by investing if no one else does. For a symmetric, interior solution,

then, individuals must be indifferent between investing and staying out of the market. This,

together with market clearing (see equation (2.5) in the main text) implies the indifference

condition

µ

(
θh − s + d

s
p1

)
+ (1− µ)

(
θl − s + d

s
p1

)
= 0.

Using the definition of pf (θ), it follows that p1 = pn is the unique price that makes investors

indifferent. Then, δ (pn | k) = 1, for k ∈ {0, k̄}, since supp[δ] is a singleton. In addition,

market clearing requires the adding-up condition pn = s
(
k + Pr (xi = 1 | θ, k, pn)

)
to hold for

k ∈ {0, k̄} and θ ∈ {θl, θh}.

Proof of Proposition 2 and Proposition 3

We begin by identifying necessary and sufficient conditions for existence of an equilibrium. To

this end, let us assume momentarily that, conditional on p1, z̃i is an i.i.d. random variable which

generates a mass N (p1) of informed agents. This assumption will be relaxed below. Lemma 1

and Lemma 2 characterize necessary equilibrium conditions whenever either N (p1) > 0 for all

p1 ∈ supp[δ] or N (p1) = 0 for all p1 ∈ supp[δ].

Lemma 1 If N (p1) > 0 for all p1 ∈ supp[δ], then supp[δ] =
{
pl, ph

}
and

p1 = Pr (θh | p1) pf (θh) +
(
1− Pr (θh | p1)

)
pf (θl) , for p1 ∈

{
pl, ph

}

where

Pr
(
θh | ph

)
=


1

2
+

1
2

√
1− 4c

θh − θl


 and Pr

(
θh | pl

)
=


1

2
− 1

2

√
1− 4c

θh − θl


 .



29

Proof: Note first that N (p1) < 1, for otherwise p1 would reveal θ̃ in which case purchasing

information cannot be optimal. Then suppose that N (p1) ∈ (0, 1) for all p1 ∈ supp[δ]. In this

case it must be that all individuals are indifferent between purchasing information and remaining

uninformed. For information to have value, it must also be the case that the informed invest if

and only if they learn that θ̃ = θh. Therefore, Condition (b) in Definition 3 implies that

Pr (θh | p1)
(

θh − s + d

s
p1

)
= c. (?)

In addition, uninformed agents must be indifferent between investing and not investing at

each equilibrium price, for otherwise the price would reveal the behavior of the informed and

thus the value of θ̃, in which case information would have no value. Thus, Condition (a) in

Definition 3 implies that

Pr (θh | p1)
(

θh − s + d

s
p1

)
+
(
1− Pr (θh | p1)

) (
θl − s + d

s
p1

)
= 0. (??)

It is then straightforward to verify, using the definition of pf (θ), that pl, ph, Pr
(
θh | ph

)
and Pr

(
θh | pl

)
are the unique solution to the system of equations formed by equations (?) and

(??).

Lemma 2 If N (p1) = 0 for all p1 ∈ supp[δ], then supp[δ] = pn = µ pf (θh) + (1− µ) pf (θl).

Furthermore, pn can be supported as part of an equilibrium if and only if c ≥ c̄ = µ(1 −
µ) (θh − θl). This equilibrium replicates that characterized in Proposition 1.

Proof: Suppose that N (p1) = 0 for all p1 ∈ supp[δ]. That supp[δ] = pn follows from the

argument given in Proposition 1. In addition, for no one to desire to purchase information,

Condition (b) in Definition 3 requires that

µ

(
θh − s + d

s
pn
)
≤ c.

Substitution for pn into this inequality reveals that remaining uninformed is in fact optimal

if and only if c ≥ c̄. An equilibrium can then be constructed as shown in Proposition 1.
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Next, under the assumption that z̃i is i.i.d. we show that it is necessarily the case that

N (p1) > 0 for all p1 ∈ supp[δ] if c < c̄, and that N (p1) = 0 for all p1 ∈ supp[δ] if c ≥ c̄. To that

end, the following two lemmas are useful.

Lemma 3 For p1 ∈
{
pl, ph

}
, Pr (θh | p1) (1− Pr (θh | p1)) < µ(1− µ) if and only if c < c̄.

Proof: This lemma follows immediately from Lemma 1 once one notes that, for p1 ∈
{
pl, ph

}
,

Pr (θh | p1) (1− Pr (θh | p1)) = c/ (θh − θl).

Lemma 4 For each p1 ∈ supp[δ], N (p1) > 0 if and only if Pr (θh | p1) (1− Pr (θh | p1)) <

µ(1− µ).

Proof: To prove sufficiency, suppose that N (p1) = 0 and simply note that Condition (c) in

Definition 4 implies that Pr (θh | p1) = µ. To prove necessity, suppose first that N (p1) > 0 for

p1 = ph. Using Bayes’ rule,

Pr
(
θh | ph

)
=

µ Pr
(
ph | θh

)
µ Pr (ph | θh) + (1− µ) Pr (ph | θl)

>
1
2
, (A.1)

and straightforward manipulation then shows that for (A.1) to hold with Pr
(
ph | θl

)
≥ 0 it

must be that Pr
(
ph | θh

)
≥ Pr

(
ph | θl

)
, with equality if and only if Pr

(
ph | θh

)
= 0. For

Pr
(
ph
)

> 0, the inequality must therefore be strict. Next, using Bayes’ rule,

Pr
(
θh | ph

) (
1− Pr

(
θh | ph

))
= µ(1− µ)


 Pr

(
ph | θh

)
Pr
(
ph | θl

)
(
µ Pr (ph | θh) + (1− µ)Pr (ph | θl)

)2


 , (A.2)

and, to derive a contradiction, note that Pr
(
θh | ph

) (
1− Pr

(
θh | ph

))
≥ µ(1−µ) if and only if

the term in parentheses on the right-hand side of equation (A.2) is larger than 1. Straightforward

manipulation shows that this can only happen if Pr
(
ph | θh

)
≤ Pr

(
ph | θl

)
, which contradicts

the fact that Pr
(
θh | ph

)
> 1/2. Therefore, if N

(
ph
)

> 0, then Pr
(
θh | ph

) (
1− Pr

(
θh | ph

))
<

µ(1 − µ). But from Lemma 1, Pr
(
θh | pl

)
= 1 − Pr

(
θh | ph

)
. Hence the same must be true at

p1 = pl. This concludes the proof since pl and ph exhaust the list of possible prices in supp[δ]

when N (p1) > 0.
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Lemma 3 and Lemma 4 together imply that an equilibrium such that N (p1) > 0 for all

p1 ∈ supp[δ] may exist only if c < c̄. Next, note that supp[δ] = {p1, p
n} with p1 6= pn cannot

be part of an equilibrium, since the fact that pn is uninformative implies that p1 must also be

uninformative. It remains to verify that supp[δ] =
{
pl, ph, pn

}
cannot be part of an equilibrium.

But this also follows from Lemma 3 and Lemma 4. Furthermore, Lemma 2 does describe an

equilibrium whenever the inequality stated therein is satisfied, which happens if and only if

c ≥ c̄.

Our so far maintained assumption that z̃i is i.i.d. implies that N(p1) is common knowledge.

We relax this assumption now. In this case, N(p1) may be random conditional on p1. For that

to be the case, note that it must be that all realizations of N(p1) at each p1 are strictly less

than 1, and that ex ante individual rationality (i.e., Conditions (a) and (b) in Definition 3) still

requires that Conditions (?) and (??) above must hold at p1; and, in particular, Lemma 3 and

Lemma 4 apply. Putting our previous results together, we have shown that (1) if c ≥ c̄, then

the equilibrium characterized in Proposition 2 is the unique equilibrium, and (2) if 0 < c < c̄,

then supp[δ] =
{
pl, ph

}
, and pl, ph, Pr

(
θh | pl

)
and Pr

(
θh | ph

)
are uniquely determined by

Conditions (?) and (??) above. It is now immediate to prove Proposition 3.

Proof of Proposition 3

Lemma 1 gives Pr
(
θh | ph

)
and Pr

(
θh | pl

)
and Lemma 3 and Lemma 4 imply that Pr

(
θh | ph

)
>

µ > Pr
(
θh | pl

)
. It only remains to be shown that these values are in fact probabilities. Simple

manipulations show that a necessary and sufficient condition for this to be the case is that c < c̄.

This concludes the proof of Proposition 3.

Next, to construct an equilibrium we will show that we can support the unique equilibrium

outcome given above by pl, ph, Pr
(
θh | pl

)
and Pr

(
θh | ph

)
. To that end, we will restrict our

search to the set of equilibria which satisfy the following two conditions, in addition to all other

equilibrium conditions: (1) z̃i is an i.i.d. random variable conditional on p1, and (2) the random-

ization x̃i is uninformative. The first restriction implies that information acquisition decisions

generate a mass N (p1) of informed traders. Therefore, N (p1) is not random conditional on p1.

This immediately implies that the ex post individual rationality condition (b.1) in Definition
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3 is satisfied. The second extra restriction amounts to requiring that Pr[θ | p1, xi] = Pr[θ | p1].

Using the probability distribution characterized by equation (3.3) in the main text, this condi-

tion can be written as N/k̄ = Pr[k̄ | p1, θl]− Pr[k̄ | p1, θh], for p1 ∈
{
pl, ph

}
, which using Bayes’

rule delivers equations (3.6) and (3.7) in the main text.

Therefore, as explained in the main text, equations (3.4)–(3.7) must also be satisfied in

equilibrium. Equations (3.4)–(3.5) apply Bayes’ rule to the conditional probabilities derived in

Lemma 2, both at p1 = pl and p1 = ph. Equations (3.6) and (3.7) are simply the necessary

Condition (a.1) in Definition 3 at p1 = pl and p1 = ph, respectively, where we have used Bayes’

rule to express them in terms of δ. Together, they form a system of 4 equations into 6 unknowns:

N
(
pl
)
, N

(
ph
)
, δ
(
ph | θh, k̄

)
, δ
(
ph | θh, 0

)
, δ
(
ph | θl, k̄

)
, δ
(
ph | θl, 0

)
. Furthermore, note that

δ must also be consistent with the adding-up conditions associated with equation (3.3) in the

main text, in that the following statements must hold true in equilibrium: for each p1 ∈
{
pl, ph

}
,

(1) if δ
(
p1 | θh, k̄

)
> 0, then s−1p1 > N (p1) + k̄,

(2) if δ (p1 | θh, 0) > 0, then s−1p1 > N (p1) and 1− s−1p1 > k̄,

(3) if δ
(
p1 | θl, k̄

)
> 0, then s−1p1 > k̄ and 1− s−1p1 > N (p1),

(4) if δ (p1 | θl, 0) > 0, then 1− s−1p1 > N (p1) + k̄,

(5) if δ
(
p1 | θh, k̄

)
< 1, then 1− s−1p1 > min

{
N (p1) , k̄

}
,

(6) if δ (p1 | θh, 0) < 1, then 1− s−1p1 > N (p1) or s−1p1 > k̄,

(7) if δ
(
p1 | θl, k̄

)
< 1, then 1− s−1p1 > k̄ or s−1p1 > N (p1),

(8) if δ (p1 | θl, 0) < 1, then s−1p1 > min
{
N (p1) , k̄

}
.

Verifying that there exists an equilibrium then amounts to showing that there exists a solution

to the system given by (3.4)–(3.7) such that δθ,k ∈ [0, 1], for all θ and k, and N (p1) /ρk̄ > 0

for p1 ∈
{
pl, ph

}
. Any such solution will immediately satisfy the previous list of conditional

statements since it must be such that N (p1) < ρk̄ < (1 + ρ)k̄ < min
{
s−1p1, 1− s−1p1

}
, for

p1 ∈
{
pl, ph

}
and ρ ∈ (0, 1), where the first inequality follows from inspection of (3.6) and (3.7)

and the last one follows once one notes that pf (θl) < pl < ph < pf (θh) for any c ∈ (0, c̄), since

we have assumed that 0 < (1 + ρ) k̄ < min
{
s−1pf (θl) , 1− s−1pf (θh)

}
.

Lemma 5 Suppose that 0 < c < c̄. Then,
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Pr
(
ph
)

=
Pr
(
θh | ph

)
+ µ− 1

2Pr (θh | ph)− 1
= 1− Pr

(
pl
)

,

where Pr
(
θh | ph

)
is given by Lemma 1.

Proof: Noting that the denominator of equation (3.4) is equal to Pr
(
ph
)
, whereas the denom-

inator of (3.5) is equal to Pr
(
pl
)
, one can write (3.4) and (3.5) as

Pr
(
ph
)

Pr
(
θh | ph

)
= µ

(
ρδθh,k̄ + (1− ρ)δθh,0

)

Pr
(
pl
)

Pr
(
θh | pl

)
= µ− µ

(
ρδθh,k̄ + (1− ρ)δθh,0

)
.

To verify the proposition, use these two equations to solve for Pr
(
ph
)

as a function of

Pr
(
θh | ph

)
and µ, noting that Pr

(
ph
)

+ Pr
(
pl
)

= 1 and the symmetry result Pr
(
θh | pl

)
=

1− Pr
(
θh | ph

)
.

Lemma 6 The system of equations (3.4)–(3.7) is equivalent to

Pr
(
ph
)

Pr
(
θh | ph

)
µ

= ρδθh,k̄ + (1− ρ)δθh,0 (A.3)

Pr
(
ph
) (

1− Pr
(
θh | ph

))
1− µ

= ρδθl,k̄
+ (1− ρ)δθl,0 (A.4)

N
(
ph
)

ρk̄
=

(
(1− µ)δθl,k̄

Pr (ph) (1− Pr (θh | ph))

)
−
(

µδθh,k̄

Pr (ph) Pr (θh | ph)

)
(A.5)

N
(
pl
)

ρk̄
=


 (1− µ)

(
1− δθl,k̄

)
(1− µ)− Pr (ph) (1− Pr (θh | ph))


 −


 µ

(
1− δθh,k̄

)
µ− Pr (ph) Pr (θh | ph)


 . (A.6)

Proof: Equation (A.3) follows immediately from equation (3.4) by noting that its denominator

is equal to Pr
(
ph
)
. To derive equation (A.4), use (3.4) again to write 1−Pr

(
θh | ph

)
. Equations
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(A.5) and (A.6) follow from using the (A.3) and (A.4) to write equations (3.6) and (3.7) as a

linear system into the unknowns δθh,k̄ and δθl,k̄
.

Existence of a solution to the system of linear equations (A.3)–(A.6) is not an issue. The

system has multiple solutions. However, showing that there exists an equilibrium still requires

that there is a solution to (A.3)–(A.6) which is consistent with an equilibrium. This is done in

Lemma 7.

Lemma 7 There exist δθ,k ∈ [0, 1], for all θ and k, and N (p1) /ρk̄ > 0 for p1 ∈
{
pl, ph

}
which

solve (A.3)–(A.6).

Proof: Note first that it follows from (A.3) and (A.4) that δθh,0 ∈ [0, 1] if and only if

δθh,k̄ ≤ 1
ρ


Pr

(
ph
)

Pr
(
θh | ph

)
µ


 (A.7)

and

1− δθh,k̄ ≤ 1
ρ


1−

Pr
(
ph
)

Pr
(
θh | ph

)
µ


 (A.8)

and δθl,0 ∈ [0, 1] if and only if

δθl,k̄
≤ 1

ρ


Pr

(
ph
)(

1− Pr
(
θh | ph

))
1− µ


 (A.9)

and

1− δθl,k̄
≤ 1

ρ


1−

Pr
(
ph
) (

1− Pr
(
θh | ph

))
1− µ


 . (A.10)

Letting

δθl,k̄
=

Pr
(
ph
) (

1− Pr
(
θh | ph

))
1− µ

− (1− ρ)α, (A.11)

with
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α ∈ S =


0,min




Pr

(
ph
) (

1− Pr
(
θh | ph

))
1− µ


min

{
1
ρ
,

1
1− ρ

}
,


1−

Pr
(
ph
)(

1− Pr
(
θh | ph

))
1− µ


 1

ρ




 (A.12)

and noting that
(
Pr
(
ph
) (

1− Pr
(
θh | ph

))
/(1 − µ)

)
∈ (0, 1) for any c ∈ (0, c̄), one can easily

verify from (A.9)–(A.11) that, for any α ∈ S, δθl,k̄
∈ (0, 1) and δθl,0 ∈ [0, 1] for ρ ∈ (0, 1) and

c ∈ (0, c̄). Next, substituting for δθl,k̄
from (A.11) one can rewrite (A.5) and (A.6) as

δθh,k̄ =


Pr

(
ph
)

Pr
(
θh | ph

)
µ




×

1− (1− ρ)α

(
1− µ

Pr (ph) (1− Pr (θh | ph))

)
−

N
(
ph
)

ρk̄


 (A.13)

1− δθh,k̄ =


1−

Pr
(
ph
)

Pr
(
θh | ph

)
µ




×

1− (1− ρ)α

(
1− µ

(1− µ)− Pr (ph) (1− Pr (θh | ph))

)
−

N
(
pl
)

ρk̄


 . (A.14)

It follows from (A.7) and (A.8) that δθh,0 ∈ [0, 1] so long as N
(
ph
)

> 0 and N
(
pl
)

> 0.

Further, any δθh,k̄ that solves (A.13) and (A.14) belongs to [0, 1] if

0 <
N
(
ph
)

ρk̄
< 1− (1− ρ)α

(
1− µ

Pr (ph) (1− Pr (θh | ph))

)
(A.15)

and

0 <
N
(
pl
)

ρk̄
< 1− (1− ρ)α

(
1− µ

(1− µ)− Pr (ph) (1− Pr (θh | ph))

)
. (A.16)

Finally, for any value of δθh,k̄ that solves (A.13) and (A.14) it must be the case that
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
Pr

(
ph
)

Pr
(
θh | ph

)
µ


 N

(
ph
)

ρk̄
+


1−

Pr
(
ph
)

Pr
(
θh | ph

)
µ


 N

(
pl
)

ρk̄

=


Pr

(
ph
)

Pr
(
θh | ph

)
µ


 (1− ρ)α


Pr

(
ph
)(

1− Pr
(
θh | ph

))
1− µ



−1

+


1−

Pr
(
ph
)

Pr
(
θh | ph

)
µ


 (1− ρ)α


1−

Pr
(
ph
) (

1− Pr
(
θh | ph

))
1− µ



−1

. (A.17)

It is straightforward to verify that, for any ρ ∈ (0, 1) and c ∈ (0, c̄), one can always choose

a value for α ∈ S,
(
N
(
ph
)

/ρk̄
)
∈ (0, 1) and

(
N
(
pl
)

/ρk̄
)
∈ (0, 1) so that equations (A.15),

(A.16) and (A.17) are satisfied.

This concludes the proof of Proposition 2.

Proof of Proposition 4

First note that the following is a solution to the system of equations (3.4)–(3.7), which can be

readily verified by substitution into the equivalent system given by Lemma 6.

δθh,k̄ = 1,

δθh,0 =
Pr
(
ph
)

Pr
(
θh | ph

)
− µρ

µ(1− ρ)
,

δθl,k̄
=


 1− Pr

(
θh | ph

)
Pr (θh | ph) (1− µ)2


(Pr

(
ph
) (

Pr
(
θh | ph

)
− µ

)
+ µ(1− µ)

)
,

δθl,0 =


1− Pr

(
θh | ph

)
(1− µ)(1− ρ)




Pr

(
ph
)
− ρ


Pr

(
ph
) (

Pr
(
θh | ph

)
− µ

)
+ µ(1− µ)

Pr (θh | ph) (1− µ)




 ,

N
(
ph
)

ρk̄
=

N
(
pl
)

ρk̄
=

Pr
(
θh | ph

)
− µ

Pr (θh | ph) (1− µ)
.
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To see that this is the unique solution to (3.4)–(3.7) with the property that δθh,k̄ = 1 and

N
(
ph
)

/ρk̄ = N
(
pl
)

/ρk̄, note that (A.3)–(A.6) together with these two restrictions form a

linear system of 6 independent equations into 6 unknowns. Straightforward but tedious manipu-

lation then shows that 0 < ρ ≤ 1/2 is a sufficient condition for N
(
ph
)

/ρk̄ = N
(
ph
)

/ρk̄ ∈ (0, 1)

and δθ,k ∈ [0, 1] for all θ ∈ {θl, θh}, k ∈ {0, k̄} and c ∈ (0, c̄).

It is also straightforward to take limits as ρ approaches zero and to verify that the limiting

equilibrium satisfies

δ
(
ph | θh, k

)
δ
(
pl | θl, k

)
− δ

(
ph | θl, k

)
δ
(
pl | θh, k

)
≥ 0, for k ∈ {0, k̄} (A.18)

δ
(
ph | θ, k̄

)
δ
(
pl | θ, 0

)
− δ

(
ph | θ, 0

)
δ
(
pl | θ, k̄

)
≥ 0, for θ ∈ {θl, θh} . (A.19)

It is well known (see, for instance, Milgrom (1981)) that (A.18) is necessary and sufficient for

δ (· | θh, k) to dominate δ (· | θl, k) in the first-order stochastic sense, for k ∈ {0, k̄}, and (A.19)

is necessary and sufficient for δ
(· | θ, k̄

)
to dominate δ (· | θ, 0) in the first-order stochastic sense,

for θ ∈ {θl, θh}.

The Distribution of Allocative Errors

The error size for each event (θ, p1) is given by equation (3.10) in the main text and it follows

immediately from Proposition 2 and the definition of pf (θ). To find the conditional probability

of an error given θ, simply note that

Pr (p1 | θ) =
Pr (p1) Pr (θ | p1)

Pr (θ)
,

and substitute for Pr (p1), from Lemma 5, to obtain

Pr
(
ph | θh

)
=


 µ−

(
1− Pr

(
θh | ph

))
Pr (θh | ph)−

(
1− Pr (θh | ph)

)



Pr

(
θh | ph

)
µ




and
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Pr
(
ph | θl

)
=


 µ−

(
1− Pr

(
θh | ph

))
Pr (θh | ph)−

(
1− Pr (θh | ph)

)



1− Pr

(
θh | ph

)
1− µ


 ,

with Pr
(
pl | θh

)
= 1− Pr

(
ph | θh

)
and Pr

(
pl | θl

)
= 1− Pr

(
ph | θl

)
.
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