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1 Introduction

The number of infrastructure services provided by the public sector is great, ranging from

utility services such as water, electricity and gas supplies, to communication (e.g., cable, in-

ternet and telephone services) and transportation services (e.g., roads, railways and airports).

While the provision of these services benefits many households and firms in the region (and

sometimes in neighboring regions), there is, at the same time, a substantial cost involved

in providing them. Therefore, when deciding which and how much infrastructure should be

provided to a given region it is important to be able to measure the benefits resulting from

providing these services.

An extensive literature has mainly focused on the evaluation of the benefits of infrastruc-

ture services to the production sector of a country or a region; see for example Aschauer

(1989), Berndt and Hansson (1992), Holtz-Eakin (1994), Seitz (1994, 1995), Morrison and

Schwartz (1996), Boarnet (1998), Fernald (1999), Boisso, Grosskopf and Hayes (2000), Shanks

and Barnes (2008) and Elnasri (2012). That is, by comparison, the impact of the provision

of additional infrastructure services on households has been relatively unexplored. This is no

doubt in part due to the complexities involved, yet an understanding of the impacts on house-

holds is key to an understanding of the political economy of public infrastructure investment;

as Haughwout (2002, p. 426) notes, “residents vote and firms do not”.

In this paper, we provide a methodology for evaluating the benefits of infrastructure

services to the consumers in a region. In this sense, it is in the spirit of Roback (1982), Albouy

(2008), Parry and Small (2009), Albouy, Leibovici and Warman (2013)and Haughwout (2002),

who used a spatial general equilibrium model to assess whether consumers benefited more

than firms from local price changes induced by public infrastructure. However, our approach

is closer to the welfare analysis of Hicks (1940-41), Hicks (1941-42), Harberger (1971), and

Diewert (1992). In particular, we are going to draw on the work of Diewert (1986) who

developed methods for evaluating the benefits of infrastructure services to the production

sector based on information on prices and quantities for the two situations that are being

compared. Thus, we derive methodologies for estimating the benefits of infrastructure services

to households based on potentially observable price and quantity data. In addition to a

range of results on household benefit measures, which focus on “efficiency gains” net of

redistribution effects, we derive a direct measure for pure welfare change.

The paper proceeds as follows. In the next section we define benefit measures for con-

sumers in the region based on a fixed price approach (i.e., we assume constant reference

prices for market goods and services). In section 3 we introduce the concept of consumers’

willingness to pay for infrastructure services and apply a direct approach in deriving the

approximations for the benefit measures. That is, the obtained approximations are based on

infrastructure services provided to the consumers in the region and on consumers’ valuations

of these services. In section 4 we apply an indirect approach in deriving the approximations

for consumers’ benefit measures. Specifically, the benefit measures are approximated using

indirect information, that is, information on consumers’ consumption of market goods and

services and their respective prices. We discuss in section 5 how the benefit measures and their

associated approximations can be used in quantifying the economic benefits of infrastructure
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services when the assumption of fixed prices is relaxed. Section 6 provides an expression,

using only potentially available data, for the pure welfare effect of a change in infrastructure

services. The paper concludes with a review of the alternative approaches and results.

2 Benefit Measures

In this section we define benefit measures for consumers assuming constant reference prices

for market goods and services; we assume that the region under consideration is small and

changes in the regional demand or supply for these goods and services do not affect the

“world” prices. By holding the prices fixed we can focus on the pure efficiency effects of

changes in infrastructure services and avoid contaminating these effects with the effects of

exogenous changes in the region’s terms of trade. In section 5, the prices for local market

goods and services are allowed to change endogenously as the provision of infrastructure

services changes and discuss how the benefit measures developed in this section can still be

used in quantifying the economic benefits of infrastructure services.

We consider a region in which there are a finite number H of households. We assume

that households in this regional economy consume two types of goods and services. The first

type consists of N goods and services which can be bought by the households at the fixed

positive prices (p1, ..., pN ) which we denote by the price vector p. We denote the consumption

vector of these N goods and services for household h as ch ≡ (ch1 , ..., c
h
N ). We restrict the

consumption vector of the N market goods and services of household h to be a nonnegative

vector, i.e., ch ≥ 0N where 0N denotes a vector of zero of dimension N .1 Note that this

restriction implies that the labor supply of household h is measured indirectly through its

leisure consumption. For example, if household h provides lhn hours of labor service n then

chn is measured as chn ≡ 24− lhn.2

The second type of goods and services is a class of I infrastructure services (e.g., water,

electricity, sewage disposal, airport services, etc) that are provided by all levels of government

to the inhabitants of the region. Included in the list of infrastructure services are potential

new services that might be provided by the government but are being provided at zero levels

in the current period. The consumption by household h of the ith type of infrastructure

service is denoted by the nonnegative number Sh
i ≥ 0 for i = 1, ..., I and h = 1, ...,H. The

vector of infrastructure services utilized by household h will be denoted by the nonnegative

vector Sh ≡ (Sh
1 , ..., S

h
I ) ≥ 0I for h = 1, ...,H where 0I denotes a vector of zero of dimension

I. The household may or may not be paying user fees for the use of these infrastructure

services. If all of the infrastructure services were pure public goods, then we would have

Sh = S, for h = 1, ...,H; i.e., each household can consume the common amount of each of the

I types of infrastructure services. However, in general, we will assume that each household is

utilizing a specific amount of water, electricity, natural gas, postal services, rail services, etc.

1 Notation: y ≥ 0M means each component of the vector y is nonnegative, y � 0M means that

each component is strictly positive, y > 0M means y ≥ 0M but y 6= 0M and p · y denotes the inner

product of the vectors p and y.
2Of course, if household h also consumes service n then this amount would be added to chn.
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We assume that households’ preferences over different combinations of the N market

goods and services and of infrastructure services can be represented by utility functions,

Uh(ch, Sh) for h = 1, ...,H. We assume that the domain of definition for Uh(ch, Sh) is the set

V ≡ {(ch, Sh) : ch ≥ 0N ;Sh ≥ 0I} and that Uh(ch, Sh) is continuous, non-decreasing3 and

quasi-concave in ch. We further assume that Uh(ch, Sh) is twice continuously differentiable

over its domain of definition. Note that except for differentiability we do not assume any

regularity properties for Uh(ch, Sh) with respect to its Sh variable.

Under these assumptions, the restricted expenditure function of household h, denoted as

eh, is defined for p � 0N by minimizing the cost of achieving a given utility level uh > 0,

given that the household has at its disposal the vector Sh of infrastructure services. Formally,

for p � 0N and Sh and uh such that there exists a ch satisfying Uh(ch, Sh) = uh with

(ch, Sh) ∈ V , the restricted expenditure function for household h is defined by

eh(uh, p, Sh) ≡ min
c
{p · c : Uh(c, Sh) = uh} for h = 1, ...,H. (1)

Suppose ch solves (1). Then we have defined the household’s restricted expenditure function

eh by eh(uh, p, Sh) = p ·ch; namely, the minimized expenditure of household h is a function of

the household’s given utility level uh, the price vector p it faces for its consumption of the N

market goods and services and the vector of infrastructure services Sh it has at its disposal.

Note that the restricted expenditure function defined by (1) is linearly homogeneous and

concave in p.

We are interested in the benefits that will accrue to household h if the government changes

its infrastructure services vector from Sh0 to Sh1. Before addressing this, we first note that

changes in the provision of infrastructure services are likely to affect the distribution of income

and welfare in the region. Therefore, when evaluating the benefits accruing to households due

to changes in the provision of infrastructure services we have to be cautious to separate the

redistributive effects of these changes from the efficiency effects and focus on the latter. To

do that, we adopt the following approach to measuring the pure efficiency effects of changes

in infrastructure services on household h: we freeze the household’s utility level at its initial

welfare level uh0 (i.e., before the changes in infrastructure services were introduced). We then

ask how the minimum cost of achieving the initial welfare level will change for household h

as a result of its change in infrastructure consumption. Formally, let us denote Gh as the

measure of the household’s gross benefits from the change in infrastructure services (Sh0 to

Sh1). Then we define Gh for h = 1, ...,H as follows:

Gh(Sh0, Sh1, uh0, p) ≡ −{eh(uh0, p, Sh1)− eh(uh0, p, Sh0)}. (2)

A few notes should be mentioned in regards to this gross benefit change measure. First,

the benefits of the infrastructure change to household h are termed gross benefits because

we do not net out any changes in user fees that may result from the infrastructure change.

Second, Gh depends on the two infrastructure service vectors Sh0 and Sh1, as well as on the

household’s initial level of welfare uh0 and the fixed price vector p. Third, the benefits to

3Formally, we will make the assumption that for every (ch, Sh) ∈ V we have ∇chU
h(ch, Sh) > 0N .
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household h defined in (2) are equal to minus the change in the household’s minimized cost

of achieving its initial welfare level. That is, household h will be better off (worse off) due to

changes in its infrastructure consumption if its minimized cost of achieving its initial welfare

level is reduced (increased). Last, note that the household’s gross benefit change measure is

also a measure of gross benefit change to society since it represents a change in the household’s

consumption of the N market goods and services available in the region (evaluated at the

constant reference prices p ≡ (p1, p2, ..., pN )) while still maintaining its initial welfare level.

We now aggregate over all households’ benefit change measures in order to define the

regional gross benefit change measure due to a change in the government’s provision of in-

frastructure services from Sh0 to Sh1 for household h, h = 1, ...H:

GH(S10, ..., SH0;S11, ..., SH1;u10, ..., uH0; p) ≡
H∑

h=1

Gh(Sh0, Sh1, uh0, p)

≡ −
H∑

h=1

{eh(uh0, p, Sh1)− eh(uh0, p, Sh0)}.

(3)

Since prices for the N market goods and services that the region face are likely to change

between period 0 and period 1 the gross benefit measure in (2) (and hence also in (3)) can be

evaluated using either the prices that prevail in period 0 (denoted as p0) or the prices that

prevail in period 1 (denoted as p1). Thus, there are two possible benefit measures for the

household:

Gh(Sh0, Sh1, uh0, p0) ≡ −{eh(uh0, p0, Sh1)− eh(uh0, p0, Sh0)} (4)

and

Gh(Sh0, Sh1, uh0, p1) ≡ −{eh(uh0, p1, Sh1)− eh(uh0, p1, Sh0)}. (5)

The above two equations represent the change in the household’s consumption of the N

market goods and services that is needed to maintain its initial welfare level uh0 due to the

change in infrastructure services, where in (4) the change in the household’s consumption is

valued at the fixed price vector prevailing in period 0 and in (5) the change in the household’s

consumption is valued at the fixed price vector prevailing in period 1.

Both of (4) and (5) share a key element: they are defined in terms of differences in the

households’ restricted expenditure functions. Thus, in subsequent sections of this paper, we

develop methods for approximating these differences using potentially observable information.

3 Approximating the Benefit Measures: A Direct

Approach

In this section we study various first and second order approximations to the household

benefit measures (4) and (5). The approach used in deriving these approximations is a
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direct one. That is, the benefit measures are going to be approximated using information on

the infrastructure services provided to the households in the region and on the households’

valuations of these services.

We begin by defining the concept of the household’s “willingness to pay” for an extra unit

of the ith type of infrastructure services. If a household’s welfare level is uh, then under

the set of assumptions of section 2, the household would be willing to pay its reduction in

expenditure on the N market goods and services that is due to an additional unit of Sh
i while

still maintaining its standard of living at the utility level uh. That is, the household should

be willing to pay the following amount:

− {eh(uh, p, Sh
1 , ..., S

h
i−1, S

h
i + 1, Sh

i+1, ..., S
h
I )− eh(uh, p, Sh

1 , ..., S
h
i−1, S

h
i , S

h
i+1, ..., S

h
I )}. (6)

We can approximate the difference in (6) by the partial derivative ∂eh(uh, p, Sh)/∂Sh
i .

Since this partial derivative represents the amount that a cost minimizing household is willing

to pay for the use of the extra marginal unit of Sh
i , we define the household’s willingness to

pay function for marginal units of the ith infrastructure service as follows:4

W h
i (uh, p, Sh) ≡ −∂eh(uh, p, Sh)/∂Sh

i i = 1, ..., I. (7)

Now, let the data for the initial situation be p0 ≡ (p01, ..., p
0
N ), a positive price vec-

tor for market goods and services; uh0 > 0, the household’s welfare level in period 0;

ch0 ≡ (ch01 , ..., c
h0
N ), the corresponding consumption vector of household h in period 0; Sh0 ≡

(Sh0
1 , ..., Sh0

I ), a nonnegative vector of infrastructure services that are being consumed by

household h in period 0, and W h0 ≡ (W h0
1 , ...,W h0

I ), the corresponding willingness to pay

vector of household h in period 0; i.e., W h0
i ≡ −∂eh(uh0, p0, Sh0)/∂Sh

i for i = 1, ..., I.

Suppose the government changes the infrastructure services vector for household h to Sh1

in period 1. We also allow for a change in the price vector for market goods and services, so

the new period 1 price vector is p1. The household’s new willingness to pay vector is defined

as W h1 ≡ (W h1
1 , ...,W h1

I ) where W h1
i ≡ −∂eh(uh0, p1, Sh1)/∂Sh

i for i = 1, ..., I. Note that

W h1
i is evaluated at (uh0, p1, Sh1). That is, W h1

i reflects the amount that household h, when

facing period 1 prices p1 and when consuming Sh1 infrastructure services, is willing to pay

for an additional unit of Sh
i while still maintaining its standard of living at the initial utility

level uh0.5

We may write the two willingness to pay vectors as a gradient vector (i.e., a vector of

first order partial derivatives) of the household expenditure function with respect to the

components of Sh as follows:

4This derivation of willingness to pay functions in an expenditure function framework is due to

Diewert (1986) but precursors of this concept may be found in Samuelson (1953-1954) and Diewert

(1974). For further discussion on households’ willingness to pay functions and their properties see

Diewert (1986).
5Wh1

i is defined in terms of the initial utility level so as to focus on efficiency effects, rather than

redistribution effects.
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W h0 ≡ −∇Sheh(uh0, p0, Sh0); W h1 ≡ −∇Sheh(uh0, p1, Sh1). (8)

We now turn to develop first order approximations to the household benefit measures (4)

and (5).

3.1 First Order Approximations

We assume that in each period the household minimizes the cost of achieving its welfare

level in that period. In particular, we assume that ch0 is the solution to the expenditure

minimization problem (1) of household h in period 0 when uh = uh0, p = p0 and Sh = Sh0.

Thus we have the following equality:

eh(uh0, p0, Sh0) = p0 · ch0 ≡
N∑

n=1

p0nc
h0
n . (9)

Note that the expenditure eh(uh0, p0, Sh1) in (4) is the hypothetical expenditure that is

associated with the period 1 allocation of infrastructure services and period 0 prices and

welfare level. That is, it is the expenditure that household h would have spent to achieve

welfare level uh0 had it faced prices p0 and had had at its disposal infrastructure services

Sh1. This expenditure is not observable but we can approximate it by means of a first order

Taylor series approximation as follows:

eh(uh0, p0, Sh1) ' eh(uh0, p0, Sh0) +
I∑

i=1

[∂eh(uh0, p0, Sh0)/∂Sh
i ][Sh1

i − Sh0
i ]

= p0 · ch0 +∇Sheh(uh0, p0, Sh0) · (Sh1 − Sh0) using (9)

= p0 · ch0 −W h0 · (Sh1 − Sh0) using (8). (10)

Similarly, we may approximate the unobservable expenditure eh(uh0, p1, Sh0) in (5) as

follows:

eh(uh0, p1, Sh0) ' eh(uh0, p1, Sh1) +∇Sheh(uh0, p1, Sh1) · (Sh0 − Sh1)

= eh(uh0, p1, Sh1)−W h1 · (Sh0 − Sh1) using (8). (11)

Substituting (10) and (11) into the household benefit measures (4) and (5), we obtain the

following approximate benefit measures (12) and (13):

Gh(Sh0, Sh1, uh0, p0) ≡ −{eh(uh0, p0, Sh1)− eh(uh0, p0, Sh0)}
' −{p0 · ch0 −W h0 · (Sh1 − Sh0)− p0 · ch0} using (9) and (10)

= W h0 · (Sh1 − Sh0) (12)

and
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Gh(Sh0, Sh1, uh0, p1) ≡ −{eh(uh0, p1, Sh1)− eh(uh0, p1, Sh0)}
' −{eh(uh0, p1, Sh1)− [eh(uh0, p1, Sh1)−W h1 · (Sh0 − Sh1)]} using (11)

= W h1 · (Sh1 − Sh0). (13)

Expressions (12) and (13) have the same form as the linear approximations to equivalent

variation and compensation variation, respectively, as derived by Hicks (1941-42); see also

Diewert (1992, p. 568, footnote 11). Each benefit measure can be calculate simply if data

are available on the change in infrastructure services, (Sh1−Sh0) and the ex ante (W h0) and

ex post (W h1) willingness to pay.

3.2 Second Order Approximations

We now turn to develop second order approximations to the household benefit measures (4)

and (5). We assume that households’ preferences are homothetic in the N market goods and

services, conditional on any vector of infrastructure services. This assumption is equivalent

to the following linear homogeneity assumption on Uh(ch, Sh):

Uh(λch, Sh) = λUh(ch, Sh) for all λ > 0; ch ≥ 0N ;Sh ≥ 0I . (14)

Next we define the unit (utility) expenditure function for household h. To do so, we first

note that for (ch, Sh) ∈ V , we have,

0 ≤ ch · ∇chU
h(ch, Sh)

= Uh(ch, Sh), (15)

where the inequality follows from our assumption that for every (ch, Sh) ∈ V we have

∇chU
h(ch, Sh) > 0N (non-decreasing in ch utility function) and the equality follows from

our assumption of linear homogeneity (14) and Euler’s Theorem on homogeneous functions.6

Thus (15) implies that for each fixed Sh, the range of Uh(ch, Sh) as ch varies over the non-

negative orthant is the set R ≡ {uh : 0 ≤ uh ≤ +∞}. In particular, uh = 1 belongs to this

range set R. Hence we can define the unit expenditure function for household h as follows:

Eh(p, Sh) ≡ min
c
{p · c : Uh(c, Sh) = 1}

= eh(1, p, Sh) for h = 1, ...,H, (16)

where the last equality follows from (1). Note that the household’s unit expenditure function

defined by (16) is linearly homogeneous and concave in p.

6Using Euler’s Theorems on homogeneous functions, our assumption of linear homogeneity implies

that for every (ch, Sh) ∈ V we have ch · ∇chU
h(ch, Sh) = Uh(ch, Sh).
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Using the linear homogeneity assumption (14) we can express the household’s restricted

expenditure function in terms of its unit expenditure function. Specifically, for each uh > 0,

p� 0N and Sh such that there exists a ch satisfying Uh(ch, Sh) = uh with (ch, Sh) ∈ V , we

have

eh(uh, p, Sh) ≡ min
c
{p · c : Uh(c, Sh) = uh}

= min
c
{p · c : (1/uh)Uh(c, Sh) = 1}

= min
c
{p · c : Uh(c/uh, Sh) = 1} using linear homogeneity (14)

= min
c
{(uhp · c)/uh : Uh(c/uh, Sh) = 1}

= uh min
z
{p · z : Uh(z, Sh) = 1} letting z ≡ c/uh

= uhEh(p, Sh) using definition (16) (17)

for h = 1, ...,H. The advantage of relationship (17) is that it simplifies our search for a

class of functional forms that can approximate to the second order households’ restricted

expenditure functions. Indeed, it suffices for us to find a class of functional forms that can

approximate to the second order households’ unit expenditure functions in order to derive

second order approximations to households’ benefit measures.

Consider the following (normalized) biquadratic functional form for the unit expenditure

function for household h:

Eh(p, Sh) ≡
N∑

n=1

γnpn + (1/2)
N−1∑
m=1

N−1∑
n=1

dmnpmpn(pN )−1

+
N∑

n=1

I∑
i=1

fnipnS
h
i + (1/2)(

N∑
n=1

δnpn)(

I∑
i=1

I∑
j=1

gijS
h
i S

h
j ) (18)

which can be written in matrix notation as,

Eh(p, Sh) ≡ γ · p+ (1/2)(pN )−1(p′ ·Dp′) + p · FSh + (1/2)(δ · p)(Sh ·GSh), (19)

where p′ ≡ (p1, ..., pN−1), γ is an N dimensional vector with elements γn, D is an N − 1 by

N−1 symmetric and negative semi-definite matrix with elements dmn,
7 F is a N by I matrix

with elements fni, δ > 0N is a nonnegative, nonzero vector of fixed constants with elements

δn and G is an I by I symmetric matrix with elements gij . To keep the number of unknown

parameters to a minimum, and to make the household’s expenditure function linear in the

unknown parameters, γn, dmn, fni and gij , we assume that the elements δn of the vector δ

are known nonnegative numbers which are not all equal to zero. The chosen values for the δn

have no impact on the properties of the expenditure function, and thus can be chosen freely.

7We require the matrix D to be negative semi-definite in order to ensure the global concavity of

Eh(p, Sh) in p. See Diewert and Wales (1987) and their proof of their Theorem 10.
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For the purpose of obtaining second order approximations to household’s benefit measures

let us define the following normalized price and willingness to pay vectors,

p̃t ≡ pt/δ · pt; W̃ ht ≡W ht/δ · pt; t = 0, 1. (20)

As one can see, p0 and W h0 in definition (20) are deflated by δ · p0 ≡
∑N

n=1 δnp
0
n, where δ is

the nonnegative, nonzero vector of fixed constants which appears in the functional form for

the household’s unit expenditure function (18). Similarly, p1 and W h1 in definition (20) are

deflated by δ · p1 ≡
∑N

n=1 δnp
1
n to form p̃1 and W̃ h1.

Using definitions (2) and (20) we can define the following analogous measures to the

household’s benefit measures (4) and (5) as follows:

Gh(Sh0, Sh1, uh0, p̃0) ≡ −{eh(uh0, p̃0, Sh1)− eh(uh0, p̃0, Sh0)}, (21)

and

Gh(Sh0, Sh1, uh0, p̃1) ≡ −{eh(uh0, p̃1, Sh1)− eh(uh0, p̃1, Sh0)}. (22)

The household benefit measure defined by (21) is the same as the theoretical household

benefit measure (4) only here the price vector p0 is replaced by the normalized price vector

p̃0. Likewise, the household benefit measure defined by (22) is the same as the theoretical

household benefit measure (5) where the price vector p1 is replaced by the normalized price

vectors p̃1.

Then we can derive the following result.

Proposition 1 Suppose the unit expenditure function for household h, Eh, is defined by

(18). Then we have the following exact identity:

(1/2)Gh(Sh0, Sh1, uh0, p̃0)+(1/2)Gh(Sh0, Sh1, uh0, p̃1) = (1/2)[W̃ h0+W̃ h1] · [Sh1−Sh0] (23)

Proof. See the Appendix

The left hand side of (23) is an average of the two theoretical household benefit measures

defined by (21) and (22). The right hand side is an average of the two first order approximate

benefit measures defined by (12) and (13), where the original willingness to pay vectors W h0

and W h1 are replaced with the normalized willingness to pay vectors W̃ h0 and W̃ h1.

The implication of the class of functional forms defined by (18) is that this class can ap-

proximate an arbitrary twice continuously differentiable unit expenditure function Eh∗
(p, Sh)

to the second order. Specifically we have the following result,

Proposition 2 Let p∗ � 0N and Sh∗ ≥ 0I and let a given unit expenditure function Eh∗
be

twice continuously differentiable at (p∗, Sh∗
). Then for any given nonnegative, nonzero vector

δ > 0N , there exists a Eh in the class of functions defined by (18) (where the δ which appears

in (18) is the same as the given δ) such that
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Eh(p∗, Sh∗
) = Eh∗

(p∗, Sh∗
) (24)

∇zE
h(p∗, Sh∗

) = ∇zE
h∗

(p∗, Sh∗
) (25)

∇2
zzE

h(p∗, Sh∗
) = ∇2

zzE
h∗

(p∗, Sh∗
) (26)

where z ≡ (p, Sh).

Proof. See the Appendix

i.e., the level, all N + I first order partial derivatives and all (N + I)2 second order partial

derivatives of Eh and Eh∗
coincide at the point (p∗, Sh∗

).

Combining Propositions 1 and 2 we can conclude that for any nonnegative, nonzero vector

δ, (1/2)[W̃ h0 + W̃ h1] · [Sh1 − Sh0] will approximate the average of the household’s benefit

measures (21) and (22) to the second order.8

4 Approximating the Benefit Measures: An Indi-

rect Approach

The approach used to derive the approximations to the household benefit measures in the

previous section was a direct one in the sense that the derived approximations involved direct

information, that is, information on the infrastructure services provided to the household

and the household’s valuation over these services. In this section we are going to employ an

indirect approach for approximating the household benefit measures, in a similar vein to the

indirect approach to benefit measurement of Kanemoto (1980), Harris (1978) and Negishi

(1972). In particular, the benefit measures are going to be approximated using indirect

information, namely, information from the market of the N goods and services in the region.

While this approach obviates the need for knowledge of the household’s willingness to pay

for infrastructure services, which may be difficult to obtain, we will see that it will only work

if ex post data are available; we will require price and quantity data for periods 0 and 1.

As before, we denote the data for the initial situation as: p0 ≡ (p01, ..., p
0
N ), a positive

price vector for market goods and services; uh0 > 0, the household’s welfare level in period

8Diewert (1986) derived related expressions from the producer side to those presented in this

section. When approximating the benefit measures using the direct approach, similar approximations

for firms and households are obtained. The first order approximation to the firm’s period 0 (period

1) benefit measure is equal to the change in infrastructure services provided to the firm multiplied

by the firm’s willingness to pay for infrastructure services in period 0 (period 1). The second order

approximation to the average of the firm’s period 0 and period 1 benefit measures, evaluated at

normalized prices for market goods and services, is equal to the change in infrastructure services

provided to the firm multiplied by the firms’s normalized average of period 0 and period 1 willingness

to pay for infrastructure services.
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0; ch0 ≡ (ch01 , ..., c
h0
N ), the corresponding consumption vector of household h in period 0 and

Sh0 ≡ (Sh0
1 , ..., Sh0

I ), a nonnegative vector of infrastructure services that are being consumed

by household h in period 0.

We assume that in each period the household minimizes the cost of achieving its welfare

level in that period. That is, we assume that ch0 is the solution to the expenditure minimiza-

tion problem (1) of household h in period 0 when uh = uh0, p = p0 and Sh = Sh0. Similarly,

ch1 is assumed to be the solution to the expenditure minimization problem (1) of household

h in period 1 when uh = uh1, p = p1 and Sh = Sh1. Thus we have the following equalities:

eh(uh0, p0, Sh0) = p0 · ch0 ≡
N∑

n=1

p0nc
h0
n ; eh(uh1, p1, Sh1) = p1 · ch1 ≡

N∑
n=1

p1nc
h1
n (27)

Moreover, since eh(uh, p, Sh) is assumed to be differentiable with respect to the components

of the price vector p, then using Shephard’s Lemma (Shephard (1953)),9 we have that the

household’s consumption vector of market goods and services in period t, cht, is equal to the

vector of first order partial derivatives of eh(uht, pt, Sht) with respect to the components of

p. That is,

ch0 ≡ ∇pe
h(uh0, p0, Sh0); ch1 ≡ ∇pe

h(uh1, p1, Sh1). (28)

With this information in hand we now turn to derive alternative first order approximations

to the household benefit measures (4) and (5).

4.1 First Order Approximations

Using equations (27) and (28), we can form the following first order Taylor series approxima-

tions:

eh(uh0, p1, Sh0) ' eh(uh0, p0, Sh0) +∇pe
h(uh0, p0, Sh0) · (p1 − p0)

= p0 · ch0 + ch0 · (p1 − p0) using (27) and (28)

= p1 · ch0 (29)

eh(uh0, p0, Sh1) ' eh(uh1, p1, Sh1) +∇pe
h(uh1, p1, Sh1) · (p0 − p1) +

∂eh(uh1, p1, Sh1)

∂uh
(uh0 − uh1)

= p1 · ch1 + ch1 · (p0 − p1) +
∂eh(uh1, p1, Sh1)

∂uh
(uh0 − uh1) using (27) and (28)

= p0 · ch1 +
∂eh(uh1, p1, Sh1)

∂uh
(uh0 − uh1) (30)

9See also Appendix 3 in Diewert (1986).
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eh(uh0, p1, Sh1) ' eh(uh1, p1, Sh1) +
∂eh(uh1, p1, Sh1)

∂uh
(uh0 − uh1)

= p1 · ch1 +
∂eh(uh1, p1, Sh1)

∂uh
(uh0 − uh1) using (27) (31)

Now substituting (29), (30) and (31) into the benefit measures (4) and (5), and we obtain

the approximate benefit measures in (32) and (33):

Gh(Sh0, Sh1, uh0, p0) ≡ −{eh(uh0, p0, Sh1)− eh(uh0, p0, Sh0)}

' −{p0 · ch1 +
∂eh(uh1, p1, Sh1)

∂uh
(uh0 − uh1)− p0 · ch0} using (27) and (30)

= p0 · (ch0 − ch1)− ∂eh(uh1, p1, Sh1)

∂uh
(uh0 − uh1) (32)

and

Gh(Sh0, Sh1, uh0, p1) ≡ −{eh(uh0, p1, Sh1)− eh(uh0, p1, Sh0)}

' −{p1 · ch1 +
∂eh(uh1, p1, Sh1)

∂uh
(uh0 − uh1)− p1 · ch0} using (29) and (31)

= p1 · (ch0 − ch1)− ∂eh(uh1, p1, Sh1)

∂uh
(uh0 − uh1). (33)

The first term on the right-hand side of expressions (32) and (33) gives the household’s con-

sumption change evaluated at either period 0 or period 1 prices, respectively. The second

term in each expression accounts for redistributive effects, since the use of period 1 consump-

tion data implies the need to “net out” redistributive effects. In the absence of redistributive

effects (uh0 = uh1), we obtain benefit measures which depend only on prices and household’s

consumption of market goods and services. Importantly from a practical point of view, if the

redistributive effects in the region cancel out in the aggregate, then we can evaluate these

approximations using only aggregate price and consumption data for the region.

For cases where the assumption of no redistributive effects (whether at the household or at

the aggregate level) is inappropriate, we can derive an explicit expression for the redistributive

effects if we assume that households’ preferences are homothetic in the N market goods and

services, conditional on any vector of infrastructure services. Specifically, we assume that the

set of assumptions used in deriving the direct second order approximations to households’

benefit measures (section 3.2) holds so that a unit expenditure function exists and relation

(17) holds. Then, by (17) we have eh(uh, p, Sh) ≡ uhEh(p, Sh) and thus, ∂eh(uh,p,Sh)
∂uh ≡

Eh(p, Sh). Using this relation between the restricted expenditure function and the unit

expenditure function we can write the expression for the redistributive effects as:10

10Another way to derive (34) without the use of the unit expenditure function is to use the fact

that under this set of assumptions eh is linearly homogeneous in uh.
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∂eh(uh1, p1, Sh1)

∂uh
(uh0 − uh1) = Eh(p1, Sh1)(uh0 − uh1)

= uh1Eh(p1, Sh1)(
uh0

uh1
− 1)

= eh(uh1, p1, Sh1)(
uh0

uh1
− 1) using (17)

= (
uh0 − uh1

uh1
)(p1 · ch1) using (27). (34)

Thus, under the assumption of homothetic preferences the redistribution effects in (33) are

equal to the relative change of the household’s welfare level multiplied by household’s period

1 expenditure. Since the redistribution effects are expressed in terms of relative change (and

not absolute change) of the household’s welfare level, we can use data on the relative change

in the household’s real income as a proxy for the relative change of the household’s welfare

level, i.e. money metric utility scaling.

4.2 Second Order Approximations

We now turn to derive indirect second order approximations to the household benefit measures

(4) and (5). In doing so we are going to use the same set of assumptions on households’

preferences which was used in deriving the direct second order approximations (section 3.2).

Moreover, we are going to make use of the same class of functional form for the household’s

unit expenditure function as in (18).

We define the following household benefit measures using definition (2):

Gh(Sh0, Sh1, uh0,
p0

p0N
) ≡ −{eh(uh0,

p0

p0N
, Sh1)− eh(uh0,

p0

p0N
, Sh0)}, (35)

Gh(Sh0, Sh1, uh0,
p1

p1N
) ≡ −{eh(uh0,

p1

p1N
, Sh1)− eh(uh0,

p1

p1N
, Sh0)}. (36)

The household benefit measure defined by (35) is the same as the theoretical household

benefit measure (4) only here the price vector p0 is replaced by the normalized price vector

p0/p0N ≡ (p01/p
0
N , ..., p

0
N−1/p

0
N , 1). Likewise, the household benefit measure defined by (36) is

the same as the theoretical household benefit measure (5) where the price vector p1 is replaced

by the normalized price vectors p1/p1N ≡ (p11/p
1
N , ..., p

1
N−1/p

1
N , 1). We can then obtain the

following result.

Proposition 3 Suppose the unit expenditure function for household h, Eh, is defined by (18)

and that relations (27) and (28) hold. Then we have the following exact identity:
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(1/2)Gh(Sh0, Sh1, uh0,
p0

p0N
) + (1/2)Gh(Sh0, Sh1, uh0,

p1

p1N
) =

(1/2)[(
p0

p0N
) + (

p1

p1N
)] · [ch0 − ch1]− (1/2)(

uh0

uh1
− 1)[(

p0

p0N
) + (

p1

p1N
)] · ch1 (37)

Proof. See the Appendix

The left hand side of (37) is an average of the two theoretical household benefit measures

(35) and (36). On the right hand side of (37), the first term is the average of the two first terms

in the first order approximate benefit measures (32) and (33), where the price vectors p0 and

p1 are replaced by the normalized price vectors p0/p0N and p1/p1N . The second term (“netting

out” redistributive effects), is the same as the second term in the first order approximate

benefit measures (32) and (33), only here p1 is replaced by the average of the normalized

prices p0/p0N and p1/p1N . In the absence of redistributive effects (uh0 = uh1) the average of the

two theoretical household benefit measures (35) and (36) equals the household’s consumption

change of market goods and services (a quantity change) multiplied by the average of the

normalized prices p0/p0N and p1/p1N . Note that this has the form of a Bennet (1920) quantity

indicator; see also Diewert (2005).11

As was shown in Proposition 2, the class of functional forms defined by (18) can approx-

imate an arbitrary twice continuously differentiable unit expenditure function Eh∗
(p, Sh) to

the second order. Thus, Propositions 2 and 3 imply that the right hand side of (37) is an ap-

proximate household benefit measure which approximates the average of the two theoretical

household benefit measures (35) and (36) to the second order.

While the indirect approach yields approximations to benefit measures that do not rely

on knowledge of the consumers’ willingness to pay, household utility in both periods appear

in expressions (34) and (37). As utility is usually not directly observable, we can assume

e.g. money metric utility scaling, or attempt to establish a result based only on directly

observable price and consumption data, as follows.

11In the producer context considered by Diewert (1986), the first order approximation to the firm’s

period t, t = 0, 1, benefit measure is equal to the firm’s net output change where all outputs and

inputs are evaluated at period t prices. The second order approximation to the average of the firm’s

period 0 and period 1 benefit measures is equal to the firm’s net output change where all outputs

and inputs are evaluated at a normalized average of period 0 and period 1 prices. While it is possible

to use information on changes in quantities of market goods and services on the production side to

implicitly infer benefits of changes in infrastructure provision to the production sector, we cannot

do the same on the consumer side without further adjustment; the household’s consumption data in

period 1 implicitly conveys information on redistributive effects which we do not wish to include as

part of the benefit measure. In the absence of redistributive effects we get similar approximations for

both firms and households which consist of information on changes in quantities of market goods and

services only.
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Corollary 1 Suppose the conditions stipulated in Proposition 3 hold. Then the average of

the two theoretical household benefit measures (35) and (36) has the following upper bound:

(1/2)Gh(Sh0, Sh1, uh0,
p0

p0N
) + (1/2)Gh(Sh0, Sh1, uh0,

p1

p1N
) ≤ (1/2)[(

p0

p0N
) + (

p1

p1N
)] · ch0 (38)

Proof. See the Appendix

Note that this upper bound can be calculated with only information on prices and the house-

hold’s consumption of market goods and services. Note also that we can simply aggregate

over households by summing the upper bounds, leading to a benefit measure that can be

used for cost-benefit analysis. Because of the need for period 1 prices in (38), it can perhaps

be thought of as being of most use in ex post analysis of infrastructure projects.

5 An Endogenous Price Approach to Benefit Mea-

sures

As changes in infrastructure services in a region tend to be large discrete changes, these

changes are likely to have relatively large effects on the regional economy, and therefore they

may cause systematic (endogenous) changes in the prices of local goods and services. Thus,

holding the prices of market goods and services fixed while comparing the benefits of different

infrastructure provisions might not be a good strategy since some of these prices will change

endogenously as the provision of infrastructure services changes.

To accommodate for local goods and services and their price endogeneity we can make use

of the setup developed by Diewert (1986). In particular, we can treat the initial N market

goods and services as inter-regionally traded goods and services which are supplied to or

demanded from the region in a perfectly elastic manner, that is, their prices are assumed to

be fixed. We then can introduce into the regional economy a second class of M market goods

and service where the prices of this second class of goods and services will depend on local

supply and demand conditions.

Diewert (1986) derived an endogenous price benefit measure of changes in the provision

of infrastructure services for the region as a whole. He showed that under certain conditions,

the endogenous price benefit measure lies below the constant price benefit measure evaluated

at period 0 prices. Hence, an estimate of period 0 price benefit measure for the whole region

will provide an upper bound to the endogenous price benefit measure. Moreover, in Diewert’s

period 0 price benefit measure for the whole region, the benefits to consumers’ are measure by

(4). Thus, to estimate consumers’ benefits in the period 0 price benefit measure we can use

the first order approximations, (12) and (32), which were derived using the direct approach

and the indirect approach, respectively.12

12The first order approximation (32) can be used together with (34) so that the redistribution effects

can be identified.
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Diewert (1986) also showed that the first order approximation to the endogenous price

benefit measure around the period 0 allocation of infrastructure services coincides with the

direct approach first order approximation to the period 0 price benefit measure for the whole

region. Therefore, an estimate of the direct approach first order approximation to the period

0 price benefit measure for the whole region will provide a first order approximation to the

endogenous price benefit measure. Once again, the direct approach first order approximation

(12) can be used to estimate the consumers’ part.

6 Households’ Welfare and the Provision of Infras-

tructure Services

In the previous sections we have focussed on benefit measures in terms of reduced household

expenditure. In the following result we derive an explicit expression for the household’s change

of welfare level from period 0 to period 1, which includes redistribution effects. As expected,

the derived expression is a function of the amount of infrastructure services provided to the

household, the household’s valuation of these services (household’s willingness to pay for

infrastructure services), as well as the household’s consumption of market goods and services

and their respective prices.

Proposition 4 Suppose the unit expenditure function for household h, Eh, is defined by (18)

and that relations (27) and (28) hold with ch1 6= 0N . Suppose further that δ in (18) is chosen

so that δ · [( p1

p1N
)− ( p0

p0N
)] = 0. Then the ratio of the household’s welfare levels in period 0 and

1, uh0

uh1 , is given by the following expression:

uh0

uh1
=
p1N (p0 · ch0) + p0N (p1 · ch0)− p1N (W h0 · (Sh1 − Sh0))− p0N (W h1 · (Sh1 − Sh0))

p1N (p0 · ch1) + p0N (p1 · ch1)
(39)

Proof. See the Appendix

As the parameter vector δ can be freely chosen (see section 3.2), the assumption on its

value is unrestrictive. Inverting (39) obviously gives the change in the utility level going from

period 0 to period 1, giving a measure of the welfare change for the household. Note that

when we substitute (39) into (37) then we are back to the direct measure of section 3; we have

a variant of (23) but with different normalization. That is, we get that the average of the two

theoretical household benefit measures (35) and (36) is equal to the change in infrastructure

services evaluated at the average of period 0 and period 1 willingness to pay functions.

The following result provides sufficient conditions under which households in the region

are better off, from an efficiency point of view (although not necessarily with respect to the

redistribution of income), due to the government’s change in the provision of infrastructure

services.
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Proposition 5 Suppose the conditions stipulated in Proposition 4 hold. Suppose further

that W h0,W h1 ≥ 0I and (Sh1−Sh0) ≥ 0I . Then the average of the two theoretical household

benefit measures (35) and (36) is non-negative, i.e.,:

(1/2)Gh(Sh0, Sh1, uh0,
p0

p0N
) + (1/2)Gh(Sh0, Sh1, uh0,

p1

p1N
) ≥ 0 (40)

Proof. See the Appendix

The intuition is as follows. The condition (Sh1 − Sh0) ≥ 0I means that the government

has increased the amount of infrastructure services provided to the household. The condition

W h0,W h1 ≥ 0I means that the household’s willingness to pay functions are non-negative.

This condition can be satisfied if we assume that the household’s utility function satisfies the

free disposal property; this implies that if the household gets more infrastructure services

then its members cannot be made worse off. Thus these two conditions combined together

ensure that when the government increases the level of infrastructure services provided to the

household then the household is better off from an efficiency point of view, i.e. the average

of the two theoretical household benefit measures (35) and (36) is non-negative.

7 Conclusion

This paper has presented a range of results on methods for the measurement of consumer

benefits from changes in infrastructure services, with an emphasis on using only potentially

observable data. The key results can be concisely summarized as follows.

In section 3, we found that when approximating benefit measures for households using a

direct approach, the first order approximation to the period t benefit measure is equal to the

change in infrastructure services that are provided to the household valued at the household’s

willingness to pay for infrastructure services in period t. The second order approximation to

the average of period 0 and period 1 benefit measures is equal to the change in infrastructure

services that are provided to the household valued at the household’s normalized average of

period 0 and period 1 willingness to pay for infrastructure services. Thus, with access to

information on willingness to pay, we have easily implementable measures of benefits from

changes in the provision of infrastructure services.

In section 4 we considered an alternative approach with different data requirements. When

approximating the benefit measures for households using an “indirect approach,” utilizing

changes in prices of marketed goods and services, the first order approximation to the house-

hold’s period t benefit measure is equal to the change in the household’s consumption of

market goods and services evaluated at period t prices less redistributive effects that are due

to the change in the provision of infrastructure services. Under the assumption of homothetic

preferences, the household’s redistribution effects equal the relative change of the household’s

welfare level evaluated in terms of the household’s expenditure in period 1. In the absence of

more attractive alternatives, the relative change in the household’s real income can be used

as a proxy for the relative change of the household’s welfare level.
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The second order approximation to the average of the household’s period 0 and period 1

benefit measures for the indirect approach consisted of two expressions; the change in the

household’s consumption of market goods and services evaluated at a normalized average of

period 0 and period 1 prices, less redistributive effects. The expression for the redistributive

effects is the same as for the first order approximations, which was derived under the homo-

theticity assumption, only here period 1 prices are replaced by a normalized average of the

prices in period 0 and period 1. The utility level in each period features in this expression for

the redistributive effects, yet utility is typically not observable. However, an upper bound to

the average of the household’s period 0 and period 1 benefit measures is established, which

is equal to the household’s consumption of market goods and services in period 0 evaluated

at a normalized average of period 0 and period 1 prices. Thus, it provides an upper bound

on benefits using only potentially observable data.

In section 5, we considered the relaxation of the assumption of fixed prices, to acknowledge

the possibility of endogenous changes in local prices with changes to the provision of infras-

tructure services. We found that our fixed price results can be used to provide to provide

first order approximations to the endogenous price benefit measures.

Finally, in section 6, under quite unrestrictive assumptions, we derived an expression for

the relative change of the household’s welfare level from period 0 to period 1 to be a function

of the amount of infrastructure services provided to the household, the household’s valuation

of these services, as well as the household’s consumption of market goods and services and

their respective prices. Thus, we have an expression of welfare change that can be calculated

using only potentially available information. Using this result, it is shown that sufficient

conditions exist under which households in the region are better off, from an efficiency point

of view, due to the government’s change in the provision of infrastructure services.

By presenting practical methods that can be implemented with only potentially observable

price and quantity information, we believe we have expanded the range of implementable

methods and advanced the understanding of issues involved in assessing consumer benefits

from infrastructure services, a key area of public policy interest.

Appendix: Proofs of Propositions

Proof of Proposition 1

Under the assumptions made in the setup for the second order approximation we

have,

eh(uh, p, Sh) = uhEh(p, Sh) (A1)

and thus,

∇Sheh(uh, p, Sh) = uh∇ShEh(p, Sh) (A2)

19



Now using (A1) we have,

− {eh(uh0, p0, Sh1)− eh(uh0, p0, Sh0)} = −{uh0Eh(p0, Sh1)− uh0Eh(p0, Sh0)}
= −uh0{Eh(p0, Sh1)− Eh(p0, Sh0)} (A3)

and

− {eh(uh0, p1, Sh1)− eh(uh0, p1, Sh0)} = −{uh0Eh(p1, Sh1)− uh0Eh(p1, Sh0)}
= −uh0{Eh(p1, Sh1)− Eh(p1, Sh0)} (A4)

Also, since Eh(p, Sh) defined by (18) is quadratic in Sh for each fixed p, its second

order Taylor series expansion will be exact. Hence, we have,

Eh(p0, Sh1)− Eh(p0, Sh0) = ∇ShEh(p0, Sh0) · (Sh1 − Sh0)

+ (1/2)(Sh1 − Sh0) · ∇2
ShShE

h(p0, Sh0)(Sh1 − Sh0) (A5)

and

Eh(p1, Sh0)− Eh(p1, Sh1) = ∇ShEh(p1, Sh1) · (Sh0 − Sh1)

+ (1/2)(Sh0 − Sh1) · ∇2
ShShE

h(p1, Sh1)(Sh0 − Sh1) (A6)

Moreover, by (18) we have ∇2
ShShE

h(p, Sh) = (δ · p)G. Therefore, (A5) and (A6)

can be written, respectively, as,

Eh(p0, Sh1)− Eh(p0, Sh0) = ∇ShEh(p0, Sh0) · (Sh1 − Sh0)

+ (δ · p0)(1/2)(Sh1 − Sh0) ·G(Sh1 − Sh0) (A7)

and

Eh(p1, Sh0)− Eh(p1, Sh1) = ∇ShEh(p1, Sh1) · (Sh0 − Sh1)

+ (δ · p1)(1/2)(Sh0 − Sh1) ·G(Sh0 − Sh1) (A8)

Re-arranging (A8) we get,

Eh(p1, Sh1)− Eh(p1, Sh0) = ∇ShEh(p1, Sh1) · (Sh1 − Sh0)

− (δ · p1)(1/2)(Sh1 − Sh0) ·G(Sh1 − Sh0) (A9)
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Substituting (A7) and (A9) in (A3) and (A4), respectively, we get,

− {eh(uh0, p0, Sh1)− eh(uh0, p0, Sh0)} = −uh0{Eh(p0, Sh1)− Eh(p0, Sh0)}
= −uh0{∇shE

h(p0, Sh0) · (Sh1 − Sh0) + (δ · p0)(1/2)(Sh1 − Sh0) ·G(Sh1 − Sh0)}
= −uh0∇shE

h(p0, Sh0) · (Sh1 − Sh0)− (δ · p0)(1/2)(uh0)(Sh1 − Sh0) ·G(Sh1 − Sh0)}
(A10)

and

− {eh(uh0, p1, Sh1)− eh(uh0, p1, Sh0)} = −uh0{Eh(p1, Sh1)− Eh(p1, Sh0)}
= −uh0{∇shE

h(p1, Sh1) · (Sh1 − Sh0)− (δ · p1)(1/2)(Sh1 − Sh0) ·G(Sh1 − Sh0)}
= −uh0∇shE

h(p1, Sh1) · (Sh1 − Sh0) + (δ · p1)(1/2)(uh0)(Sh1 − Sh0) ·G(Sh1 − Sh0)}
(A11)

Using (A2), (A10) and (A11) can be written as,

− {eh(uh0, p0, Sh1)− eh(uh0, p0, Sh0)} = −∇Sheh(uh0, p0, Sh0) · (Sh1 − Sh0)

− (δ · p0)(1/2)(uh0)(Sh1 − Sh0) ·G(Sh1 − Sh0)} (A12)

and

− {eh(uh0, p1, Sh1)− eh(uh0, p1, Sh0)} = −∇Sheh(uh0, p1, Sh1) · (Sh1 − Sh0)

+ (δ · p1)(1/2)(uh0)(Sh1 − Sh0) ·G(Sh1 − Sh0)} (A13)

Using definition (8), (A12) and (A13) can be written as,

− {eh(uh0, p0, Sh1)− eh(uh0, p0, Sh0)} = W h0 · (Sh1 − Sh0)

− (δ · p0)(1/2)(uh0)(Sh1 − Sh0) ·G(Sh1 − Sh0)} (A14)

and

− {eh(uh0, p1, Sh1)− eh(uh0, p1, Sh0)} = W h1 · (Sh1 − Sh0)

+ (δ · p1)(1/2)(uh0)(Sh1 − Sh0) ·G(Sh1 − Sh0)} (A15)
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Dividing both sides of (A14) by δ · p0 6= 0 and both sides of (A15) by δ · p1 6= 0 we

get,13

− {(δ · p0)−1eh(uh0, p0, Sh1)− (δ · p0)−1eh(uh0, p0, Sh0)} = (δ · p0)−1W h0 · (Sh1 − Sh0)

− (1/2)(uh0)(Sh1 − Sh0) ·G(Sh1 − Sh0)} (A16)

and

− {(δ · p1)−1eh(uh0, p1, Sh1)− (δ · p1)−1eh(uh0, p1, Sh0)} = (δ · p1)−1W h1 · (Sh1 − Sh0)

+ (1/2)(uh0)(Sh1 − Sh0) ·G(Sh1 − Sh0)} (A17)

Since eh(uh, p, Sh) is linearly homogeneous in p (see definition (1)), (A16) and (A17)

can be written as,

− {eh(uh0, (δ · p0)−1p0, Sh1)− eh(uh0, (δ · p0)−1p0, Sh0)} = (δ · p0)−1W h0 · (Sh1 − Sh0)

− (1/2)(uh0)(Sh1 − Sh0) ·G(Sh1 − Sh0)} (A18)

and

− {eh(uh0, (δ · p1)−1p1, Sh1)− eh(uh0, (δ · p1)−1p1, Sh0)} = (δ · p1)−1W h1 · (Sh1 − Sh0)

+ (1/2)(uh0)(Sh1 − Sh0) ·G(Sh1 − Sh0)} (A19)

Using definition (20), (A18) and (A19) are equivalent to,

− {eh(uh0, p̃0, Sh1)− eh(uh0, p̃0, Sh0)} = W̃ h0 · (Sh1 − Sh0)

− (1/2)(uh0)(Sh1 − Sh0) ·G(Sh1 − Sh0)} (A20)

and

− {eh(uh0, p̃1, Sh1)− eh(uh0, p̃1, Sh0)} = W̃ h1 · (Sh1 − Sh0)

+ (1/2)(uh0)(Sh1 − Sh0) ·G(Sh1 − Sh0)} (A21)

Taking the average of the two equations (A20) and (A21) and using definitions (21)

and (22) yields the desired result,

13Note that δ > 0N and p0, p1 � 0N .
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(1/2)Gh(Sh0, Sh1, uh0, p̃0) + (1/2)Gh(Sh0, Sh1, uh0, p̃1) ≡
− (1/2){eh(uh0, p̃0, Sh1)− eh(uh0, p̃0, Sh0)} − (1/2){eh(uh0, p̃1, Sh1)− eh(uh0, p̃1, Sh0)}

= (1/2)[W̃ h0 + W̃ h1] · [Sh1 − Sh0] (A22)

which is (23). �

Proof of Proposition 2

Ignoring any restrictions on Eh and Eh∗
, to solve the system of equations (24)-(26),

we would require Eh to have at least 1 + (N + I) + (N + I)2 independent parameters.

However, if Eh and Eh∗
are both twice continuously differentiable at (p∗, Sh∗

), Young’s

Theorem on the symmetry of second order partial derivatives reduces the number of

independent second order derivatives from (N + I)2 to N(N + 1)/2 +NI + I(I + 1)/2.

Also, the linear homogeneity in p of Eh and Eh∗
imply the following additional 1+N+I

restrictions on the derivatives of Eh and Eh∗
:

Eh(p∗, Sh∗
) = p∗ · ∇pE

h(p∗, Sh∗
) (A23)

[∇2
ppE

h(p∗, Sh∗
)]p∗ = 0N (A24)

[∇2
ShpE

h(p∗, Sh∗
)]p∗ = ∇ShEh(p∗, Sh∗

) (A25)

In light of these restrictions, we see that Eh will have to have at least N(N + 1)/2 +

NI + I(I + 1)/2 independent parameters.

Now let δ > 0N be any given vector which is nonnegative and nonzero, and let us

consider the functional form defined by (18) where the δ which appears in (18) is the

same as the given δ. Note first that Eh defined by (18) is twice continuously differen-

tiable and linearly homogeneous in p. Moreover, since the δn parameters are already

determined, Eh has N independent γn parameters, N(N − 1)/2 independent dmn pa-

rameters, NI independent fni parameters and I(I + 1)/2 independent gij parameters.

This is the minimal number of parameters required to satisfy equations (24)-(26).

Now we are remained to find the values of the independent parameters of the func-

tional form defined by (18) which will satisfy equations (24)-(26). To do that we first

solve the following system of equations for gij, 1 ≤ i ≤ j ≤ I:

∂2Eh(p∗, Sh∗
)/∂Sh

i ∂S
h
j = gij(

N∑
n=1

δnp
∗
n) = ∂2Eh∗

(p∗, Sh∗
)/∂Sh

i ∂S
h
j (A26)
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Note that the resulting G matrix with elements gij as determined above is a sym-

metric matrix due to the symmetry of the second order partial derivatives of Eh∗
. With

the elements gij determined, we can then solve (A27) for fni, n = 1, ..., N , i = 1, ..., I:

∂2Eh(p∗, Sh∗
)/∂pn∂S

h
i = fni + δn

I∑
j=1

gijS
h∗

j = ∂2Eh∗
(p∗, Sh∗

)/∂pn∂S
h
i (A27)

Next we solve the following system of equations for dmn, where 1 ≤ m < n ≤ N −1:

∂2Eh(p∗, Sh∗
)/∂pm∂pn = (p∗N)−1dmn = ∂2Eh∗

(p∗, Sh∗
)/∂pm∂pn (A28)

Note that the symmetry of the second order partial derivatives of Eh∗
will ensure

the symmetry of the matrix D. Now using the results of (A28) we can then solve the

following N − 1 equations (A29) for dnn, n = 1, ..., N − 1:

∂2Eh(p∗, Sh∗
)/∂pN∂pn = −(p∗N)−2

N−1∑
m=1

dmnp
∗
m = ∂2Eh∗

(p∗, Sh∗
)/∂pN∂pn (A29)

Finally, we can use (A30) below to solve for γn, n = 1, ..., N − 1:

∂Eh(p∗, Sh∗
)/∂pn = γn +

N−1∑
m=1

dmnp
∗
m(p∗N)−1 +

I∑
i=1

fniS
h∗

i +

(1/2)δn

I∑
i=1

I∑
j=1

gijS
h∗

i S
h∗

j = ∂Eh∗
(p∗, Sh∗

)/∂pn (A30)

and (A31) below to solve for γN :

∂Eh(p∗, Sh∗
)/∂pN = γN − (1/2)

N−1∑
m=1

N−1∑
n=1

dmnp
∗
mp
∗
n(p∗N)−2 +

I∑
i=1

fNiS
h∗

i +

(1/2)δN

I∑
i=1

I∑
j=1

gijS
h∗

i S
h∗

j = ∂Eh∗
(p∗, Sh∗

)/∂pN (A31)

Observe that all the parameters of Eh defined by (18) have now been determined.

Moreover, the system of equations (24)-(26) is now fully satisfied. In particular, (A30)

and (A31) together with (A23) ensure that equation (24) is satisfied. Also, (A27) and

(A25) ensure that the first order partial derivatives of Eh and Eh∗
with respect to Sh

coincide. This together with equations (A30) and (A31) ensure that the system of

equations (25) is satisfied. Lastly, note that (A24), (A26), (A27), (A28) and (A29)
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ensure that the second order partial derivatives of Eh and Eh∗
coincide, thus satisfying

the system of equations (26).14 �

Proof of Proposition 3

Under the setup of the second order approximation we have,15

eh(uh, p, Sh) = uhEh(p, Sh) (A32)

and thus,

∇pe
h(uh, p, Sh) = uh∇pE

h(p, Sh) (A33)

Now using (A32) we have,

− {eh(uh0,
p0

p0N
, Sh1)− eh(uh0,

p0

p0N
, Sh0)} = −{uh0Eh(

p0

p0N
, Sh1)− uh0Eh(

p0

p0N
, Sh0)}

= −uh0{Eh(
p0

p0N
, Sh1)− Eh(

p0

p0N
, Sh0)} (A34)

and

− {eh(uh0,
p1

p1N
, Sh1)− eh(uh0,

p1

p1N
, Sh0)} = −{uh0Eh(

p1

p1N
, Sh1)− uh0Eh(

p1

p1N
, Sh0)}

= −uh0{Eh(
p1

p1N
, Sh1)− Eh(

p1

p1N
, Sh0)} (A35)

If pN is fixed, then Eh(p, Sh) defined by (18) is quadratic in p1, ..., pN−1 and thus

its second order Taylor series expansion in p will be exact for each fixed Sh. Hence we

have,

Eh(
p1

p1N
, Sh0) = Eh(

p0

p0N
, Sh0) +∇pE

h(
p0

p0N
, Sh0) · [( p

1

p1N
)− (

p0

p0N
)]

+ (1/2)[(
p1

p1N
)− (

p0

p0N
)] · ∇2

ppE
h(
p0

p0N
, Sh0)[(

p1

p1N
)− (

p0

p0N
)] (A36)

and

14(A24), (A28) and (A29) ensure that ∇2
ppE

h(p∗, Sh∗
) = ∇2

ppE
h∗

(p∗, Sh∗
).

15See equation (17).
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Eh(
p0

p0N
, Sh1) = Eh(

p1

p1N
, Sh1) +∇pE

h(
p1

p1N
, Sh1) · [( p

0

p0N
)− (

p1

p1N
)]

+ (1/2)[(
p0

p0N
)− (

p1

p1N
)] · ∇2

ppE
h(
p1

p1N
, Sh1)[(

p0

p0N
)− (

p1

p1N
)] (A37)

Using definition (18), the second order partial derivatives of Eh(p, Sh) with respect

to prices are given by,

∂2Eh(p, Sh)/∂pi∂pj = (
1

pN
)dij 1 ≤ i, j ≤ N − 1 (A38)

∂2Eh(p, Sh)/∂pN∂pj = −(
1

pN
)2

N−1∑
i=1

dijpi j = 1, ..., N − 1 (A39)

∂2Eh(p, Sh)/∂pN∂pN = (
1

pN
)3

N−1∑
i=1

N−1∑
j=1

dijpipj (A40)

Using (A38)-(A40), it is straight forward to evaluate the matrix of second order

partial derivatives of Eh(p, Sh) with respect to prices, ∇2
ppE

h(p, Sh), at the points

(p0/p0N , S
h0) and (p1/p1N , S

h1), and verify that,

[(
p1

p1N
)− (

p0

p0N
)] · ∇2

ppE
h(
p0

p0N
, Sh0)[(

p1

p1N
)− (

p0

p0N
)] =

N−1∑
i=1

N−1∑
j=1

dij[(
p1i
p1N

)− (
p0i
p0N

)][(
p1j
p1N

)− (
p0j
p0N

)] ≡ φ (A41)

and

[(
p0

p0N
)− (

p1

p1N
)] · ∇2

ppE
h(
p1

p1N
, Sh1)[(

p0

p0N
)− (

p1

p1N
)] =

N−1∑
i=1

N−1∑
j=1

dij[(
p1i
p1N

)− (
p0i
p0N

)][(
p1j
p1N

)− (
p0j
p0N

)] ≡ φ (A42)

Substituting (A41) and (A42) into (A36) and (A37), respectively, we get,

Eh(
p1

p1N
, Sh0) = Eh(

p0

p0N
, Sh0) +∇pE

h(
p0

p0N
, Sh0) · [( p

1

p1N
)− (

p0

p0N
)] + (1/2)φ (A43)
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and

Eh(
p0

p0N
, Sh1) = Eh(

p1

p1N
, Sh1) +∇pE

h(
p1

p1N
, Sh1) · [( p

0

p0N
)− (

p1

p1N
)] + (1/2)φ (A44)

Now substituting (A43) into (A35) and (A44) into (A34) we have,

− {eh(uh0,
p0

p0N
, Sh1)− eh(uh0,

p0

p0N
, Sh0)} = −uh0{Eh(

p0

p0N
, Sh1)− Eh(

p0

p0N
, Sh0)}

= −uh0{Eh(
p1

p1N
, Sh1) +∇pE

h(
p1

p1N
, Sh1) · [( p

0

p0N
)− (

p1

p1N
)]

+ (1/2)φ− Eh(
p0

p0N
, Sh0)} (A45)

and

− {eh(uh0,
p1

p1N
, Sh1)− eh(uh0,

p1

p1N
, Sh0)} = −uh0{Eh(

p1

p1N
, Sh1)− Eh(

p1

p1N
, Sh0)}

= −uh0{Eh(
p1

p1N
, Sh1)− Eh(

p0

p0N
, Sh0)

−∇pE
h(
p0

p0N
, Sh0) · [( p

1

p1N
)− (

p0

p0N
)]− (1/2)φ} (A46)

Using (A32) and (A33), we can write (A45) and (A46) as,

− {eh(uh0,
p0

p0N
, Sh1)− eh(uh0,

p0

p0N
, Sh0)} = −(

uh0

uh1
)uh1Eh(

p1

p1N
, Sh1)

− (
uh0

uh1
)uh1∇pE

h(
p1

p1N
, Sh1) · [( p

0

p0N
)− (

p1

p1N
)]− (1/2)uh0φ+ uh0Eh(

p0

p0N
, Sh0)

= −(
uh0

uh1
)eh(uh1,

p1

p1N
, Sh1)− (

uh0

uh1
)∇pe

h(uh1,
p1

p1N
, Sh1) · [( p

0

p0N
)− (

p1

p1N
)]

− (1/2)uh0φ+ eh(uh0,
p0

p0N
, Sh0) (A47)

and
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− {eh(uh0,
p1

p1N
, Sh1)− eh(uh0,

p1

p1N
, Sh0)} = −(

uh0

uh1
)uh1Eh(

p1

p1N
, Sh1)

+ uh0Eh(
p0

p0N
, Sh0) + uh0∇pE

h(
p0

p0N
, Sh0) · [( p

1

p1N
)− (

p0

p0N
)] + (1/2)uh0φ

= −(
uh0

uh1
)eh(uh1,

p1

p1N
, Sh1) + eh(uh0,

p0

p0N
, Sh0)

+∇pe
h(uh0,

p0

p0N
, Sh0) · [( p

1

p1N
)− (

p0

p0N
)] + (1/2)uh0φ (A48)

Since eh(uh, p, Sh) is linearly homogeneous in p, its first order partial derivatives

with respect to prices, ∂eh(uh, p, Sh)/∂pi for i = 1, ..., N , are homogeneous functions

of degree 0 in p, and therefore,

eh(uh,
p

pN
, Sh) = (

1

pN
)eh(uh, p, Sh) (A49)

and

∇pe
h(uh,

p

pN
, Sh) = ∇pe

h(uh, p, Sh) (A50)

Using (A49) and (A50), (A47) and (A48) can be written as,

− {eh(uh0,
p0

p0N
, Sh1)− eh(uh0,

p0

p0N
, Sh0)} = −(

uh0

uh1
)eh(uh1,

p1

p1N
, Sh1)

− (
uh0

uh1
)∇pe

h(uh1,
p1

p1N
, Sh1) · [( p

0

p0N
)− (

p1

p1N
)]− (1/2)uh0φ+ eh(uh0,

p0

p0N
, Sh0)

= −(
uh0

uh1
)(

1

p1N
)eh(uh1, p1, Sh1)− (

uh0

uh1
)∇pe

h(uh1, p1, Sh1) · [( p
0

p0N
)− (

p1

p1N
)]

− (1/2)uh0φ+ (
1

p0N
)eh(uh0, p0, Sh0) (A51)

and

− {eh(uh0,
p1

p1N
, Sh1)− eh(uh0,

p1

p1N
, Sh0)} = −(

uh0

uh1
)eh(uh1,

p1

p1N
, Sh1)

+ eh(uh0,
p0

p0N
, Sh0) +∇pe

h(uh0,
p0

p0N
, Sh0) · [( p

1

p1N
)− (

p0

p0N
)] + (1/2)uh0φ

= −(
uh0

uh1
)(

1

p1N
)eh(uh1, p1, Sh1) + (

1

p0N
)eh(uh0, p0, Sh0)

+∇pe
h(uh0, p0, Sh0) · [( p

1

p1N
)− (

p0

p0N
)] + (1/2)uh0φ (A52)
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As relations (27) and (28) are assumed to hold, (A51) and (A52) are equivalent to,

− {eh(uh0,
p0

p0N
, Sh1)− eh(uh0,

p0

p0N
, Sh0)} = −(

uh0

uh1
)(

1

p1N
)eh(uh1, p1, Sh1)

− (
uh0

uh1
)∇pe

h(uh1, p1, Sh1) · [( p
0

p0N
)− (

p1

p1N
)]− (1/2)uh0φ+ (

1

p0N
)eh(uh0, p0, Sh0)

= −(
uh0

uh1
)(

1

p1N
)(p1 · ch1)− (

uh0

uh1
)ch1 · [( p

0

p0N
)− (

p1

p1N
)]− (1/2)uh0φ+ (

1

p0N
)(p0 · ch0)

= −(
uh0

uh1
)(
p1

p1N
· ch1)− (

uh0

uh1
)ch1 · [( p

0

p0N
)− (

p1

p1N
)]− (1/2)uh0φ+ (

p0

p0N
· ch0)

= −(
uh0

uh1
)(
p0

p0N
· ch1)− (1/2)uh0φ+ (

p0

p0N
· ch0)

= −(
p0

p0N
· ch1)− (

uh0

uh1
− 1)(

p0

p0N
· ch1)− (1/2)uh0φ+ (

p0

p0N
· ch0)

=
p0

p0N
· [ch0 − ch1]− (

uh0

uh1
− 1)(

p0

p0N
· ch1)− (1/2)uh0φ (A53)

and

− {eh(uh0,
p1

p1N
, Sh1)− eh(uh0,

p1

p1N
, Sh0)} = −(

uh0

uh1
)(

1

p1N
)eh(uh1, p1, Sh1)

+ (
1

p0N
)eh(uh0, p0, Sh0) +∇pe

h(uh0, p0, Sh0) · [( p
1

p1N
)− (

p0

p0N
)] + (1/2)uh0φ

= −(
uh0

uh1
)(

1

p1N
)(p1 · ch1) + (

1

p0N
)(p0 · ch0) + ch0 · [( p

1

p1N
)− (

p0

p0N
)] + (1/2)uh0φ

= −(
uh0

uh1
)(
p1

p1N
· ch1) + (

p0

p0N
· ch0) + ch0 · [( p

1

p1N
)− (

p0

p0N
)] + (1/2)uh0φ

= −(
uh0

uh1
)(
p1

p1N
· ch1) + (ch0 · p

1

p1N
) + (1/2)uh0φ

= −(
p1

p1N
· ch1)− (

uh0

uh1
− 1)(

p1

p1N
· ch1) + (ch0 · p

1

p1N
) + (1/2)uh0φ

=
p1

p1N
· [ch0 − ch1]− (

uh0

uh1
− 1)(

p1

p1N
· ch1) + (1/2)uh0φ (A54)

Taking the average of the two equations (A53) and (A54) and using definitions (35)

and (36) gives the desired result,
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(1/2)Gh(Sh0, Sh1, uh0,
p0

p0N
) + (1/2)Gh(Sh0, Sh1, uh0,

p1

p1N
) ≡

−(1/2){eh(uh0,
p0

p0N
, Sh1)−eh(uh0,

p0

p0N
, Sh0)}−(1/2){eh(uh0,

p1

p1N
, Sh1)−eh(uh0,

p1

p1N
, Sh0)}

= (1/2)[(
p0

p0N
) + (

p1

p1N
)] · [ch0 − ch1]− (1/2)(

uh0

uh1
− 1)[(

p0

p0N
) + (

p1

p1N
)] · ch1 (A55)

which is (37). �

Proof of Corollary 1

From Proposition 3 we have,

(1/2)Gh(Sh0, Sh1, uh0,
p0

p0N
) + (1/2)Gh(Sh0, Sh1, uh0,

p1

p1N
) =

(1/2)[(
p0

p0N
) + (

p1

p1N
)] · [ch0 − ch1]− (1/2)(

uh0

uh1
− 1)[(

p0

p0N
) + (

p1

p1N
)] · ch1 =

(1/2)[(
p0

p0N
) + (

p1

p1N
)] · ch0 − (1/2)(

uh0

uh1
)[(
p0

p0N
) + (

p1

p1N
)] · ch1 (A56)

Now since (1/2)(u
h0

uh1 )[( p0

p0N
) + ( p1

p1N
)] · ch1 ≥ 0 we get,16

(1/2)Gh(Sh0, Sh1, uh0,
p0

p0N
) + (1/2)Gh(Sh0, Sh1, uh0,

p1

p1N
) ≤ (1/2)[(

p0

p0N
) + (

p1

p1N
)] · ch0

(A57)

which is (38). �

Proof of Proposition 4

Under the setup of the second order approximation we have,17

eh(uh, p, Sh) = uhEh(p, Sh) (A58)

and thus,

16Note that uh0, uh1 > 0; ch1 ≥ 0N ; and p� 0N .
17See equation (17).
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∇pe
h(uh, p, Sh) = uh∇pE

h(p, Sh) (A59)

Combining (A59) together with (28), which is assumed to hold, we get

ch0 = ∇pe
h(uh0, p0, Sh0) = uh0∇pE

h(p0, Sh0) (A60)

and

ch1 = ∇pe
h(uh1, p1, Sh1) = uh1∇pE

h(p1, Sh1) (A61)

To reduce clutter in notation let us re-write the class of functional forms for the

household’s unit expenditure function defined by (18) as follows:

Eh(p, Sh) ≡
N∑
i=1

γipi + (1/2)
N−1∑
i=1

N−1∑
j=1

dijpipj(pN)−1 +
N∑
i=1

piΦi(S
h) (A62)

where Φi(S
h) ≡

∑I
j=1 fijS

h
j +δi(1/2)(

∑I
j=1

∑I
m=1 gjmS

h
j S

h
m) and thus

∑N
i=1 piΦi(S

h) =∑N
i=1

∑I
j=1 fijpiS

h
j + (1/2)(

∑N
i=1 δipi)(

∑I
j=1

∑I
m=1 gjmS

h
j S

h
m).

Differentiating (A62) with respect to prices and making use of (A60) and (A61)

yields the following equations:

ch0 =



uh0[γ1 + (p0N)−1
∑N−1

j=1 d1jp
0
j + Φ1(S

h0)]

...

uh0[γN−1 + (p0N)−1
∑N−1

j=1 d(N−1)jp
0
j + ΦN−1(S

h0)]

uh0[γN − (1/2)(p0N)−2
∑N−1

i=1

∑N−1
j=1 dijp

0
i p

0
j + ΦN(Sh0)]


(A63)

and

ch1 =



uh1[γ1 + (p1N)−1
∑N−1

j=1 d1jp
1
j + Φ1(S

h1)]

...

uh1[γN−1 + (p1N)−1
∑N−1

j=1 d(N−1)jp
1
j + ΦN−1(S

h1)]

uh1[γN − (1/2)(p1N)−2
∑N−1

i=1

∑N−1
j=1 dijp

1
i p

1
j + ΦN(Sh1)]


(A64)

Using (A63) and (A64), it is straight forward to verify that,
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p1N(p0 · ch0) + p0N(p1 · ch0) = uh0[
N−1∑
i=1

N−1∑
j=1

dijp
1
i p

0
j + p1N

N∑
i=1

p0i γi + p0N

N∑
i=1

p1i γi

+ p1N

N∑
i=1

p0i Φi(S
h0) + p0N

N∑
i=1

p1i Φi(S
h0)] (A65)

and

p1N(p0 · ch1) + p0N(p1 · ch1) = uh1[
N−1∑
i=1

N−1∑
j=1

dijp
1
i p

0
j + p1N

N∑
i=1

p0i γi + p0N

N∑
i=1

p1i γi

+ p1N

N∑
i=1

p0i Φi(S
h1) + p0N

N∑
i=1

p1i Φi(S
h1)] (A66)

where (A66) is derived by also using the symmetry of the D matrix.

Now using (A62), it is also straight forward to show that,

p1N

N∑
i=1

p0i Φi(S
h0) = p1NE

h(p0, Sh0)− p1N
N∑
i=1

p0i γi − (1/2)(
p1N
p0N

)
N−1∑
i=1

N−1∑
j=1

dijp
0
i p

0
j (A67)

p0N

N∑
i=1

p1i Φi(S
h0) = p0NE

h(p1, Sh0)− p0N
N∑
i=1

p1i γi − (1/2)(
p0N
p1N

)
N−1∑
i=1

N−1∑
j=1

dijp
1
i p

1
j (A68)

p0N

N∑
i=1

p1i Φi(S
h1) = p0NE

h(p1, Sh1)− p0N
N∑
i=1

p1i γi − (1/2)(
p0N
p1N

)
N−1∑
i=1

N−1∑
j=1

dijp
1
i p

1
j (A69)

p1N

N∑
i=1

p0i Φi(S
h1) = p1NE

h(p0, Sh1)− p1N
N∑
i=1

p0i γi − (1/2)(
p1N
p0N

)
N−1∑
i=1

N−1∑
j=1

dijp
0
i p

0
j (A70)

Substituting (A67) and (A68) into (A65) and substituting (A69) and (A70) into

(A66) we get,

p1N(p0 · ch0) + p0N(p1 · ch0) = uh0[λ+ p1NE
h(p0, Sh0) + p0NE

h(p1, Sh0)] (A71)

and
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p1N(p0 · ch1) + p0N(p1 · ch1) = uh1[λ+ p1NE
h(p0, Sh1) + p0NE

h(p1, Sh1)] (A72)

where

λ ≡
N−1∑
i=1

N−1∑
j=1

dijp
1
i p

0
j − (1/2)(

p1N
p0N

)
N−1∑
i=1

N−1∑
j=1

dijp
0
i p

0
j − (1/2)(

p0N
p1N

)
N−1∑
i=1

N−1∑
j=1

dijp
1
i p

1
j (A73)

Now since Eh(p, Sh) defined by (18) is quadratic in Sh for each fixed p, its second

order Taylor series expansion will be exact. Hence, we have,

Eh(p0, Sh1)− Eh(p0, Sh0) =

∇ShEh(p0, Sh0) · (Sh1 − Sh0) + (1/2)(Sh1 − Sh0) · ∇2
ShShE

h(p0, Sh0)(Sh1 − Sh0) =

∇ShEh(p0, Sh0) · (Sh1 − Sh0) + (δ · p0)(1/2)(Sh1 − Sh0) ·G(Sh1 − Sh0) (A74)

and

Eh(p1, Sh0)− Eh(p1, Sh1) =

∇ShEh(p1, Sh1) · (Sh0 − Sh1) + (1/2)(Sh0 − Sh1) · ∇2
ShShE

h(p1, Sh1)(Sh0 − Sh1) =

∇ShEh(p1, Sh1) · (Sh0 − Sh1) + (δ · p1)(1/2)(Sh0 − Sh1) ·G(Sh0 − Sh1) (A75)

Multiplying (A74) by p1N and re-arranging yields,

p1NE
h(p0, Sh0) = p1NE

h(p0, Sh1)− p1N∇ShEh(p0, Sh0) · (Sh1 − Sh0)

− p1N(δ · p0)(1/2)(Sh1 − Sh0) ·G(Sh1 − Sh0) (A76)

Similarly, multiplying (A75) by p0N and re-arranging we get,

p0NE
h(p1, Sh0) = p0NE

h(p1, Sh1) + p0N∇ShEh(p1, Sh1) · (Sh0 − Sh1)

+ p0N(δ · p1)(1/2)(Sh0 − Sh1) ·G(Sh0 − Sh1) (A77)

Substituting (A76) and (A77) into (A71) we obtain,

p1N(p0 · ch0) + p0N(p1 · ch0) = uh0[λ+ p1NE
h(p0, Sh1) + p0NE

h(p1, Sh1)]

+ uh0[p0N∇ShEh(p1, Sh1) · (Sh0 − Sh1)− p1N∇ShEh(p0, Sh0) · (Sh1 − Sh0)]

+uh0[p0N(δ·p1)(1/2)(Sh0−Sh1)·G(Sh0−Sh1)−p1N(δ·p0)(1/2)(Sh1−Sh0)·G(Sh1−Sh0)]

(A78)
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Note that,

uh0[p0N(δ·p1)(1/2)(Sh0−Sh1)·G(Sh0−Sh1)−p1N(δ·p0)(1/2)(Sh1−Sh0)·G(Sh1−Sh0)] =

uh0(1/2)(Sh0 − Sh1) ·G(Sh0 − Sh1)[p0N(δ · p1)− p1N(δ · p0)] =

uh0(1/2)(Sh0 − Sh1) ·G(Sh0 − Sh1)(p1Np
0
N)(δ · [( p

1

p1N
)− (

p0

p0N
)]) = 0 (A79)

where the last equality follows from the condition that δ · [( p1

p1N
)− ( p0

p0N
)] = 0.

Thus we get that,

p1N(p0 · ch0) + p0N(p1 · ch0) = uh0[λ+ p1NE
h(p0, Sh1) + p0NE

h(p1, Sh1)]

+ uh0[p0N∇ShEh(p1, Sh1) · (Sh0 − Sh1)− p1N∇ShEh(p0, Sh0) · (Sh1 − Sh0)]

(A80)

Furthermore,

uh0[p0N∇ShEh(p1, Sh1) · (Sh0 − Sh1)− p1N∇ShEh(p0, Sh0) · (Sh1 − Sh0)] =

p0Nu
h0∇ShEh(p1, Sh1) · (Sh0 − Sh1)− p1Nuh0∇ShEh(p0, Sh0) · (Sh1 − Sh0) =

p0N∇Sheh(uh0, p1, Sh1) · (Sh0 − Sh1)− p1N∇Sheh(uh0, p0, Sh0) · (Sh1 − Sh0) =

− p0N∇Sheh(uh0, p1, Sh1) · (Sh1 − Sh0)− p1N∇Sheh(uh0, p0, Sh0) · (Sh1 − Sh0) =

p0N(W h1 · (Sh1 − Sh0)) + p1N(W h0 · (Sh1 − Sh0)) (A81)

where the second equality follows from the fact that under the assumptions made in

the setup for the second order approximation eh(uh, p, Sh) = uhEh(p, Sh) and hence,

∇Sheh(uh, p, Sh) = uh∇ShEh(p, Sh). The last equality is achieved using definition (8).

Substituting (A81) into (A80) and re-arranging yields,

p1N(p0 · ch0) + p0N(p1 · ch0)− p1N(W h0 · (Sh1 − Sh0))− p0N(W h1 · (Sh1 − Sh0)) =

uh0[λ+ p1NE
h(p0, Sh1) + p0NE

h(p1, Sh1)]

(A82)

Combining (A82) together with (A72) we obtain the desired result,18

18Note that p1N (p0 · ch1) + p0N (p1 · ch1) 6= 0 as ch1 > 0N and p� 0N .

34



p1N(p0 · ch0) + p0N(p1 · ch0)− p1N(W h0 · (Sh1 − Sh0))− p0N(W h1 · (Sh1 − Sh0))

p1N(p0 · ch1) + p0N(p1 · ch1)
=

uh0[λ+ p1NE
h(p0, Sh1) + p0NE

h(p1, Sh1)]

uh1[λ+ p1NE
h(p0, Sh1) + p0NE

h(p1, Sh1)]
=
uh0

uh1
(A83)

which is (39). �

Proof of Proposition 5

Under the conditions of Proposition 4 we have,

uh0

uh1
=
p1N(p0 · ch0) + p0N(p1 · ch0)− p1N(W h0 · (Sh1 − Sh0))− p0N(W h1 · (Sh1 − Sh0))

p1N(p0 · ch1) + p0N(p1 · ch1)
(A84)

Now since W h0,W h1 ≥ 0I and (Sh1 − Sh0) ≥ 0I we get,

uh0

uh1
≤ p1N(p0 · ch0) + p0N(p1 · ch0)
p1N(p0 · ch1) + p0N(p1 · ch1)

(A85)

and hence,

(1/2)(Υ− 1)[(
p0

p0N
) + (

p1

p1N
)] · ch1 ≥ (1/2)(

uh0

uh1
− 1)[(

p0

p0N
) + (

p1

p1N
)] · ch1 (A86)

where Υ is defined as,

Υ ≡ p1N(p0 · ch0) + p0N(p1 · ch0)
p1N(p0 · ch1) + p0N(p1 · ch1)

(A87)

This in turn implies that,

(1/2)Gh(Sh0, Sh1, uh0,
p0

p0N
) + (1/2)Gh(Sh0, Sh1, uh0,

p1

p1N
) =

(1/2)[(
p0

p0N
) + (

p1

p1N
)] · [ch0 − ch1]− (1/2)(

uh0

uh1
− 1)[(

p0

p0N
) + (

p1

p1N
)] · ch1 ≥

(1/2)[(
p0

p0N
) + (

p1

p1N
)] · [ch0 − ch1]− (1/2)(Υ− 1)[(

p0

p0N
) + (

p1

p1N
)] · ch1 = 0 (A88)
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where the last equality is derived after substituting for Υ (equation (A87)) and pre-

forming some algebraic manipulations. �
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