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Abstract

This chapter provides an overview of Regression Discontinuity (RD) designs for social science re-
searchers. It presents the conceptual framework behind the research design, explains when RD is likely
to be valid or invalid, draws a parallel between RD and randomized experiments, and summarizes dif-
ferent ways of estimating a treatment effect in the presence of a RD design. Implementation issues are
discussed in the context of an example from U.S. House elections (Lee (2008)).
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1 Introduction

Regression Discontinuity (RD) designs were initially introduced by Thistlethwaite and Campbell (1960) as a
way of estimating treatment effects in a non-experimental setting where treatment is determined by whether
an observed “assignment” variable (also referred to in the literature as the “forcing” variable or the “running”
variable) exceeds a known cutoff point. Thistlethwaite and Campbell (1960) analyzed the impact of merit
awards on future academic outcomes in their original study, using the fact that the allocation of these awards
was based on an observed test score. The main idea behind the research design was that individuals with
scores just below the cutoff (who did not receive the award) were good comparisons to those just above the
cutoff (who did receive the award). Although this evaluation strategy has been around for over fifty years, it
only attracted limited attention in economics, and social sciences more generally, until relatively recently.

Since the late 1990s, a burgeoning literature in economics has relied on RD designs to estimate program
effects in a wide variety of contexts. Like Thistlethwaite and Campbell (1960), early studies by Van der
Klaauw (2002) and Angrist and Lavy (1999) exploited threshold rules often used by educational institutions
to estimate the effect of financial aid and class size, respectively, on educational outcomes. Following these
early papers in the area of education, there has been a rapid growth over the last ten years in the number of
studies using RD designs to examine a range of other question. Examples include: the labor supply effect of
welfare, unemployment insurance, and disability programs; the effects of Medicaid on health outcomes; the
effect of remedial education programs on educational achievement; the empirical relevance of median voter
models; and the effects of unionization on wages and employment.

One important impetus behind this recent flurry of research is a recognition, formalized by Hahn et
al. (2001), that RD designs require seemingly mild assumptions compared to those needed for other non-
experimental approaches. Another reason for the recent wave of research is the realization that the RD
design is not “just another” evaluation strategy, and that causal inferences from RD designs are potentially
more credible than those from typical “natural experiment” strategies (e.g. difference-in-differences or in-
strumental variables), which have been heavily employed in applied research in recent decades. This notion
has a theoretical justification: Lee (2008) formally shows that one need not assume the RD design isolates
treatment variation that is “as good as randomized”; instead, such randomized variation is a consequence of
agents’ inability to precisely control the assignment variable near the known cutoff.

So while the RD approach was initially thought to be “just another” program evaluation method with



relatively little general applicability outside of a few specific problems, recent work in economics has shown
quite the opposite.! In addition to providing a highly credible and transparent way of estimating program
effects, RD designs can be used in a wide variety of contexts covering a large number of important economic
and social questions. These two facts likely explain why the RD approach is rapidly becoming a major
element in the toolkit of empirical economists and empirical social science researchers more generally.

The goal of this chapter is two fold. First, it seeks to provide the conceptual framework underneath RD
designs — what assumptions they require, and their strengths and weaknesses. Second, it discusses the “nuts
and bolts” of implementing RD designs in practice. Most of the issues discussed in this chapter are also
covered in related pieces by Van der Klaauw (2008), Imbens and Lemieux (2008) and especially Lee and
Lemieux (2010). Readers interested in learning more about conceptual and methodological issues should
consult these studies, as we only briefly discuss these issues in this chapter.

The rest of the chapter is organized as follows. In Section 2, we introduce RD designs and discuss
their main advantages and disadvantages. We introduce an important theme that we stress throughout the
paper, namely that RD designs are particularly compelling because they are close cousins of randomized
experiments. Section 3 goes through the main “nuts and bolts” involved in implementing RD designs and
provides a “guide to practice” for researchers interested in using the design. We also provide a summary
“checklist” highlighting our key recommendations. These implementation issues are illustrated using an
example from U.S. House elections in Section 4. After discussing caveats and frequent errors in Section 5

we conclude by suggesting some further readings in Section 6.

2 Background and Conceptual Framework

In this section, we set the stage for the rest of the paper by discussing the origins and the conceptual frame-
work underneath the RD design, beginning with the classic work of Thistlethwaite and Campbell (1960) and
moving to the recent interpretation of the design using modern tools of program evaluation in economics
using the potential outcomes framework. We show how RD designs can be viewed as local randomized
experiments and discuss their generalizability. A key feature of RD designs is that they provide a very
transparent way of graphically showing how the treatment effect is identified. We thus end the section by

discussing how to graph the data in an informative way.

ISee Cook (2008) for an interesting history of the RD design in education research, psychology, statistics, and economics. Cook
argues the resurgence of the RD design in economics is unique as it is still rarely used in other disciplines.



2.1 Origins and the potential outcomes approach

RD designs were first introduced by Thistlethwaite and Campbell (1960) in their study of the impact of
merit awards on the future academic outcomes (career aspirations, enrollment in post-graduate programs,
etc.) of students. The study exploited the fact that these awards were allocated on the basis of an observed
test score. Students with test scores, X, greater than or equal to a cutoff value c received the award, and those
with scores below the cutoff were denied the award. This generated a sharp discontinuity in the “treatment”
(receiving the award) as a function of the test score. Let the receipt of treatment be denoted by the dummy
variable D € {0,1}, so that we have D=1if X > c,and D =0if X < c.

Importantly, there appears to be no reason, other than the merit award, for future academic outcomes, Y,
to be a discontinuous function of the test score. This simple reasoning suggests attributing the discontinuous
jump in Y at ¢ to the causal effect of the merit award. Assuming that the relationship between Y and X is

otherwise linear, a simple way of estimating the treatment effect 7 is by fitting the linear regression

Y=a+Drt+XB+U, (1)

where U is the usual error term that can be viewed as a purely random error generating variation in the value
of Y around the regression line. This case is depicted in Figure 1, which shows both the true underlying
function and numerous realizations of U.

While this simple regression approach is intuitively appealing, it is useful to analyze RD designs more
formally to illustrate the key assumptions that need to be satisfied for the design to be valid. A key contri-
bution in this regard is the work of Hahn et al. (2001), who used the approach developed in the treatment
effects literature to analyze RD designs. Hahn et al. (2001) noted the key assumption of a valid RD design
was that “all other factors” were “continuous” with respect to X, and suggested a non-parametric procedure
for estimating 7 that did not assume underlying linearity, as we have assumed in the simple example above.

The necessity of the continuity assumption is seen more formally using the “potential outcomes frame-
work” of the treatment effects literature, with the aid of a graph. It is typically imagined that for each
individual i, there exists a pair of “potential” outcomes: Y;(1) for what would occur if the individual were
exposed to the treatment and ¥;(0) if not exposed. The causal effect of the treatment is represented by the
difference Y;(1) — ¥;(0). The fundamental problem of causal inference is that we cannot observe the pair

Y;(0) and Y;(1) simultaneously. We therefore typically focus on average effects of the treatment, that is,



averages of Y;(1) —Y;(0) over (sub-)populations, rather than on unit-level effects.

In the RD setting, we can imagine there are two underlying relationships between average outcomes
and X, represented by E [¥; (1) |X] and E [Y; (0) |X], as in Figure 2. But by definition of the RD design, all
individuals to the right of the cutoff (¢ = 2 in this example) are exposed to treatment, and all those to the left
are denied treatment. Therefore, we only observe E [Y; (1) |X] to the right of the cutoff and E [¥; (0) |X] to the
left of the cutoff, as indicated in the figure.

It is easy to see that with what is observable, we could try to estimate the quantity
B—A=1mE[Y;|X; =c+¢|-limE[Y;|X; = c+¢|,
el0 10

which would equal

E[¥:(1) =Y (0) X =c].

This is the “average treatment effect” at the cutoff c. Note that this particular treatment effect is different
from the conventional average treatment effect (ATE) one typically seeks to estimate using a randomized
experiment. For example, in Figure 2 we see that the treatment effect (the difference between the two
potential outcome curves) depends on the assignment variable X. Therefore, the treatment effect identified
at X=c may not be generalizable over the entire population, i.e. over the whole distribution of X.

Generalizability aside, inference is possible here because of the continuity of the underlying functions
E[Y;(1)|X] and E[Y; (0) |X].> In essence, this continuity condition enables us to use the average outcome of
those right below the cutoff (who are denied the treatment) as a valid counterfactual for those right above the
cutoff (who received the treatment).

A key question is under which circumstances do we expect this continuity assumption to hold? As it
turns out, continuity is a direct consequence of the fact that, under the weak assumptions discussed below, in
a RD design we have local randomization around the cutoff point. From that point of view, RD designs are
more closely related to randomized experiments, the “gold standard” of program evaluation methods, than to

other commonly used methods such as matching on observables or instrumental variables (IV) methods.> We

2The continuity of both functions is not the minimum that is required, as pointed out in Hahn et al. (2001). For example,
identification is still possible even if only E [Y; (0)|X] is continuous, and only continuous at ¢. Nevertheless, it may seem more
natural to assume that the conditional expectations are continuous for all values of X, since cases where continuity holds at the
cutoff point but not at other values of X seem peculiar.

3In the survey of Angrist and Krueger (1999), RD is viewed as an IV estimator, thus having essentially the same potential
drawbacks and pitfalls. Here we argue that the assumptions required for RD designs to be valid are much weaker than what has to
be imposed in the case of instrumental variables.



next explore the connection between RD designs and randomized experiments, and argue that RD designs

can be analyzed and treated like randomized experiments.

2.2 RD design and local randomization

We consider a highly simplified example to illustrate the close connection between RD designs and random-
ized experiments. As we will explain later, the key results on local randomization can also be obtained in
a much more general setting. More specifically, we assume that the treatment effect, 7, is constant for all

individuals, and that potential outcomes are a linear function of baseline covariates, W, and an error term U':

Y(0)=Wé& +U, 2)

Y(1)=1t+Wé +U,

where we have omitted the subscript i to simplify the notation. Under these simplifying assumptions, we

have a simple linear regression model for the observed outcome Y :

Y=(1-D)-Y(0)+D-Y(1) = DT+ W& +U. 3)

The assignment variable, X, is assumed to depend linearly on the baseline covariates and a random

component V :

X=W&+V, 4)

and treatment assignment is given by

D=1X>c=1[W&+V >,

where 1(.) is the indicator function.

Interestingly, a randomized experiment can be viewed as a special case of this model where 8 = 0 and
V is a randomly generated number used to divide individuals into treatments (V > ¢) and controls (V < ¢).
Since treatment is randomly assigned, there are no systematic differences between the covariates W and the

error term U between the treatment and control groups. In other words, W and U are “balanced” between



treatments and controls in the sense that:

EW|D=0] = E[W|D=1]=E[W],

EUD=1] = E[UID=0]=E[U].
It follows that

E[YID=1] = t+E[W]§ +E[U],

E[YID=0] = E[W]é +EU],

and

T=E[Y|D=1]-E[Y|D=0].

The treatment effect T can, therefore, be estimated as a simple difference between the mean outcomes
for treatments (E[Y |D = 1]) and controls (E[Y |D = 0]). As is well known, one does not need to control for
baseline covariates since those are not systematically different for treatment and controls. In the context of
the simple regression model in equation (3), this means that failing to include W in a regression of Y on D
does not result in an omitted variable bias since W is uncorrelated with D.

Now consider the RD design. To make the above equations more concrete, we work with a case similar
to Thistlethwaite and Campbell (1960) where the assignment variable X is a test score that both depends on
intrinsic ability, W, and on luck, V. Since future outcomes Y such as earnings, choice of major, etc. also likely
depend on ability, we don’t expect students above and below the cutoff ¢ to be comparable. This means that,
unlike in a randomized experiment, we have E(W|D = 1] # E[W|D =0] and E[Y|D = 1] —E[Y|D = 0] # 7.
But provided that the luck component, V, follows a continuous distribution f(.), randomization will hold
locally around the cutoff, and the potential outcomes will be continuous functions of the assignment variable
X.

To see this formally, consider a further simplification where W is a dummy variable indicating whether
the student is high (W = 1) or low (W = 0) ability. Since X = W, +V, for any given value x of the test

score (assignment variable) X , high ability students have a luck term V = x — &,, while V = x for low ability



students. Using a few manipulations it follows that:

EW|X=x] = Prob[lW =1|X =x]
P, - Prob[X = x|W = 1]
P, -Prob[X =x|W = 1]+ (1 —P,) - Prob[X = x|W = 0]
Py flx—&)
Py f(x=&)+(1=Py) f(x)’

where P, = Prob|W = 1] is the fraction of students who are high ability, f(.) is the probability density
function of V, and we have used the fact that Prob[X = x|W| = Prob[V =x—W&,| = f(x— W &,). While it
is clear that E[W|X = x] is now a function of the assignment variable X, the function is also continuous in X
since the probability density function of V, f(.), is itself continuous. To simplify the notation we introduce

the function g(x) defined as:

_ Py flx—&)
Py f(x—&)+(1—Py)- f(x)

¢(x) = EW|X =]
When luck on the test, V, is unrelated to the error term U, it follows that

E[Y(0)|X] = g(X)d1 +E[U], ®)

E[Y(1)|X]=1+g(X)d +E[U].

Since, g(X) is a continuous function, the expected value of the potential outcomes are also continuous in
X, thereby satisfying the condition in Hahn et al. (2001). This simple example shows that continuity of the
potential outcome functions illustrated in Figure 2 is a consequence of the assumption that there is a random
and continuously distributed component V in the assignment variable X.

Local randomization is also a direct consequence of this assumption. In a randomized experiment where
50 percent of individuals are assigned to the treatment and control groups, respectively, each individual
is equally likely to be a treatment or a control. In the simple RD design discussed above, we also get
that individuals are randomly split in a 50-50 way right around the cutoff point. To see this, consider the
probabilities that X = ¢+ € and X = ¢ — € where € is a small number. Since the density f(V) is continuous
in V it follows that:

Prob(X =c+¢) . flc+e—Wd)

sl—r>r(l)Pr0b(X:cfS) el—r}(l)f(cfe—W&)




Since this holds regardless of W and U, it follows that W and U are balanced on each side of the cutoff,

ie.:

ImEW|X =c+¢€] = lmE[W|X =c—¢g|,
£—0 £—0
ImE[UX =c+¢] = LImE[UIX =c—g],
=0 e—0

and, therefore:*

ImEY|X =c+e|—lmEY|X =c—¢€]=T1.
£—0 £—0

The difference between randomized experiments and the RD design is that while randomization holds
globally (for any value of X) in a randomized experiment, it only holds locally in a RD design. Therefore,
while the treatment effect can be computed as simple difference of mean outcomes in a randomized exper-
iment, regression methods have to be used to estimate local means right around the cutoff point in a RD

design. In the simple model above, equation (5) yields the following model for observed outcomes:>

Y =D1t+g(X)8 +U, (6)

which can be estimated by running a regression of Y on D where X is controlled in a flexible way to account
for the function g(X). In the next section, we explain in detail how such flexible regressions can be estimated
in practice.

But besides the need to use regression methods instead of comparisons of means, RD designs can be
analyzed using the same set of standard procedures that are commonly used in the case of randomized
experiments. This includes, for example, checking whether baseline covariates W are balanced on the two
sides of the cutoff point. As in a randomized experiment, one also does not need to include the covariates W

in a regression model since the mean value of W is locally the same on each side of the cutoff.®

“This last results follows from the fact that limg 0 E[Y|X = ¢ + €] = T+ lime_0 E[W|X = ¢ + €]§; + lim o E[U|X = c + ],
limg 0 E[Y|X = c—€] =limg,0 EW|X = c— €] +limg 0 E[U|X = ¢ — €], and, thus, limg_,0 E[Y|X = c+ €] =limg o E[Y|X =
c—¢g]l=1.

>From equation (5), it follows that ¥ (0) = E[Y (0)|X]+U = g(X)&; +U and Y (0) = E[Y(1)|X]+U = t+¢g(X)&, +U. Thus,
Y=(1-D)-Y(0)+D-Y(1)=Dt+¢g(X)0 +U.

Note that in the simple example we use here, since g(X) is the fraction of high ability types (W=1), it would be fully captured
by simply controlling for W in the regression model. But in a more realistic setting, the assignment variable X would also depend
on other unobserved factors (e.g. unobserved ability) that are not captured by the covariates W, and are also likely correlated with
the error term U. But since the above argument about the continuity of the potential outcomes in W and in X holds regardless of
whether W is observed or not, the RD design remains valid and the treatment effect can still be estimated using a flexible regression
model.



This simplified example can be easily generalized to a much richer setting where individuals have some
control over the assignment variable, as shown in Lee (2008). To see this, consider again the test-taking
example. When students know that scoring above a certain threshold (say 80 percent) will give them a
scholarship benefit, we expect them to study harder and double check their answers more thoroughly than
in a lower stake exam. Effort may well depend both on observed covariates and on the error term U in the
outcome. For instance, high-ability students (high value of W) may have much better chances of scoring
above 80 percent, which gives them a stronger incentive to try to score above 80 percent. Likewise, a student
with a high value of U in the outcome equation may particularly benefit from the scholarship in terms of
the program he/she will then be able to afford, etc.” Lee (2008) shows that the RD design remains valid
in this setting as long as there is still a continuously distributed random component V in the assignment
variable that remains beyond the control of the student. This is highly plausible in the test-taking example
since students cannot perfectly control the grade they will get on an exam. More generally, one must have
some knowledge about the mechanism generating the assignment variable, beyond knowing that if it crosses
the threshold, the treatment is “turned on”. It is “folk wisdom” in the literature to judge whether the RD
is appropriate based on whether individuals could manipulate the assignment variable and precisely “sort”
around the discontinuity threshold. The key word here is “precise”, rather than “manipulate”. After all, in the
above example, individuals do exert some control over the test score. And indeed in virtually every known
application of the RD design, it is easy to tell a plausible story that the assignment variable is to some degree
influenced by someone.

The main take away points from our discussion of local randomization are the following:

e RD designs can be invalid if individuals can precisely manipulate the ‘‘assignment variable”.
When there is a payoff or benefit to receiving a treatment, it is natural to consider how an individual
may behave to obtain such benefits. For example, if students could effectively “choose” their test score
X through effort, those who chose a score ¢ (and hence received the merit award) could be somewhat
different from those who chose scores just below c¢. The important lesson here is that the existence
of a treatment that is a discontinuous function of an assignment variable is not sufficient to justify the

validity of an RD design. Indeed, if anything, discontinuous rules may generate incentives, causing

7In a more realistic setting we would expect the error term to take on different value U (0) and U(1) in the two potential outcome
equations. Since individuals with higher values of U(1) — U(0) gain more from the treatment (higher treatment effect), they would
likely put more effort into trying to score high enough to indeed receive the treatment. Lee (2008) shows that local randomization still
holds in that setting provided, once again, that individuals have imperfect control over the assignment variable (some randomness
in the test score in the example considered here).



behavior that would invalidate the RD approach.

e If individuals — even while having some influence — are unable to precisely manipulate the as-
signment variable, a consequence of this is that the variation in treatment near the threshold is
randomized as though from a randomized experiment.

This is a crucial feature of the RD design, since it is the reason RD designs are often so compelling.
Intuitively, when individuals have imprecise control over the assignment variable, even if some are
especially likely to have values of X near the cutoff, every individual will have approximately the
same probability of having an X that is just above (receiving the treatment) or just below (being de-
nied the treatment) the cutoff — similar to a coin-flip experiment. This result clearly differentiates the
RD and IV approaches. When using IV for causal inference, one must assume the instrument is ex-
ogenously generated as if by a coin-flip. Such an assumption is often difficult to justify (except when
an actual lottery was run, as in Angrist (1990), or if there were some biological process, e.g. gender
determination of a baby, mimicking a coin-flip). By contrast, the variation that RD designs isolates is

randomized as a consequence of individuals having imprecise control over the assignment variable.

e RD designs can be analyzed — and tested — like randomized experiments.
This is the key implication of the local randomization result. If variation in the treatment near the
threshold is approximately randomized, then it follows that all baseline characteristics— all those vari-
ables determined prior to the realization of the assignment variable — should have the same distribution
just above and just below the cutoff. If there is a discontinuity in these baseline covariates, then at a
minimum, the underlying identifying assumption of individuals’ inability to precisely manipulate the
assignment variable is unwarranted. Thus, the baseline covariates are used to fest the validity of the
RD design. By contrast, when employing an IV or a matching/regression-control strategy, assump-
tions typically need to be made about the relationship of these other covariates to the treatment and

outcome variables.3

2.3 Fuzzy RD designs

The above discussion is based on what is called a “sharp” RD design, where all individuals above the cutoff

receive the treatment, while none of those below the cutoff get treated. However, in many interesting settings,

8Typically, one assumes that conditional on the covariates, the treatment (or instrument) is essentially “as good as” randomly
assigned.

10



treatment is only determined partly by whether the assignment variable crosses a cutoff point. This situation
is very important in practice for a variety of reasons, including cases of imperfect take-up by program partic-
ipants or when factors other than the threshold rule affect the probability of program participation. Starting
with Trochim (1984), this setting has been referred to as a “fuzzy” RD design. In the “sharp” RD design the
probability of treatment jumps from O to 1 when X crosses the threshold c¢. The fuzzy RD design allows for

a smaller jump in the probability of assignment to the treatment at the threshold and only requires
limProb[D = 1|X =c+¢] #limProb[D = 1|X =c+¢€].
el0 e10

Since the probability of treatment jumps by less than one at the threshold, the jump in the relationship
between Y and X can no longer be interpreted as an average treatment effect. As in an instrumental variable
setting, however, the treatment effect can be recovered by dividing the jump in the relationship between Y
and X at ¢ by the fraction induced to take-up the treatment at the threshold — in other words, the discontinuous
jump in the relation between D and X. In this setting, the treatment effect can be written as

_ limgwE[Y\X :C%—S} —limgToE[Y|X :C—l—E]
" limg,0 E[DIX = c+ €] —limg 1o E[D]X = c+ €]’

where the subscript “F” refers to the fuzzy RD design.

There is a close analogy between how the treatment effect is defined in the fuzzy RD design and in
the well-known “Wald” formulation of the treatment effect in an instrumental variables setting. Hahn et al.
(2001) were the first to show this important connection and to suggest estimating the treatment effect using
two-stage least-squares (TSLS) in this setting. We discuss estimation of fuzzy RD designs in greater detail
in Section 3.3.3.

Hahn et al. (2001) furthermore pointed out that the interpretation of this ratio as a causal effect requires
the same assumptions as in Imbens and Angrist (1994). That is, one must assume “monotonicity” (i.e. X
crossing the cutoff cannot simultaneously cause some units to take up and others to reject the treatment) and
“excludability” (i.e. X crossing the cutoff cannot impact Y except through impacting receipt of treatment).

When these assumptions are made, it follows that’

Tz = E[Y (1) — Y (0)|unit is complier,X = ¢],

9See Imbens and Lemieux (2008) for a more formal exposition.

11



where “compliers” are units that receive the treatment when they satisfy the cutoff rule (X; > c¢), but would
not otherwise receive it.

In summary, if there is local random assignment (e.g. due to the plausibility of individuals’ imprecise
control over X), then we can simply apply all of what is known about the assumptions and interpretability
of instrumental variables. The difference between the “sharp” and “fuzzy” RD design is exactly parallel
to the difference between the randomized experiment with perfect compliance and the case of imperfect
compliance, when only the “intent to treat” is randomized.

For example, in the case of imperfect compliance, even if a proposed binary instrument Z is randomized,
it is necessary to rule out the possibility that Z affects the outcome, outside of its influence through treatment
receipt, D. Only then will the instrumental variables estimand — the ratio of the reduced form effects of Z on
Y and of Z on D — be properly interpreted as a causal effect of D on Y. Similarly, supposing that individuals
do not have precise control over X, it is necessary to assume that whether X crosses the threshold c (the
instrument) has no impact on Y except by influencing D. Only then will the ratio of the two RD gaps in Y
and D be properly interpreted as a causal effect of Don Y.

In the same way that it is important to verify a strong first-stage relationship in an I'V design, it is equally
important to verify that a discontinuity exists in the relationship between D and X in a fuzzy RD design.

Furthermore, in this binary-treatment/binary-instrument context with unrestricted heterogeneity in treat-
ment effects, the IV estimand is interpreted as the average treatment effect “for the sub-population affected
by the instrument,” (or local average treatment effect (LATE)). Analogously, the ratio of the RD gaps in
Y and D (the “fuzzy design” estimand) can be interpreted as a weighted LATE, where the weights reflect
the ex-ante likelihood the individual’s X is near the threshold. In both cases, an exclusion restriction and

monotonicity condition must hold.

2.4 Generalizability

As we pointed out while discussing Figure 2, in a RD design we can only identify the treatment effect right
at the cutoff point c. In the fuzzy RD design, this means we can only estimate a local average treatment effect
for individuals who are both marginally affected by the instrument (the usual LATE issue) and are right at
the cutoff.

Depending on the context, this may be an overly simplistic and pessimistic assessment of how informa-

tive the treatment effect estimated using a RD design is for at least two reasons. First, the treatment effect

12



“right at the cutoff” is often the parameter of policy interest. Going back to the test score example, let us say
that students with a GPA of at least 85 are offered a generous scholarship, and that a RD design is used to
analyze its impact on future outcomes such as college attendance and earnings. A relevant policy question
may be whether it is worth investing more into the program by allowing students with a GPA of 83 and 84 to
also get the scholarship. In such a case, the average treatment effect for these students would likely be very
close to the RD estimates obtained using the cutoff at a GPA of 85. In such a situation, the average treatment
effect estimated using the RD design would be more policy relevant than the average treatment effect (ATE)
for the whole population.

A second point, discussed in more detail in Lee and Lemieux (2010), is that the treatment effect estimated
using a RD design is a weighted average of the individual treatment effect over the whole population. To see
this, remember the treatment assignment rule introduced above: D = 1[W &, +V > c¢]. Since V is random,
individuals right around the cutoff point ¢ will have different values of the covariates W depending on the
value of V they draw. In particular, individuals drawing a high value of V will tend to have a low value of
W ,, and vice versa. The treatment effect estimated using the RD design is, therefore, a weighted average of
individual treatment effects where the weights are proportional to the conditional probability density function
of X given W and U.'® While it is not possible to know how close the resulting RD gap is from the overall
average treatment effect, it remains the case that the treatment effect estimated using a RD design is averaged

over a larger population than one would have anticipated from a purely “cut-off” interpretation.

2.5 Graphical Presentation

A major advantage of the RD design over competing methods is its transparency, which can be illustrated
using graphical methods. A standard way of graphing the data is to divide the assignment variable into a
number of bins, making sure there are two separate bins on each side of the cutoff point (to avoid having
treated and untreated observations mixed together in the same bin). Then, the average value of the outcome
variable can be computed for each bin and graphed against the mid-points of the bins.

More formally, for some bandwidth 4, and for some number of bins Ky and K] to the left and right of the

cutoff value, respectively, the idea is to construct bins (by, by 1], fork =1,...,K = Ko+ K;, where

bp=c—(Ko—k+1)-h.

10See Lee and Lemieux (2010) for more details.
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The average value of the outcome variable in the bin is

Yi=—-

Y- 1{by < X;i < brs1}-
Ni

_ 1 X
=1

i

It is also useful to calculate the number of observations in each bin

N
Ny = Z by < Xi < bigr1 }s

i=1

to detect a possible discontinuity in the assignment variable at the threshold, which would suggest manipu-
lation (see Section 3.4.1).

There are several important advantages in graphing the data this way before performing regressions to
estimate the treatment effect. First, the graph provides a simple way of visualizing what the functional form
of the regression function looks like on either side of the cutoff point. Since the mean of Y in a bin is, for
non-parametric kernel regression estimators, evaluated at the bin mid-point using a rectangular kernel, the
set of bin means literally represent non-parametric estimates of the regression function. Seeing what the
non-parametric regression looks like can then provide useful guidance in choosing the functional form of the
regression models.

A second advantage is that comparing the mean outcomes just to the left and right of the cutoff point
provides an indication of the magnitude of the jump in the regression function at this point, i.e. of the
treatment effect. Since an RD design is “as good as a randomized experiment” right around the cutoff point,
the treatment effect could be computed by comparing the average outcomes in “small” bins just to the left
and right of the cutoff point. If there is no visual evidence of a discontinuity in a simple graph, it is unlikely
the formal regression methods discussed below will yield a significant treatment effect.

A third advantage is that the graph also shows whether there are unexpected comparable jumps at other
points. If such evidence is clearly visible in the graph and cannot be explained on substantive grounds, this
calls into question the interpretation of the jump at the cutoff point as the causal effect of the treatment. We
discuss below several ways of testing explicitly for the existence of jumps at points other than the cutoff .

Note that the visual impact of the graph is typically enhanced by also plotting a relatively flexible re-
gression model, such as a polynomial model, which is a simple way of smoothing the graph. The advantage

of showing both the flexible regression line and the unrestricted bin means is that the regression line better
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illustrates the shape of the regression function and the size of the jump at the cutoff point, and laying this
over the unrestricted means gives a sense of the underlying noise in the data.

Of course, if bins are too narrow, the estimates will be highly imprecise. If they are too wide, the
estimates may be biased, as they fail to account for the slope in the regression line (negligible for very
narrow bins). More importantly, wide bins make the comparisons on both sides of the cutoff less credible,
as we are no longer comparing observations just to the left and right of the cutoff point.

This raises the question of how to choose the bandwidth (the width of the bin). In practice, this is typically
done informally by trying to pick a bandwidth that makes the graphs look informative in the sense that bins
are wide enough to reduce the amount of noise, but narrow enough to compare observations “close enough”
on both sides of the cutoff point. While it is certainly advisable to experiment with different bandwidths and
see how the corresponding graphs look, in Lee and Lemieux (2010) we also discuss formal procedures for

selecting the bandwidth.

3 [Estimation and Inference

In this section, we systematically discuss the nuts and bolts of implementing RD designs in practice. We
first discuss what is, arguably, the most important issue in implementing an RD design: the choice of the
regression model. We address this by presenting the various possible specifications, discussing how to choose
among them, and showing how to compute the standard errors.

We then move to a number of other practical issues that often arise in RD designs. Examples of questions
discussed include whether one should control for other covariates and how to assess the validity of the RD

design. We then summarize our recommendations for implementing the RD design.

3.1 Regression Methods: Parametric or Non-parametric Regressions?

When we introduced the RD design in Section 2, we used a simple example where the resulting regression

model is a non-linear function in the assignment variable X:

Y=0+Dt+g(X)6 +U,
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where we have also added an intercept o to the model. Finding a good approximation for the functional form
is fairly critical in RD designs since misspecification of the functional form typically generates a bias in the
estimated treatment effect, 7.!! Accordingly, the estimation of RD designs have generally been viewed as a
nonparametric estimation problem. In particular, Hahn et al. (2001) suggest running local linear regressions
to reduce the importance of the bias. As in many nonparametric estimation problems, one has to choose a
particular kernel function. Following Imbens and Lemieux (2008) and Lee and Lemieux (2010), we only
look at the case of a rectangular kernel. In practice, this means we can simply run standard linear regressions
within a given bin on both sides of the cutoff point to better p