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1. Introduction

Regression Discontinuity (RD) designs 
were first introduced by Donald L. 

Thistlethwaite and Donald T. Campbell 
(1960) as a way of estimating treatment 
effects in a nonexperimental setting where 
treatment is determined by whether an 
observed “assignment” variable (also referred 
to in the literature as the “forcing” variable 
or the “running” variable) exceeds a known 
cutoff point. In their initial application of 
RD designs, Thistlethwaite and Campbell 

(1960) analyzed the impact of merit awards 
on future academic outcomes, using the fact 
that the allocation of these awards was based 
on an observed test score. The main idea 
behind the research design was that individ-
uals with scores just below the cutoff (who 
did not receive the award) were good com-
parisons to those just above the cutoff (who 
did receive the award). Although this evalua-
tion strategy has been around for almost fifty 
years, it did not attract much attention in 
economics until relatively recently.

Since the late 1990s, a growing number of 
studies have relied on RD designs to estimate 
program effects in a wide variety of economic 
contexts. Like Thistlethwaite and Campbell 
(1960), early studies by Wilbert van der Klaauw 
(2002) and Joshua D. Angrist and Victor Lavy 
(1999) exploited threshold rules often used by 
educational institutions to estimate the effect 
of financial aid and class size, respectively, 
on educational outcomes. Sandra E. Black 
(1999) exploited the presence of discontinui-
ties at the  geographical level (school district 
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boundaries) to estimate the willingness to pay 
for good schools. Following these early papers 
in the area of education, the past five years 
have seen a rapidly growing literature using 
RD designs to examine a range of questions. 
Examples include the labor supply effect of 
welfare, unemployment insurance, and dis-
ability programs; the effects of Medicaid on 
health outcomes; the effect of remedial edu-
cation programs on educational achievement; 
the empirical relevance of median voter mod-
els; and the effects of unionization on wages 
and employment.

One important impetus behind this recent 
flurry of research is a recognition, formal-
ized by Jinyong Hahn, Petra Todd, and van 
der Klaauw (2001), that RD designs require 
seemingly mild assumptions compared to 
those needed for other nonexperimental 
approaches. Another reason for the recent 
wave of research is the belief that the RD 
design is not “just another” evaluation strat-
egy, and that causal inferences from RD 
designs are potentially more credible than 
those from typical “natural experiment” 
strategies (e.g., difference-in-differences or 
instrumental variables), which have been 
heavily employed in applied research in 
recent decades. This notion has a theoreti-
cal justification: David S. Lee (2008) for-
mally shows that one need not assume the 
RD design isolates treatment variation that is 
“as good as randomized”; instead, such ran-
domized variation is a consequence of agents’ 
inability to precisely control the assignment 
variable near the known cutoff.

So while the RD approach was initially 
thought to be “just another” program evalu-
ation method with relatively little general 
applicability outside of a few specific prob-
lems, recent work in economics has shown 
quite the opposite.1 In addition to  providing 

1  See Thomas D. Cook (2008) for an interesting his-
tory of the RD design in education research, psychology, 
 statistics, and economics. Cook argues the resurgence of 

a highly credible and transparent way of 
estimating program effects, RD designs can 
be used in a wide variety of contexts cover-
ing a large number of important economic 
questions. These two facts likely explain 
why the RD approach is rapidly becoming 
a major element in the toolkit of empirical 
economists.

Despite the growing importance of RD 
designs in economics, there is no single com-
prehensive summary of what is understood 
about RD designs—when they succeed, 
when they fail, and their strengths and weak-
nesses.2 Furthermore, the “nuts and bolts” of 
implementing RD designs in practice are not 
(yet) covered in standard econometrics texts, 
making it difficult for researchers interested 
in applying the approach to do so. Broadly 
speaking, the main goal of this paper is to fill 
these gaps by providing an up-to-date over-
view of RD designs in economics and cre-
ating a guide for researchers interested in 
applying the method.

A reading of the most recent research 
reveals a certain body of “folk wisdom” 
regarding the applicability, interpretation, 
and recommendations of practically imple-
menting RD designs. This article represents 
our attempt at summarizing what we believe 
to be the most important pieces of this wis-
dom, while also dispelling misconceptions 
that could potentially (and understandably) 
arise for those new to the RD approach.

We will now briefly summarize the most 
important points about RD designs to set 
the stage for the rest of the paper where 
we systematically discuss identification, 
interpretation, and estimation issues. Here, 
and throughout the paper, we refer to the 
assignment variable as X. Treatment is, thus, 

the RD design in economics is unique as it is still rarely 
used in other disciplines.

2  See, however, two recent overview papers by van 
der Klaauw (2008b) and Guido W. Imbens and Thomas 
Lemieux (2008) that have begun bridging this gap.
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assigned to individuals (or “units”) with a 
value of X greater than or equal to a cutoff 
value c.

•  RD designs can be invalid if indi-
viduals can precisely manipulate the 
“assignment variable.”

 When there is a payoff or benefit to 
receiving a treatment, it is natural for an 
economist to consider how an individual 
may behave to obtain such benefits. For 
example, if students could effectively 
“choose” their test score X through 
effort, those who chose a score c (and 
hence received the merit award) could 
be somewhat different from those who 
chose scores just below c. The impor-
tant lesson here is that the existence of 
a treatment being a discontinuous func-
tion of an assignment variable is not suf-
ficient to justify the validity of an RD 
design. Indeed, if anything, discontinu-
ous rules may generate incentives, caus-
ing behavior that would invalidate the 
RD approach.

•  If individuals—even while having 
some influence—are unable to pre-
cisely manipulate the assignment 
variable, a consequence of this is that 
the variation in treatment near the 
threshold is randomized as though 
from a randomized experiment.

	 This is a crucial feature of the RD 
design, since it is the reason RD designs 
are often so compelling. Intuitively, 
when individuals have imprecise con-
trol over the assignment variable, even if 
some are especially likely to have values 
of X near the cutoff, every individual will 
have approximately the same probability 
of having an X that is just above (receiv-
ing the treatment) or just below (being 
denied the treatment) the cutoff—
similar to a coin-flip experiment. This 
result clearly differentiates the RD and  

instrumental variables (IV) approaches. 
When using IV for causal inference, one 
must assume the instrument is exog-
enously generated as if by a coin-flip. 
Such an assumption is often difficult to 
justify (except when an actual lottery 
was run, as in Angrist (1990), or if there 
were some biological process, e.g., gen-
der determination of a baby, mimicking 
a coin-flip). By contrast, the variation 
that RD designs isolate is randomized 
as a consequence of the assumption that 
individuals have imprecise control over 
the assignment variable.

•  RD designs can be analyzed—and 
tested—like randomized experiments.

 This is the key implication of the local 
randomization result. If variation in the 
treatment near the threshold is approxi-
mately randomized, then it follows that 
all “baseline characteristics”—all those 
variables determined prior to the realiza-
tion of the assignment variable—should 
have the same distribution just above and 
just below the cutoff. If there is a discon-
tinuity in these baseline covariates, then 
at a minimum, the underlying identify-
ing assumption of individuals’ inability 
to precisely manipulate the assignment 
variable is unwarranted. Thus, the 
baseline covariates are used to test the 
validity of the RD design. By contrast, 
when employing an IV or a matching/
regression-control strategy, assumptions 
typically need to be made about the rela-
tionship of these other covariates to the 
treatment and outcome variables.3

•  Graphical presentation of an RD 
design is helpful and informative, but 
the visual presentation should not be 

3  Typically, one assumes that, conditional on the covari-
ates, the treatment (or instrument) is essentially “as good 
as” randomly assigned.
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tilted toward either finding an effect 
or finding no effect.

 It has become standard to summarize 
RD analyses with a simple graph show-
ing the relationship between the out-
come and assignment variables. This has 
several advantages. The presentation of 
the “raw data” enhances the transpar-
ency of the research design. A graph can 
also give the reader a sense of whether 
the “jump” in the outcome variable at 
the cutoff is unusually large compared to 
the bumps in the regression curve away 
from the cutoff. Also, a graphical analy-
sis can help identify why different func-
tional forms give different answers, and 
can help identify outliers, which can be 
a problem in any empirical analysis. The 
problem with graphical presentations, 
however, is that there is some room for 
the researcher to construct graphs mak-
ing it seem as though there are effects 
when there are none, or hiding effects 
that truly exist. We suggest later in the 
paper a number of methods to minimize 
such biases in presentation.

•  Nonparametric estimation does not 
represent a “solution” to functional 
form issues raised by RD designs. It is 
therefore helpful to view it as a com-
plement to—rather than a substitute 
for—parametric estimation.

 When the analyst chooses a parametric 
functional form (say, a low-order poly-
nomial) that is incorrect, the resulting 
estimator will, in general, be biased. 
When the analyst uses a nonparametric 
procedure such as local linear regres-
sion—essentially running a regression 
using only data points “close” to the 
cutoff—there will also be bias.4 With a 
finite sample, it is impossible to know 

4  Unless the underlying function is exactly linear in the 
area being examined.

which case has a smaller bias with-
out knowing something about the true 
function. There will be some functions 
where a low-order polynomial is a very 
good approximation and produces little 
or no bias, and therefore it is efficient to 
use all data points—both “close to” and 
“far away” from the threshold. In other 
situations, a polynomial may be a bad 
approximation, and smaller biases will 
occur with a local linear regression. In 
practice, parametric and nonparametric 
approaches lead to the computation of 
the exact same statistic.5 For example, 
the procedure of regressing the outcome 
Y on X and a treatment dummy D can 
be viewed as a parametric regression 
(as discussed above), or as a local linear 
regression with a very large bandwidth. 
Similarly, if one wanted to exclude the 
influence of data points in the tails of the 
X distribution, one could call the exact 
same procedure “parametric” after trim-
ming the tails, or “nonparametric” by 
viewing the restriction in the range of X 
as a result of using a smaller bandwidth.6 
Our main suggestion in estimation is to 
not rely on one particular method or 
specification. In any empirical analysis, 
results that are stable across alternative 

5  See section 1.2 of James L. Powell (1994), where it 
is argued that is more helpful to view models rather than 
particular statistics as  “parametric” or “nonparametric.”  It 
is shown there how the same least squares estimator can 
simultaneously be viewed as a solution to parametric, semi-
parametric, and nonparametric problems.

6  The main difference, then, between a parametric and 
nonparametric approach is not in the actual estimation but 
rather in the discussion of the asymptotic behavior of the 
estimator as sample sizes tend to infinity. For example, 
standard nonparametric asymptotics considers what would 
happen if the bandwidth h—the width of the “window” 
of observations used for the regression—were allowed to 
shrink as the number of observations N tended to infinity. 
It turns out that if h → 0 and Nh → ∞ as N → ∞, the bias 
will tend to zero. By contrast, with a parametric approach, 
when one is not allowed to make the model more flexible 
with more data points, the bias would generally remain—
even with infinite samples.
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and equally plausible specifications are 
generally viewed as more reliable than 
those that are sensitive to minor changes 
in specification. RD is no exception in 
this regard.

•  Goodness-of-fit and other statistical 
tests can help rule out overly restric-
tive specifications.

 Often the consequence of trying many 
different specifications is that it may 
result in a wide range of estimates. 
Although there is no simple formula 
that works in all situations and con-
texts for weeding out inappropriate 
specifications, it seems reasonable, at 
a minimum, not to rely on an estimate 
resulting from a specification that can be 
rejected by the data when tested against 
a strictly more flexible specification. 
For example, it seems wise to place less 
confidence in results from a low-order 
polynomial model when it is rejected 
in favor of a less restrictive model (e.g., 
separate means for each discrete value 
of X). Similarly, there seems little reason 
to prefer a specification that uses all the 
data if using the same specification, but 
restricting to observations closer to the 
threshold, gives a substantially (and sta-
tistically) different answer.

Although we (and the applied literature) 
sometimes refer to the RD “method” or 
“approach,” the RD design should perhaps 
be viewed as more of a description of a par-
ticular data generating process. All other 
things (topic, question, and population of 
interest) equal, we as researchers might pre-
fer data from a randomized experiment or 
from an RD design. But in reality, like the 
randomized experiment—which is also more 
appropriately viewed as a particular data 
generating process rather than a “method” of 
analysis—an RD design will simply not exist 
to answer a great number of questions. That 

said, as we show below, there has been an 
explosion of discoveries of RD designs that 
cover a wide range of interesting economic 
topics and questions.

The rest of the paper is organized as fol-
lows. In section 2, we discuss the origins of the 
RD design and show how it has recently been 
formalized in economics using the potential 
outcome framework. We also introduce an 
important theme that we stress throughout 
the paper, namely that RD designs are partic-
ularly compelling because they are close cous-
ins of randomized experiments. This theme is 
more formally explored in section 3 where 
we discuss the conditions under which RD 
designs are “as good as a randomized experi-
ment,” how RD estimates should be inter-
preted, and how they compare with other 
commonly used approaches in the program 
evaluation literature. Section 4 goes through 
the main “nuts and bolts” involved in imple-
menting RD designs and provides a “guide to 
practice” for researchers interested in using 
the design. A summary “checklist” highlight-
ing our key recommendations is provided at 
the end of this section. Implementation issues 
in several specific situations (discrete assign-
ment variable, panel data, etc.) are covered in 
section 5. Based on a survey of the recent lit-
erature, section 6 shows that RD designs have 
turned out to be much more broadly applica-
ble in economics than was originally thought. 
We conclude in section 7 by discussing recent 
progress and future prospects in using and 
interpreting RD designs in economics.

2. Origins and Background

In this section, we set the stage for the rest 
of the paper by discussing the origins and the 
basic structure of the RD design, beginning 
with the classic work of Thistlethwaite and 
Campbell (1960) and moving to the recent 
interpretation of the design using modern 
tools of program evaluation in economics 
(potential outcomes framework). One of 
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the main virtues of the RD approach is that 
it can be naturally presented using simple 
graphs, which greatly enhances its credibility 
and transparency. In light of this, the major-
ity of concepts introduced in this section are 
represented in graphical terms to help cap-
ture the intuition behind the RD design.

2.1 Origins

The RD design was first introduced by 
Thistlethwaite and Campbell (1960) in their 
study of the impact of merit awards on the 
future academic outcomes (career aspira-
tions, enrollment in postgraduate programs, 
etc.) of students. Their study exploited the 
fact that these awards were allocated on the 
basis of an observed test score. Students with 
test scores X, greater than or equal to a cut-
off value c, received the award, while those 
with scores below the cutoff were denied the 
award. This generated a sharp discontinuity 
in the “treatment” (receiving the award) as 
a function of the test score. Let the receipt 
of treatment be denoted by the dummy vari-
able D ∈ {0, 1}, so that we have  D = 1 if 
X ≥ c and D = 0 if X < c.

At the same time, there appears to be no 
reason, other than the merit award, for future 
academic outcomes, Y, to be a discontinuous 
function of the test score. This simple rea-
soning suggests attributing the discontinu-
ous jump in Y at c to the causal effect of the 
merit award. Assuming that the relationship 
between Y  and X is otherwise linear, a sim-
ple way of estimating the treatment effect τ 
is by fitting the linear regression

(1) 	 Y =  α  + Dτ  + Xβ  +  ε,

where ε is the usual error term that can be 
viewed as a purely random error generat-
ing variation in the value of Y around the 
regression line α + Dτ + Xβ. This case is 
depicted in figure 1, which shows both the 
true underlying function and numerous real-
izations of ε.

Thistlethwaite and Campbell (1960) pro-
vide some graphical intuition for why the 
coefficient τ could be viewed as an estimate 
of the causal effect of the award. We illustrate 
their basic argument in figure 1. Consider an 
individual whose score X is exactly c. To get 
the causal effect for a person scoring c, we 
need guesses for what her Y would be with 
and without receiving the treatment.

If it is “reasonable” to assume that all 
factors (other than the award) are evolving 
“smoothly” with respect to X, then B′ would 
be a reasonable guess for the value of Y of 
an individual scoring c (and hence receiving 
the treatment). Similarly, A′′ would be a rea-
sonable guess for that same individual in the 
counterfactual state of not having received 
the treatment. It follows that B′ − A′′ would 
be the causal estimate. This illustrates the 
intuition that the RD estimates should use 
observations “close” to the cutoff (e.g., in this 
case at points c′ and c′′ ).

There is, however, a limitation to the intu-
ition that “the closer to c you examine, the 
better.” In practice, one cannot “only” use 
data close to the cutoff. The narrower the 
area that is examined, the less data there are. 
In this example, examining data any closer 
than c′ and c′′ will yield no observations at all! 
Thus, in order to produce a reasonable guess 
for the treated and untreated states at X = c 
with finite data, one has no choice but to use 
data away from the discontinuity.7 Indeed, 
if the underlying function is truly linear, we 
know that the best linear unbiased estima-
tor of τ is the coefficient on D from OLS 
 estimation (using all of the observations) of 
equation (1).

This simple heuristic presentation illus-
trates two important features of the RD 

7   Interestingly, the very first application of the RD 
design by Thistlethwaite and Campbell (1960) was based 
on discrete data (interval data for test scores). As a result, 
their paper clearly points out that the RD design is funda-
mentally based on an extrapolation approach.
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design. First, in order for this approach to 
work, “all other factors” determining Y must 
be evolving  “smoothly” with respect to X. If 
the other variables also jump at c, then the 
gap τ will potentially be biased for the treat-
ment effect of interest. Second, since an RD 
estimate requires data away from the cut-
off, the estimate will be dependent on the 
chosen functional form. In this example, if 
the slope β were (erroneously) restricted to 
equal zero, it is clear the resulting OLS coef-
ficient on D would be a biased estimate of 
the true discontinuity gap.

2.2 RD Designs and the Potential Outcomes 
Framework

While the RD design was being imported 
into applied economic research by studies 
such as van der Klaauw (2002), Black (1999), 
and Angrist and Lavy (1999), the identifica-
tion issues discussed above were formalized 

in the theoretical work of Hahn, Todd, and 
van der Klaauw (2001), who described the 
RD evaluation strategy using the language 
of the treatment effects literature. Hahn, 
Todd, and van der Klaauw (2001) noted the 
key assumption of a valid RD design was that  
“all other factors” were  “continuous” with 
respect to X, and suggested a nonparamet-
ric procedure for estimating τ that did not 
assume underlying linearity, as we have in 
the simple example above.

The necessity of the continuity assump-
tion is seen more formally using the “poten-
tial outcomes framework” of the treatment 
effects literature with the aid of a graph. It is 
typically imagined that, for each individual i, 
there exists a pair of  “potential” outcomes: 
Yi(1) for what would occur if the unit were 
exposed to the treatment and Yi(0) if not 
exposed. The causal effect of the treatment is 
represented by the difference Yi(1) − Yi(0). 
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The fundamental problem of causal infer-
ence is that we cannot observe the pair Yi(0) 
and Yi(1) simultaneously. We therefore typi-
cally focus on average effects of the treat-
ment, that is, averages of Yi(1) − Yi(0) over 
(sub-)populations, rather than on unit-level 
effects.

In the RD setting, we can imagine there 
are two underlying relationships between 
average outcomes and X, represented by 
E[Yi(1) | X  ] and E[Yi(0) | X  ], as in figure 2. 
But by definition of the RD design, all indi-
viduals to the right of the cutoff (c = 2 in 
this example) are exposed to treatment and 
all those to the left are denied treatment. 
Therefore, we only observe E[Yi(1) | X  ] to 
the right of the cutoff and E[Yi(0) | X] to 
the left of the cutoff as indicated in the 
figure.

It is easy to see that with what is observ-
able, we could try to estimate the quantity 

 B − A =   lim    
ε↓0

   E[Yi | Xi = c + ε]

 −  lim    
ε↑0

   E[Yi | Xi = c + ε],

which would equal

 E[Yi(1) − Yi(0) | X = c].

This is the “average treatment effect” at the 
cutoff c.

This inference is possible because of 
the continuity of the underlying functions 
E[Yi(1) | X  ] and E[Yi(0) | X  ].8 In essence, 

8  The continuity of both functions is not the minimum 
that is required, as pointed out in Hahn, Todd, and van der 
Klaauw (2001). For example, identification is still possible 
even if only E[Yi(0) | X  ] is continuous, and only continuous 
at c. Nevertheless, it may seem more natural to assume that 
the conditional expectations are continuous for all values 
of X, since cases where continuity holds at the cutoff point 
but not at other values of X seem peculiar.
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this continuity condition enables us to use 
the average outcome of those right below 
the cutoff (who are denied the treat-
ment) as a valid counterfactual for those 
right above the cutoff (who received the 
treatment).

Although the potential outcome frame-
work is very useful for understanding how 
RD designs work in a framework applied 
economists are used to dealing with, it also 
introduces some difficulties in terms of 
interpretation. First, while the continuity 
assumption sounds generally plausible, it is 
not completely clear what it means from an 
economic point of view. The problem is that 
since continuity is not required in the more 
traditional applications used in econom-
ics (e.g., matching on observables), it is not 
obvious what assumptions about the behav-
ior of economic agents are required to get 
continuity.

Second, RD designs are a fairly pecu-
liar application of a “selection on observ-
ables” model. Indeed, the view in James J. 
Heckman, Robert J. Lalonde, and Jeffrey A. 
Smith (1999) was that “[r]egression discon-
tinuity estimators constitute a special case 
of selection on observables,” and that the 
RD estimator is “a limit form of matching 
at one point.” In general, we need two cru-
cial conditions for a matching/selection on 
observables approach to work. First, treat-
ment must be randomly assigned conditional 
on observables (the ignorability or uncon-
foundedness assumption). In practice, this is 
typically viewed as a strong, and not particu-
larly credible, assumption. For instance, in a 
standard regression framework this amounts 
to assuming that all relevant factors are con-
trolled for, and that no omitted variables are 
correlated with the treatment dummy. In an 
RD design, however, this crucial assumption 
is trivially satisfied. When X ≥ c, the treat-
ment dummy D is always equal to 1. When 
X < c, D is always equal to 0. Conditional 
on X, there is no variation left in D, so it

 cannot, therefore, be correlated with any 
other factor.9

At the same time, the other standard 
assumption of overlap is violated since, 
strictly speaking, it is not possible to 
observe units with either D = 0 or D = 1 
for a given value of the assignment variable 
X. This is the reason the continuity assump-
tion is required—to compensate for the 
failure of the overlap condition. So while 
we cannot observe treatment and non-
treatment for the same value of X, we can 
observe the two outcomes for values of X 
around the cutoff point that are arbitrarily 
close to each other.

2.3 RD Design as a Local Randomized 
Experiment

When looking at RD designs in this way, 
one could get the impression that they 
require some assumptions to be satisfied, 
while other methods such as matching on 
observables and IV methods simply require 
other assumptions.10 From this point of 
view, it would seem that the assumptions 
for the RD design are just as arbitrary as 
those used for other methods. As we discuss 
throughout the paper, however, we do not 
believe this way of looking at RD designs 
does justice to their important advantages 
over most other existing methods. This 
point becomes much clearer once we com-
pare the RD design to the “gold standard” 
of program evaluation methods, random-
ized experiments. We will show that the 
RD design is a much closer cousin of ran-
domized experiments than other competing 
methods.

9  In technical terms, the treatment dummy D follows a 
degenerate (concentrated at D = 0 or D = 1), but nonethe-
less random distribution conditional on X. Ignorability is 
thus trivially satisfied.

10  For instance, in the survey of Angrist and Alan B. 
Krueger (1999), RD is viewed as an IV estimator, thus hav-
ing essentially the same potential drawbacks and pitfalls.
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In a randomized experiment, units are 
typically divided into treatment and control 
groups on the basis of a randomly gener-
ated number, ν. For example, if ν follows a 
uniform distribution over the range [0, 4], 
units with ν ≥ 2 are given the treatment 
while units with ν < 2 are denied treat-
ment. So the randomized experiment can 
be thought of as an RD design where the 
assignment variable is X = v and the cutoff 
is c = 2. Figure 3 shows this special case in 
the potential outcomes framework, just as in 
the more general RD design case of figure 
2. The difference is that because the assign-
ment variable X is now completely random, 
it is independent of the potential outcomes 
Yi(0) and Yi(1), and the curves E[Yi(1) | X ] 
and E[Yi(0) | X  ] are flat. Since the curves are 
flat, it trivially follows that they are also con-
tinuous at the cutoff point X = c. In other 

words, continuity is a direct consequence of 
randomization.

The fact that the curves E[Yi(1) | X ] and 
E[Yi(0) | X  ] are flat in a randomized experi-
ment implies that, as is well known, the aver-
age treatment effect can be computed as 
the difference in the mean value of Y on the 
right and left hand side of the cutoff. One 
could also use an RD approach by running 
regressions of Y on X, but this would be less 
efficient since we know that if randomization 
were successful, then X is an irrelevant vari-
able in this regression.

But now imagine that, for ethical reasons, 
people are compensated for having received 
a “bad draw” by getting a monetary compen-
sation inversely proportional to the random 
number X. For example, the treatment could 
be job search assistance for the unemployed, 
and the outcome whether one found a job 

Assignment variable (random number, X)

O
ut

co
m

e 
va

ri
ab

le
 (Y

)

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
0                   0.5                    1                    1.5                   2                    2.5                   3                    3.5                   4              

Observed (control)

E[Y(1)|X]

E[Y(0)|X]

Observed (treatment)

Figure 3. Randomized Experiment as a RD Design
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within a month of receiving the treatment. 
If people with a larger monetary compen-
sation can afford to take more time looking 
for a job, the potential outcome curves will 
no longer be flat and will slope upward. The 
reason is that having a higher random num-
ber, i.e., a lower monetary compensation, 
increases the probability of finding a job. So 
in this “smoothly contaminated” randomized 
experiment, the potential outcome curves 
will instead look like the classical RD design 
case depicted in figure 2.

Unlike a classical randomized experi-
ment, in this contaminated experiment 
a simple comparison of means no longer 
yields a consistent estimate of the treatment 
effect. By focusing right around the thresh-
old, however, an RD approach would still 
yield a consistent estimate of the treatment 
effect associated with job search assistance. 
The reason is that since people just above 
or below the cutoff receive (essentially) the 
same monetary compensation, we still have 
locally a randomized experiment around the 
cutoff point. Furthermore, as in a random-
ized experiment, it is possible to test whether 
randomization “worked” by comparing the 
local values of baseline covariates on the two 
sides of the cutoff value.

Of course, this particular example is 
highly artificial. Since we know the monetary 
compensation is a continuous function of 
X, we also know the continuity assumption 
required for the RD estimates of the treat-
ment effect to be consistent is also satisfied. 
The important result, due to Lee (2008), 
that we will show in the next section is that 
the conditions under which we locally have 
a randomized experiment (and continuity) 
right around the cutoff point are remark-
ably weak. Furthermore, in addition to 
being weak, the conditions for local random-
ization are testable in the same way global 
randomization is testable in a randomized 
experiment by looking at whether baseline 
covariates are balanced. It is in this sense 

that the RD design is more closely related 
to randomized experiments than to other 
popular program evaluation methods such 
as matching on observables, difference-in-
differences, and IV.

3. Identification and Interpretation

This section discusses a number of issues 
of identification and interpretation that arise 
when considering an RD design. Specifically, 
the applied researcher may be interested 
in knowing the answers to the following 
questions:

1.	 	How do I know whether an RD design 
is appropriate for my context? When 
are the identification assumptions plau-
sible or implausible?

2.  Is there any way I can test those 
assumptions?

3.  To what extent are results from RD 
designs generalizable?

On the surface, the answers to these 
questions seem straightforward: (1) “An 
RD design will be appropriate if it is plau-
sible that all other unobservable factors are 
“continuously” related to the assignment 
variable,” (2) “No, the continuity assump-
tion is necessary, so there are no tests for 
the validity of the design,” and (3) “The RD 
estimate of the treatment effect is only appli-
cable to the subpopulation of individuals at 
the discontinuity threshold, and uninforma-
tive about the effect anywhere else.” These 
answers suggest that the RD design is no 
more compelling than, say, an instrumen-
tal variables approach, for which the analo-
gous answers would be (1) “The instrument 
must be uncorrelated with the error in the 
outcome equation,” (2) “The identification 
assumption is ultimately untestable,” and (3) 
“The estimated treatment effect is applicable 
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to the subpopulation whose treatment was 
affected by the instrument.” After all, who’s 
to say whether one untestable design is more 
“compelling” or “credible” than another 
untestable design? And it would seem that 
having a treatment effect for a vanishingly 
small subpopulation (those at the threshold, 
in the limit) is hardly more (and probably 
much less) useful than that for a population 
“affected by the instrument.”

As we describe below, however, a closer 
examination of the RD design reveals quite 
different answers to the above three questions:

1.	 	“When there is a continuously distrib-
uted stochastic error component to the 
assignment variable—which can occur 
when optimizing agents do not have 
precise control over the assignment 
variable—then the variation in the 
treatment will be as good as random-
ized in a neighborhood around the dis-
continuity threshold.”

2.  “Yes. As in a randomized experiment, 
the distribution of observed baseline 
covariates should not change discon-
tinuously at the threshold.”

3.  “The RD estimand can be interpreted 
as a weighted average treatment effect, 
where the weights are the relative ex 
ante probability that the value of an 
individual’s assignment variable will be 
in the neighborhood of the threshold.”

Thus, in many contexts, the RD design 
may have more in common with random-
ized experiments (or circumstances when an 
instrument is truly randomized)—in terms 
of their “internal validity” and how to imple-
ment them in practice—than with regression 
control or matching methods, instrumental 
variables, or panel data approaches. We will 
return to this point after first discussing the 
above three issues in greater detail.

3.1 Valid or Invalid RD?

Are individuals able to influence the 
assignment variable, and if so, what is the 
nature of this control? This is probably the 
most important question to ask when assess-
ing whether a particular application should 
be analyzed as an RD design. If individuals 
have a great deal of control over the assign-
ment variable and if there is a perceived 
benefit to a treatment, one would certainly 
expect individuals on one side of the thresh-
old to be systematically different from those 
on the other side.

Consider the test-taking RD example. 
Suppose there are two types of students: A 
and B. Suppose type A students are more 
able than B types, and that A types are also 
keenly aware that passing the relevant thresh-
old (50 percent) will give them a scholarship 
benefit, while B types are completely igno-
rant of the scholarship and the rule. Now 
suppose that 50 percent of the questions are 
trivial to answer correctly but, due to ran-
dom chance, students will sometimes make 
careless errors when they initially answer the 
test questions, but would certainly correct 
the errors if they checked their work. In this 
scenario, only type A students will make sure 
to check their answers before turning in the 
exam, thereby assuring themselves of a pass-
ing score. Thus, while we would expect those 
who barely passed the exam to be a mixture 
of type A and type B students, those who 
barely failed would exclusively be type B 
students. In this example, it is clear that the 
marginal failing students do not represent a 
valid counterfactual for the marginal passing 
students. Analyzing this scenario within an 
RD framework would be inappropriate.

On the other hand, consider the same sce-
nario, except assume that questions on the 
exam are not trivial; there are no guaran-
teed passes, no matter how many times the 
students check their answers before turn-
ing in the exam. In this case, it seems more 
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plausible that, among those scoring near the 
threshold, it is a matter of “luck” as to which 
side of the threshold they land. Type A stu-
dents can exert more effort—because they 
know a scholarship is at stake—but they do 
not know the exact score they will obtain. In 
this scenario, it would be reasonable to argue 
that those who marginally failed and passed 
would be otherwise comparable, and that an 
RD analysis would be appropriate and would 
yield credible estimates of the impact of the 
scholarship.

These two examples make it clear that one 
must have some knowledge about the mech-
anism generating the assignment variable 
beyond knowing that, if it crosses the thresh-
old, the treatment is “turned on.” It is “folk 
wisdom” in the literature to judge whether 
the RD is appropriate based on whether 
individuals could manipulate the assignment 
variable and precisely “sort” around the dis-
continuity threshold. The key word here is 
“precise” rather than “manipulate.” After 
all, in both examples above, individuals do 
exert some control over the test score. And 
indeed, in virtually every known application 
of the RD design, it is easy to tell a plausi-
ble story that the assignment variable is to 
some degree influenced by someone. But 
individuals will not always be able to have 
precise control over the assignment variable. 
It should perhaps seem obvious that it is nec-
essary to rule out precise sorting to justify 
the use of an RD design. After all, individ-
ual self-selection into treatment or control 
regimes is exactly why simple comparison of 
means is unlikely to yield valid causal infer-
ences. Precise sorting around the threshold 
is self-selection.

What is not obvious, however, is that, 
when one formalizes the notion of having 
imprecise control over the assignment vari-
able, there is a striking consequence: the 
variation in the treatment in a neighborhood 
of the threshold is “as good as randomized.” 
We explain this below.

3.1.1 Randomized Experiments from   
 Nonrandom Selection

To see how the inability to precisely con-
trol the assignment variable leads to a source 
of randomized variation in the treatment, 
consider a simplified formulation of the RD 
design:11

(2)  Y =  Dτ +  Wδ1 +  U

 D =  1[X ≥ c]

 X =  Wδ2 +  V,

where Y is the outcome of interest, D is the 
binary treatment indicator, and W is the 
vector of all predetermined and observable 
characteristics of the individual that might 
impact the outcome and/or the assignment 
variable X.

This model looks like a standard endog-
enous dummy variable set-up, except that 
we observe the assignment variable,  X. This 
allows us to relax most of the other assump-
tions usually made in this type of model. 
First, we allow W to be endogenously deter-
mined as long as it is determined prior to 
V. Second, we take no stance as to whether 
some elements of δ1 or δ2 are zero (exclusion 
restrictions). Third, we make no assump-
tions about the correlations between W, U, 
and V.12

In this model, individual heterogeneity in 
the outcome is completely described by the 
pair of random variables (W, U); anyone with 
the same values of (W, U) will have one of 
two values for the outcome, depending on 
whether they receive  treatment. Note that, 

11  We use a simple linear endogenous dummy variable 
setup to describe the results in this section, but all of the 
results could be stated within the standard potential out-
comes framework, as in Lee (2008).

12  This is much less restrictive than textbook descrip-
tions of endogenous dummy variable systems. It is typically 
assumed that (U, V  ) is independent of W.
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since RD designs are implemented by run-
ning regressions of Y on X, equation (2) looks 
peculiar since X is not included with W and 
U on the right hand side of the equation. We 
could add a function of X to the outcome 
equation, but this would not make a differ-
ence since we have not made any assump-
tions about the joint distribution of W, U, and 
V. For example, our setup allows for the case 
where U = Xδ3 + U′, which yields the out-
come equation Y = Dτ + Wδ1 + Xδ3 + U′. 
For the sake of simplicity, we work with the 
simple case where X is not included on the 
right hand side of the equation.13

13  When RD designs are implemented in practice, the 
estimated effect of X on Y can either reflect a true causal 
effect of X on Y or a spurious correlation between X and the

Now consider the distribution of X, condi-
tional on a particular pair of values W = w, 
U = u. It is equivalent (up to a translational 
shift) to the distribution of V conditional on 
W = w, U = u. If an individual has complete 
and exact control over X, we would model it 
as having a degenerate distribution, condi-
tional on W = w, U = u. That is, in repeated 
trials, this individual would choose the same 
score. This is depicted in figure 4 as the thick 
line.

If there is some room for error but indi-
viduals can nevertheless have precise control 
about whether they will fail to receive the 

unobservable term U. Since it is not possible to  distinguish 
between these two effects in practice, we simplify the 
setup by implicitly assuming that X only comes into equa-
tion (2) indirectly through its (spurious) correlation with U.
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Figure 4. Density of Assignment Variable Conditional on W = w, U = u
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treatment, then we would expect the density 
of X to be zero just below the threshold, but 
positive just above the threshold, as depicted 
in figure 4 as the truncated distribution. This 
density would be one way to model the first 
example described above for the type A stu-
dents. Since type A students know about the 
scholarship, they will double-check their 
answers and make sure they answer the easy 
questions, which comprise 50 percent of the 
test. How high they score above the pass-
ing threshold will be determined by some 
randomness.

Finally, if there is stochastic error in the 
assignment variable and individuals do not 
have precise control over the assignment 
variable, we would expect the density of X 
(and hence V ), conditional on W = w, U = u 
to be continuous at the discontinuity thresh-
old, as shown in figure 4 as the untruncated 
distribution.14 It is important to emphasize 
that, in this final scenario, the individual still 
has control over X:  through her efforts, she 
can choose to shift the distribution to the 
right. This is the density for someone with  
W = w, U = u, but may well be different—
with a different mean, variance, or shape of 
the density—for other individuals, with dif-
ferent levels of ability, who make different 
choices. We are assuming, however, that all 
individuals are unable to precisely control 
the score just around the threshold.

Definition: We say individuals have 
imprecise control over X when conditional 
on W = w and U = u, the density of V (and 
hence X) is continuous. 

When individuals have imprecise con-
trol over X this leads to the striking implica-
tion that variation in treatment status will be 

14  For example, this would be plausible when X is a 
test score modeled as a sum of Bernoulli random vari-
ables, which is approximately normal by the central limit 
theorem.

 randomized in a neighborhood of the thresh-
old. To see this, note that by Bayes’ Rule, we 
have

(3) Pr[W = w, U = u | X = x]

  =  f (x | W = w, U = u)   Pr[W = w, U = u]  __ 
f(x)

  ,

where f (∙) and f (∙ | ∙) are marginal and 
conditional densities for X. So when 
f (x | W = w, U = u) is continuous in x, the 
right hand side will be continuous in x, which 
therefore means that the distribution of W, U 
conditional on X will be continuous in x.15 
That is, all observed and unobserved prede-
termined characteristics will have identical 
distributions on either side of x = c, in the 
limit, as we examine smaller and smaller 
neighborhoods of the threshold.

In sum,

Local Randomization: If individuals have 
imprecise control over X as defined above, 
then Pr[W = w, U = u | X = x] is continu-
ous in x: the treatment is “as good as” ran-
domly assigned around the cutoff.

In other words, the behavioral assumption 
that individuals do not precisely manipulate  
X around the threshold has the prediction 
that treatment is locally randomized.

This is perhaps why RD designs can be 
so compelling. A deeper investigation into 
the real-world details of how X (and hence 
D) is determined can help assess whether it 
is plausible that individuals have precise or 
imprecise control over X. By contrast, with 

15  Since the potential outcomes Y(0) and Y(1) are func-
tions of W and U, it follows that the distribution of Y(0)
and Y(1) conditional on X is also continuous in x when indi-
viduals have imprecise control over X. This implies that 
the conditions usually invoked for consistently estimating 
the treatment effect (the conditional means E[Y(0) | X = x] 
and E[Y(1) | X = x] being continuous in x) are also satisfied. 
See Lee (2008) for more detail.
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most nonexperimental evaluation contexts, 
learning about how the treatment variable is 
determined will rarely lead one to conclude 
that it is “as good as” randomly assigned.

3.2 Consequences of Local Random 
Assignment

There are three practical implications of 
the above local random assignment result.

3.2.1 Identification of the Treatment Effect

First and foremost, it means that the dis-
continuity gap at the cutoff identifies the 
treatment effect of interest. Specifically, we 
have

 lim    
ε↓0

   E[Y | X = c + ε]

    −  lim    
ε↑0

   E[Y | X = c + ε]

  = τ  +   lim    
ε↓0

    ∑ 
w,u

   
 

  (wδ1  + u)

    × Pr[W = w, U = u | X = c + ε]

        −  lim    
ε↑0

    ∑ 
w,u

   
 

    (wδ1 + u)

    × Pr[W = w, U = u | X = c + ε]

    =  τ,

where the last line follows from the continu-
ity of Pr[W = w, U = u | X = x].

As we mentioned earlier, nothing changes 
if we augment the model by adding a direct 
impact of X itself in the outcome equation, 
as long as the effect of X on Y does not jump 
at the cutoff. For example, in the example of 
Thistlethwaite and Campbell (1960), we can 
allow higher test scores to improve future 
academic outcomes (perhaps by raising the 
probability of admission to higher quality 
schools) as long as that probability does not 
jump at precisely the same cutoff used to 
award scholarships.

3.2.2 Testing the Validity of the RD Design

An almost equally important implication of 
the above local random assignment result is 
that it makes it possible to empirically assess 
the prediction that Pr[W = w, U = u | X = x] 
is continuous in x. Although it is impossible 
to test this directly—since U is unobserved—
it is nevertheless possible to assess whether  
Pr[W = w | X = x] is continuous in x at the 
threshold. A discontinuity would indicate a 
failure of the identifying assumption.

This is akin to the tests performed to 
empirically assess whether the randomiza-
tion was carried out properly in randomized 
experiments. It is standard in these analyses 
to demonstrate that treatment and control 
groups are similar in their observed base-
line covariates. It is similarly impossible to 
test whether unobserved characteristics are 
balanced in the experimental context, so the 
most favorable statement that can be made 
about the experiment is that the data “failed 
to reject” the assumption of randomization.

Performing this kind of test is arguably 
more important in the RD design than in 
the experimental context. After all, the true 
nature of individuals’ control over the assign-
ment variable—and whether it is precise or 
imprecise—may well be somewhat debat-
able even after a great deal of investigation 
into the exact treatment-assignment mecha-
nism (which itself is always advisable to do). 
Imprecision of control will often be nothing 
more than a conjecture, but thankfully it has 
testable predictions.

There is a complementary, and arguably 
more direct and intuitive test of the impre-
cision of control over the assignment vari-
able: examination of the density of X itself, 
as suggested in Justin McCrary (2008). If the 
density of X for each individual is continu-
ous, then the marginal density of X over the 
population should be continuous as well. A 
jump in the density at the threshold is proba-
bly the most direct evidence of some degree 
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of sorting around the threshold, and should 
provoke serious skepticism about the appro-
priateness of the RD design.16 Furthermore, 
one advantage of the test is that it can always 
be performed in a RD setting, while testing 
whether the covariates W are balanced at the 
threshold depends on the availability of data 
on these covariates.

This test is also a partial one. Whether each 
individual’s ex ante density of X is continuous 
is fundamentally untestable since, for each 
individual, we only observe one realization of 
X. Thus, in principle, at the threshold some 
individuals’ densities may jump up while oth-
ers may sharply fall, so that in the aggregate, 
positives and negatives offset each other 
making the density appear continuous. In 
recent applications of RD such occurrences 
seem far-fetched. Even if this were the case, 
one would certainly expect to see, after strat-
ifying by different values of the observable 
characteristics, some discontinuities in the 
density of X. These discontinuities could be 
detected by performing the local randomiza-
tion test described above.

3.2.3 Irrelevance of Including Baseline   
 Covariates

A consequence of a randomized experi-
ment is that the assignment to treatment is, 
by construction, independent of the base-
line covariates. As such, it is not necessary to 
include them to obtain consistent estimates 
of the treatment effect. In practice, however, 

16  Another possible source of discontinuity in the 
density of the assignment variable X is selective attrition. 
For example, John DiNardo and Lee (2004) look at the 
effect of unionization on wages several years after a union 
representation vote was taken. In principle, if firms that 
were unionized because of a majority vote are more likely 
to close down, then conditional on firm survival at a later 
date, there will be a discontinuity in X (the vote share) that 
could threaten the validity of the RD design for estimat-
ing the effect of unionization on wages (conditional on 
survival). In that setting, testing for a discontinuity in the 
density (conditional on survival) is similar to testing for 
selective attrition (linked to treatment status) in a standard 
randomized experiment.

researchers will include them in regressions, 
because doing so can reduce the sampling 
variability in the estimator. Arguably the 
greatest potential for this occurs when one 
of the baseline covariates is a pre-random-
assignment observation on the dependent 
variable, which may likely be highly corre-
lated with the post-assignment outcome vari-
able of interest.

The local random assignment result allows 
us to apply these ideas to the RD context. For 
example, if the lagged value of the depen-
dent variable was determined prior to the 
realization of X, then the local randomization 
result will imply that that lagged dependent 
variable will have a continuous relationship 
with X. Thus, performing an RD analysis on 
Y minus its lagged value should also yield the 
treatment effect of interest. The hope, how-
ever, is that the differenced outcome mea-
sure will have a sufficiently lower variance 
than the level of the outcome, so as to lower 
the variance in the RD estimator.

More formally, we have

  lim    
ε↓0

   E[Y − Wπ | X = c + ε]

  −  lim    
ε↑0

   E[Y − Wπ | X = c + ε] 

 = τ  +   lim    
ε↓0

    ∑ 
w,u

   
 

  (w(δ1  − π) + u)

   × Pr[W = w, U = u | X = c + ε]

      −  lim    
ε↑0

    ∑ 
w,u

   
 

    (w(δ1 − π) + u)

   × Pr[W = w, U = u | X = c + ε]

  =  τ,

where Wπ is any linear function, and W can 
include a lagged dependent variable, for 
example. We return to how to implement 
this in practice in section 4.4.
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3.3 Generalizability: The RD Gap as a 
Weighted Average Treatment Effect

In the presence of heterogeneous treat-
ment effects, the discontinuity gap in an 
RD design can be interpreted as a weighted 
average treatment effect across all individu-
als. This is somewhat contrary to the temp-
tation to conclude that the RD design only 
delivers a credible treatment effect for the 
subpopulation of individuals at the threshold 
and says nothing about the treatment effect 
“away from the threshold.” Depending on 
the context, this may be an overly simplistic 
and pessimistic assessment.

Consider the scholarship test example 
again, and define the “treatment” as “receiv-
ing a scholarship by scoring 50 percent or 
greater on the scholarship exam.” Recall 
that the pair W, U characterizes individual 
heterogeneity. We now let τ (w, u) denote 
the treatment effect for an individual with 
W = w and U = u, so that the outcome 
equation in (2) is instead given by

	 Y =  Dτ  (W, U) + Wδ1 + U.

This is essentially a model of completely 
unrestricted heterogeneity in the treatment 
effect. Following the same line of argument 
as above, we obtain

(5)  lim    
ε↓0

   E[Y | X = c + ε]

    −  lim    
ε↑0

   E[Y | X = c + ε]

  =   ∑ 
w,u

   
 

   τ  (w,  u) Pr[W = w, U = u | X = c]

   =   ∑ 
w,u

   
 

    τ  (w, u)   
f (c | W = w, U = u)

  __  
f (c)

  

      × Pr[W = w, U = u],

where the second line follows from equation 
(3).

The discontinuity gap then, is a par-
ticular kind of average treatment effect 
across all individuals. If not for the term 
f (c | W = w, U = u)/f (c), it would be the 
average treatment effect for the entire 
population. The presence of the ratio 
f (c | W = w, U = u)/f (c) implies the discon-
tinuity is instead a weighted average treat-
ment effect where the weights are directly 
proportional to the ex ante likelihood that an 
individual’s realization of X will be close to 
the threshold. All individuals could get some 
weight, and the similarity of the weights 
across individuals is ultimately untestable, 
since again we only observe one realization 
of X per person and do not know anything 
about the ex ante probability distribution of 
X for any one individual. The weights may be 
relatively similar across individuals, in which 
case the RD gap would be closer to the 
overall average treatment effect; but, if the 
weights are highly varied and also related to 
the magnitude of the treatment effect, then 
the RD gap would be very different from 
the overall average treatment effect. While 
it is not possible to know how close the RD 
gap is from the overall average treatment 
effect, it remains the case that the treat-
ment effect estimated using a RD design is 
averaged over a larger population than one 
would have anticipated from a purely “cut-
off   ” interpretation.

Of course, we do not observe the density of 
the assignment variable at the individual level 
so we therefore do not know the weight for 
each individual. Indeed, if the signal to noise 
ratio of the test is extremely high, someone 
who scores a 90 percent may have almost a 
zero chance of scoring near the threshold, 
implying that the RD gap is almost entirely 
dominated by those who score near 50 per-
cent. But if the reliability is lower, then the 
RD gap applies to a relatively broader sub-
population. It remains to be seen whether 
or not and how information on the reliabil-
ity, or a second test measurement, or other 
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 covariates that can predict the assignment 
could be used in conjunction with the RD 
gap to learn about average treatment effects 
for the overall population. The understanding 
of the RD gap as a weighted average treat-
ment effect serves to highlight that RD causal 
evidence is not somehow fundamentally dis-
connected from the average treatment effect 
that is often of interest to researchers.

It is important to emphasize that the RD 
gap is not informative about the treatment 
if it were defined as “receipt of a scholar-
ship that is awarded by scoring 90 percent 
or higher on the scholarship exam.” This is 
not so much a “drawback” of the RD design 
as a limitation shared with even a carefully 
controlled randomized experiment. For 
example, if we randomly assigned financial 
aid awards to low-achieving students, what-
ever treatment effect we estimate may not 
be informative about the effect of financial 
aid for high-achieving students.

In some contexts, the treatment effect 
“away from the discontinuity threshold” may 
not make much practical sense. Consider the 
RD analysis of incumbency in congressional 
elections of Lee (2008). When the treatment 
is “being the incumbent party,” it is implic-
itly understood that incumbency entails win-
ning the previous election by obtaining at 
least 50 percent of the vote.17 In the election 
context, the treatment “being the incum-
bent party by virtue of winning an election, 
whereby 90 percent of the vote is required 
to win” simply does not apply to any real-life 
situation. Thus, in this context, it is awkward 
to interpret the RD gap as “the effect of 
incumbency that exists at 50 percent vote-
share threshold” (as if there is an effect at 
a 90 percent threshold). Instead it is more 
natural to interpret the RD gap as estimat-
ing a weighted average treatment effect of 
incumbency across all districts, where more 

17  For this example, consider the simplified case of a 
two-party system.

weight is given to those districts in which a 
close election race was expected.

3.4 Variations on the Regression 
Discontinuity Design

To this point, we have focused exclu-
sively on the “classic” RD design introduced 
by Thistlethwaite and Campbell (1960), 
whereby there is a single binary treatment 
and the assignment variable perfectly pre-
dicts treatment receipt. We now discuss two 
variants of this base case: (1) when there is 
so-called “imperfect compliance” of the rule 
and (2) when the treatment of interest is a 
continuous variable.

In both cases, the notion that the RD 
design generates local variation in treatment 
that is “as good as randomly assigned” is 
helpful because we can apply known results 
for randomized instruments to the RD 
design, as we do below. The notion is also 
helpful for addressing other data problems, 
such as differential attrition or sample selec-
tion, whereby the treatment affects whether 
or not you observe the outcome of interest. 
The local random assignment result means 
that, in principle, one could extend the ideas 
of Joel L. Horowitz and Charles F. Manski 
(2000) or Lee (2009), for example, to provide 
bounds on the treatment effect, accounting 
for possible sample selection bias.

3.4.1. Imperfect Compliance: The
 “Fuzzy” RD

In many settings of economic interest, 
treatment is determined partly by whether 
the assignment variable crosses a cutoff point. 
This situation is very important in practice for 
a variety of reasons, including cases of imper-
fect take-up by program participants or when 
factors other than the threshold rule affect 
the probability of program participation. 
Starting with William M. K. Trochim (1984), 
this setting has been referred to as a “fuzzy” 
RD design. In the case we have  discussed 
so far—the “sharp” RD design—the  
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probability of treatment jumps from 0 to 1 
when X crosses the threshold c. The fuzzy 
RD design allows for a smaller jump in the 
probability of assignment to the treatment at 
the threshold and only requires 

  lim    
ε↓0

   Pr (D = 1 | X = c + ε)

  ≠  lim    
ε↑0

   Pr (D = 1 | X = c + ε).

Since the probability of treatment jumps 
by less than one at the threshold, the jump in 
the relationship between Y and X can no lon-
ger be interpreted as an average treatment 
effect. As in an instrumental variable setting 
however, the treatment effect can be recov-
ered by dividing the jump in the relationship 
between Y and X at c by the fraction induced 
to take-up the treatment at the threshold—
in other words, the discontinuity jump in the 
relation between D and X. In this setting, the 
treatment effect can be written as

τF =    limε↓0 E[Y | X = c + ε] − limε↑0 E[Y | X = c + ε]
   ___________________________    

limε↓0 E[D | X = c + ε] − limε↑0 E[D | X = c + ε]
    ,

where the subscript “F” refers to the fuzzy 
RD design.

There is a close analogy between how the 
treatment effect is defined in the fuzzy RD 
design and in the well-known “Wald” formu-
lation of the treatment effect in an instru-
mental variables setting. Hahn, Todd and 
van der Klaauw (2001) were the first to show 
this important connection and to suggest 
estimating the treatment effect using two-
stage least-squares (TSLS) in this setting. 
We discuss estimation of fuzzy RD designs in 
greater detail in section 4.3.3.

Hahn, Todd and van der Klaauw (2001) 
furthermore pointed out that the interpreta-
tion of this ratio as a causal effect requires 
the same assumptions as in Imbens and 
Angrist (1994). That is, one must assume 
“monotonicity” (i.e., X crossing the cutoff 
cannot simultaneously cause some units to 
take up and others to reject the treatment) 

and “excludability” (i.e., X crossing the cutoff 
cannot impact Y except through impacting 
receipt of treatment). When these assump-
tions are made, it follows that18 

τF = E[Y(1) − Y(0) |unit is complier, X = c],

where “compliers” are units that receive the 
treatment when they satisfy the cutoff rule 
(Xi ≥ c), but would not otherwise receive it.

In summary, if there is local random 
assignment (e.g., due to the plausibility of 
individuals’ imprecise control over X), then 
we can simply apply all of what is known 
about the assumptions and interpretability 
of instrumental variables. The difference 
between the “sharp” and “fuzzy” RD design 
is exactly parallel to the difference between 
the randomized experiment with perfect 
compliance and the case of imperfect com-
pliance, when only the “intent to treat” is 
randomized.

For example, in the case of imperfect 
compliance, even if a proposed binary instru-
ment Z is randomized, it is necessary to rule 
out the possibility that Z affects the outcome, 
outside of its influence through treatment 
receipt, D. Only then will the instrumental 
variables estimand—the ratio of the reduced 
form effects of Z on Y and of Z on D—be 
properly interpreted as a causal effect of D 
on Y. Similarly, supposing that individuals do 
not have precise control over X, it is neces-
sary to assume that whether X crosses the 
threshold c (the instrument) has no impact 
on y except by influencing D. Only then will 
the ratio of the two RD gaps in Y and D be 
properly interpreted as a causal effect of D 
on Y.

In the same way that it is important to 
verify a strong first-stage relationship in an 
IV design, it is equally important to verify 

18  See Imbens and Lemieux (2008) for a more formal 
exposition.
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that a discontinuity exists in the relationship 
between D and X in a fuzzy RD design.

Furthermore, in this binary-treatment–
binary-instrument context with unrestricted 
heterogeneity in treatment effects, the IV 
estimand is interpreted as the average treat-
ment effect “for the subpopulation affected 
by the instrument,” (or LATE). Analogously, 
the ratio of the RD gaps in Y and D (the 
“fuzzy design” estimand) can be interpreted 
as a weighted LATE, where the weights 
reflect the ex ante likelihood the individual’s 
X is near the threshold. In both cases, the 
exclusion restriction and monotonicity con-
dition must hold.

3.4.2 Continuous Endogenous Regressor

In a context where the “treatment” is a 
continuous variable—call it T—and there 
is a randomized binary instrument (that can 
additionally be excluded from the outcome 
equation), an IV approach is an obvious way 
of obtaining an estimate of the impact of T 
on Y. The IV estimand is the reduced-form 
impact of Z on Y divided by the first-stage 
impact of Z on T.

The same is true for an RD design when 
the regressor of interest is continuous. Again, 
the causal impact of interest will still be the 
ratio of the two RD gaps (i.e., the disconti-
nuities in Y and T).

To see this more formally, consider the 
model

(6) Y =  Tγ +  Wδ1 +  U1

 T = Dϕ  +  Wγ +  U2

 D =  1[X ≥ c]

 X =  Wδ2 +  V,

which is the same set-up as before, except 
with the added second equation, allowing 
for imperfect compliance or other factors 
(observables W or unobservables U2) to 

impact the continuous regressor of interest 
T. If γ = 0 and U2 = 0, then the model col-
lapses to a  “sharp” RD design (with a con-
tinuous regressor).

Note that we make no additional assump-
tions about U2 (in terms of its correlation 
with W or V ). We do continue to assume 
imprecise control over X (conditional on W 
and U1, the density of X is continuous).19

Given the discussion so far, it is easy to 
show that

(7)  lim    
ε↓0

   E[Y | X = c + ε]

 −  lim    
ε↑0

   E[Y | X = c + ε]

	 =  U	lim    
ε↓0

   E[T | X = c + ε]

  −  lim    
ε↑0

   E[T | X = c + ε]V	γ.

The left hand side is simply the “reduced 
form” discontinuity in the relation between 
y and X. The term preceding γ on the right 
hand side is the “first-stage” discontinuity in 
the relation between T and X, which is also 
estimable from the data. Thus, analogous 
to the exactly identified instrumental vari-
able case, the ratio of the two discontinuities 
yields the parameter γ : the effect of T on Y. 
Again, because of the added notion of imper-
fect compliance, it is important to assume 
that D (X crossing the threshold) does not 
directly enter the outcome equation.

In some situations, more might be known 
about the rule determining T. For exam-
ple, in Angrist and Lavy (1999) and Miguel 
Urquiola and Eric A. Verhoogen (2009), 
class size is an increasing function of total 
school enrollment, except for discontinui-
ties at various enrollment thresholds. But 

19  Although it would be unnecessary to do so for the 
identification of γ, it would probably be more accurate to 
describe the situation of imprecise control with the conti-
nuity of the density of X conditional on the three variables 
(W, U1, U2). This is because U2 is now another variable 
characterizing heterogeneity in individuals.
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 additional information about characteristics 
such as the slope and intercept of the under-
lying function (apart from the magnitude of 
the discontinuity) generally adds nothing to 
the identification strategy.

To see this, change the second equation in 
(6) to T = Dϕ + g(X) where g(∙) is any con-
tinuous function in the assignment variable. 
Equation (7) will remain the same and, thus, 
knowledge of the function g(∙) is irrelevant 
for identification.20

There is also no need for additional theo-
retical results in the case when there is indi-
vidual-level heterogeneity in the causal effect 
of the continuous regressor T. The local ran-
dom assignment result allows us to borrow 
from the existing IV literature and interpret 
the ratio of the RD gaps as in Angrist and 
Krueger (1999), except that we need to add 
the note that all averages are weighted by the 
ex ante relative likelihood that the individu-
al’s X will land near the threshold.

3.5 Summary: A Comparison of RD and 
Other Evaluation Strategies

We conclude this section by compar-
ing the RD design with other evaluation 
approaches. We believe it is helpful to view 
the RD design as a distinct approach rather 
than as a special case of either IV or match-
ing/regression-control. Indeed, in important 
ways the RD design is more similar to a ran-
domized experiment, which we illustrate 
below.

Consider a randomized experiment where 
subjects are assigned a random number X and 
are given the treatment if X ≥ c. By construc-
tion, X is independent and not systematically 
related to any observable or unobservable 
characteristic determined prior to the ran-
domization. This situation is illustrated in 
panel A of figure 5. The first column shows 

20  As discussed in 3.2.1, the inclusion of a direct effect 
of X in the outcome equation will not change identifica-
tion of τ.

the relationship between the treatment vari-
able D and X, a step function, going from 
0 to 1 at the X = c threshold. The second 
column shows the relationship between the 
observables W and X. This is flat because X is 
completely randomized. The same is true for 
the unobservable variable U, depicted in the 
third column. These three graphs capture 
the appeal of the randomized experiment: 
treatment varies while all other factors are 
kept constant (on average). And even though 
we cannot directly test whether there are no 
treatment-control differences in U, we can 
test whether there are such differences in 
the observable W.

Now consider an RD design (panel B of 
figure 5) where individuals have imprecise 
control over X. Both W and U may be sys-
tematically related to X, perhaps due to the 
actions taken by units to increase their prob-
ability of receiving treatment. Whatever the 
shape of the relation, as long as individuals 
have imprecise control over X, the relation-
ship will be continuous. And therefore, as we 
examine Y near the X = c cutoff, we can be 
assured that like an experiment, treatment 
varies (the first column) while other factors 
are kept constant (the second and third col-
umns). And, like an experiment, we can test 
this prediction by assessing whether observ-
ables truly are continuous with respect to X 
(the second column).21

We now consider two other commonly 
used nonexperimental approaches, referring 
to the model (2):

	 Y =  Dτ +  Wδ1 +  U

 D =  1[X ≥ c]

 X =  Wδ2 +  V.

21  We thank an anonymous referee for suggesting these 
illustrative graphs.
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3.5.1 Selection on Observables: Matching/ 
 Regression Control

The basic idea of the “selection on observ-
ables” approach is to adjust for differences 
in the W  ’s between treated and control indi-
viduals. It is usually motivated by the fact 
that it seems “implausible” that the uncon-
ditional mean Y for the control group repre-
sents a valid counterfactual for the treatment 
group. So it is argued that, conditional on W, 
treatment-control contrasts may identify the 
(W-specific) treatment effect.

The underlying assumption is that condi-
tional on W, U and V are independent. From 
this it is clear that

E[Y | D = 1, W = w]

    − E[Y | D = 0, W = w] 

    =  τ  +  E[U | W = w, V ≥ c − wδ2]

     − E[U | W = w, V < c − wδ2 ]

  = τ.

Two issues arise when implementing this 
approach. The first is one of functional form: 
how exactly to control for the W  ’s? When 
the W  ’s take on discrete values, one possibil-
ity is to compute treatment effects for each 
distinct value of W, and then average these 
effects across the constructed “cells.” This 
will not work, however, when W has continu-
ous elements, in which case it is necessary to 
implement multivariate matching, propen-
sity score, reweighting procedures, or non-
parametric regressions.22

Regardless of the functional form issue, 
there is arguably a more fundamental ques-
tion of which W  ’s to use in the analysis. While 
it is tempting to answer “all of them” and 

22  See Hahn (1998) on including covariates directly 
with nonparametric regression.

hope that more W  ’s will lead to less biased 
estimates, this is obviously not necessarily 
the case. For example, consider estimating 
the economic returns to graduating high 
school (versus dropping out). It seems natu-
ral to include variables like parents’ socioeco-
nomic status, family income, year, and place 
of birth in the regression. Including more 
and more family-level W  ’s will ultimately 
lead to a “within-family” sibling analysis; 
extending it even further by including date 
of birth leads to a “within-twin-pair” analysis. 
And researchers have been critical—justifi-
ably so—of this source of variation in edu-
cation. The same reasons causing discomfort 
about the twin analyses should also cause 
skepticism about “kitchen sink” multivariate 
matching/propensity score/regression con-
trol analyses.23

It is also tempting to believe that, if the W  ’s 
do a “good job” in predicting D, the selection 
on observables approach will “work better.” 
But the opposite is true: in the extreme case 
when the W  ’s perfectly predict X (and hence 
D), it is impossible to construct a treatment-
control contrast for virtually all observations. 
For each value of W, the individuals will 
either all be treated or all control. In other 
words, there will be literally no overlap in 
the support of the propensity score for the 
treated and control observations. The pro-
pensity score would take the values of either 
1 or 0.

The “selection on observables” approach is 
illustrated in panel C of figure 5. Observables 
W can help predict the probability of treat-
ment (first column), but ultimately one must 
assume that unobservable factors U must be 
the same for treated and control units for 

23  Researchers question the twin analyses on the 
grounds that it is not clear why one twin ends up having 
more education than the other, and that the assumption 
that education differences among twins is purely random 
(as ignorability would imply) is viewed as far-fetched. We 
thank David Card for pointing out this connection between 
twin analyses and matching approaches.
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every value of W. That is, the crucial assump-
tion is that the two lines in the third column 
be on top of each other. Importantly, there is 
no comparable graph in the second column 
because there is no way to test the design 
since all the W ‘s are used for estimation.

3.5.2 Selection on Unobservables:   
 Instrumental Variables and “Heckit”

A less restrictive modeling assumption is 
to allow U and V to be correlated, conditional 
on W. But because of the arguably “more 
realistic”/flexible data generating process, 
another assumption is needed to identify τ. 
One such assumption is that some elements 
of W (call them Z) enter the selection equa-
tion, but not the outcome equation and are 
also uncorrelated with U. An instrumental 
variables approach utilizes the fact that

E[Y | W  * = w*, Z = z]

 =  E[D | W * = w*, Z = z]τ + w* γ

      +  E[U | W * =  w*, Z = z]

  =  E[D | W * = w*, Z = z]τ + w* γ

      +  E[U | W * =  w*],

where W has been split up into W * and Z 
and γ is the corresponding coefficient for w*. 
Conditional on W * = w*, Y only varies with 
Z because of how D varies with Z. Thus, one 
identifies τ by “dividing” the reduced form 
quantity E[D | W * = w*, Z = z]τ (which can 
be obtained by examining the expectation 
of Y conditional on Z for a particular value 
w* of W *) by E[D | W * = w*, Z = z], which 
is also provided by the observed data. It is 
common to model the latter quantity as a 
linear function in Z, in which case the IV 
estimator is (conditional on W *) the ratio of 
coefficients from regressions of Y on Z and 
D on Z. When Z is binary, this appears to be 
the only way to identify τ without imposing 
further assumptions.

When Z is continuous, there is an addi-
tional approach to identifying τ. The “Heckit” 
approach uses the fact that

E[Y | W * = w*, Z = z, D = 1]

 =  τ  +  w*γ

  +  E CU | W * = w*, Z = z, V ≥ c − wδ2D

E[Y | W * = w*, Z = z, D = 0]

 =  w*γ 

  +  E CU | W * = w*, Z = z, V < c − wδ2D	.

If we further assume a functional form for 
the joint distribution of U, V, conditional 
on W * and Z, then the “control function” 
terms E CU | W = w, V ≥ c − wδ2D and 
E CU | W = w, V < c − wδ2D are functions 
of observed variables, with the parameters 
then estimable from the data. It is then pos-
sible, for any value of W = w, to identify τ 
as

(8) (E[Y | W * = w*, Z = z, D = 1]

  −  E[Y | W * = w*, Z = z, D = 0])

 −  AE CU | W * = w*, Z = z, V ≥ c − wδ2D

 −  E CU | W * = w*, Z = z, V < c − wδ2D	B .

Even if the joint distribution of U, V is 
unknown, in principle it is still possible 
to identify τ, if it were possible to choose 
two different values of Z such that c − wδ2 
approaches −∞ and ∞. If so, the last two 
terms in (8) approach E[U | W * = w*] and, 
hence, cancel one another. This is known as 
“identification at infinity.”

Perhaps the most important assumption 
that any of these approaches require is the 
existence of a variable Z that is (conditional 
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on W *) independent of U.24 There does not 
seem to be any way of testing the validity 
of this assumption. Different, but equally 
“plausible” Z’s may lead to different answers, 
in the same way that including different sets 
of W  ’s may lead to different answers in the 
selection on observables approach.

Even when there is a mechanism that 
justifies an instrument Z as “plausible,” it is 
often unclear which covariates W * to include 
in the analysis. Again, when different sets of 
W * lead to different answers, the question 
becomes which is more plausible: Z is inde-
pendent of U conditional on W * or Z is inde-
pendent of U conditional on a subset of the 
variables in W *? While there may be some 
situations where knowledge of the mecha-
nism dictates which variables to include, in 
other contexts, it may not be obvious.

The situation is illustrated in panel D of 
figure 5. It is necessary that the instrument 
Z is related to the treatment (as in the first 
column). The crucial assumption is regard-
ing the relation between Z and the unob-
servables U (the third column). In order for 
an IV or a “Heckit” approach to work, the 
function in the third column needs to be flat. 
Of course, we cannot observe whether this is 
true. Furthermore, in most cases, it is unclear 
how to interpret the relation between W and 
Z (second column). Some might argue the 
observed relation between W and Z should 
be flat if Z is truly exogenous, and that if Z is 
highly correlated with W, then it casts doubt 
on Z being uncorrelated with U. Others will 
argue that using the second graph as a test is 
only appropriate when Z is truly randomized, 

24  For IV, violation of this assumption essentially means 
that Z varies with Y for reasons other than its influence 
on D. For the textbook “Heckit” approach, it is typically 
assumed that U, V  have the same distribution for any value 
of Z. It is also clear that the “identification at infinity” 
approach will only work if Z is uncorrelated with U, oth-
erwise the last two terms in equation (8) would not cancel. 
See also the framework of Heckman and Edward Vytlacil 
(2005), which maintains the assumption of the indepen-
dence of the error terms and Z, conditional on W *.

and that the assumption invoked is that Z is 
uncorrelated with U, conditional on W. In this 
latter case, the design seems fundamentally 
untestable, since all the remaining observable 
variables (the W  ’s) are being “used up” for 
identifying the treatment effect.

3.5.3 RD as “Design” not “Method”

RD designs can be valid under the more 
general “selection on unobservables” 
 environment, allowing an arbitrary correla-
tion among U, V, and W, but at the same time 
not requiring an instrument. As discussed 
above, all that is needed is that conditional on 
W, U, the density of V is continuous, and the 
local randomization result follows.

How is an RD design able to achieve 
this, given these weaker assumptions? The 
answer lies in what is absolutely necessary 
in an RD design: observability of the latent 
index X. Intuitively, given that both the 
“selection on observables” and “selection on 
unobservables” approaches rely heavily on 
modeling X and its components (e.g., which 
W  ’s to include, and the properties of the 
unobservable error V and its relation to other 
variables, such as an instrument Z), actually 
knowing the value of X ought to help.

In contrast to the “selection on observ-
ables” and “selection on unobservables” 
modeling approaches, with the RD design 
the researcher can avoid taking any strong 
stance about what W  ’s to include in the anal-
ysis, since the design predicts that the W  ’s 
are irrelevant and unnecessary for identifi-
cation. Having data on W  ’s is, of course, of 
some use, as they allow testing of the under-
lying assumption (described in section 4.4).

For this reason, it may be more helpful to 
consider RD designs as a description of a par-
ticular data generating process, rather than a 
“method” or even an “approach.” In virtually 
any context with an outcome  variable Y, treat-
ment status D, and other observable variables 
W, in principle a researcher can construct a 
regression-control or  instrumental variables 
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(after designating one of the W variables a 
valid instrument) estimator, and state that 
the identification assumptions needed are 
satisfied.

This is not so with an RD design. Either 
the situation is such that X is observed, or it 
is not. If not, then the RD design simply does 
not apply.25 If X is observed, then one has 
little choice but to attempt to estimate the 
expectation of Y conditional on X on either 
side of the cutoff. In this sense, the RD 
design forces the researcher to analyze it in 
a particular way, and there is little room for 
researcher discretion—at least from an iden-
tification standpoint. The design also pre-
dicts that the inclusion of W  ’s in the analysis 
should be irrelevant. Thus it naturally leads 
the researcher to examine the density of X or 
the distribution of W  ’s, conditional on X, for 
discontinuities as a test for validity.

The analogy of the truly randomized 
experiment is again helpful. Once the 
researcher is faced with what she thinks is a 
properly carried out randomized controlled 
trial, the analysis is quite straightforward. 
Even before running the experiment, most 
researchers agree it would be helpful to dis-
play the treatment-control contrasts in the 
W  ’s to test whether the randomization was 
carried out properly, then to show the simple 
mean comparisons, and finally to verify the 
inclusion of the W’s make little difference in 
the analysis, even if they might reduce sam-
pling variability in the estimates.

4. Presentation, Estimation, and Inference

In this section, we systematically discuss 
the nuts and bolts of implementing RD 
designs in practice. An important virtue 
of RD designs is that they provide a very 

25  Of course, sometimes it may seem at first that an RD 
design does not apply, but a closer inspection may reveal that it 
does. For example, see Per Pettersson (2000), which eventu-
ally became the RD analysis in Pettersson-Lidbom (2008b).

 transparent way of graphically showing how 
the treatment effect is identified. We thus 
begin the section by discussing how to graph 
the data in an informative way. We then 
move to arguably the most important issue 
in implementing an RD design: the choice 
of the regression model. We address this by 
presenting the various possible specifications, 
discussing how to choose among them, and 
showing how to compute the standard errors.

Next, we discuss a number of other prac-
tical issues that often arise in RD designs. 
Examples of questions discussed include 
whether we should control for other covari-
ates and what to do when the assignment 
variable is discrete. We discuss a number of 
tests to assess the validity of the RD designs, 
which examine whether covariates are “bal-
anced” on the two sides of the threshold, and 
whether the density of the assignment vari-
able is continuous at the threshold. Finally, 
we summarize our recommendations for 
implementing the RD design.

Throughout this section, we illustrate the 
various concepts using an empirical example 
from Lee (2008) who uses an RD design to 
estimate the causal effect of incumbency in 
U.S. House elections. We use a sample of 
6,558 elections over the 1946–98 period (see 
Lee 2008 for more detail). The assignment 
variable in this setting is the fraction of votes 
awarded to Democrats in the previous elec-
tion. When the fraction exceeds 50 percent, 
a Democrat is elected and the party becomes 
the incumbent party in the next election. 
Both the share of votes and the probability 
of winning the next election are considered 
as outcome variables.

4.1 Graphical Presentation

A major advantage of the RD design over 
competing methods is its transparency, which 
can be illustrated using graphical methods. 
A standard way of graphing the data is to 
divide the assignment variable into a number 
of bins, making sure there are two separate 
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bins on each side of the cutoff point (to avoid 
having treated and untreated observations 
mixed together in the same bin). Then, the 
average value of the outcome variable can be 
computed for each bin and graphed against 
the mid-points of the bins.

More formally, for some bandwidth h, 
and for some number of bins K  0 and K  1 to 
the left and right of the cutoff value, respec-
tively, the idea is to construct bins (bk  , bk+1],
for k = 1, . . . , K = K  0 + K  1, where 

	 bk =  c − (K  0 − k + 1) h.

The average value of the outcome variable 
in the bin is 

	  
__

 Y  k =    1 _ 
Nk

    ∑ 
i=1

  
N

   Yi  1 {bk < Xi ≤ bk+1}.

It is also useful to calculate the number of 
observations in each bin 

 Nk =   ∑ 
i=1

  
N

   1 {bk < Xi ≤ bk+1}

to detect a possible discontinuity in the 
assignment variable at the threshold, which 
would suggest manipulation.

There are several important advantages 
in graphing the data this way before starting 
to run regressions to estimate the treatment 
effect. First, the graph provides a simple way 
of visualizing what the functional form of the 
regression function looks like on either side 
of the cutoff point. Since the mean of Y in 
a bin is, for nonparametric kernel regres-
sion estimators, evaluated at the bin mid-
point using a rectangular kernel, the set of 
bin means literally represent nonparametric 
estimates of the regression function. Seeing 
what the nonparametric regression looks like 
can then provide useful guidance in choosing 
the functional form of the regression models.

A second advantage is that comparing the 
mean outcomes just to the left and right of the 
cutoff point provides an indication of the mag-
nitude of the jump in the regression function 

at this point, i.e., of the treatment effect. Since 
an RD design is “as good as a randomized 
experiment” right around the cutoff point, the 
treatment effect could be computed by com-
paring the average outcomes in “small” bins 
just to the left and right of the cutoff point. 
If there is no visual evidence of a discontinu-
ity in a simple graph, it is unlikely the formal 
regression methods discussed below will yield 
a significant treatment effect.

A third advantage is that the graph also 
shows whether there are unexpected compa-
rable jumps at other points. If such evidence 
is clearly visible in the graph and cannot be 
explained on substantive grounds, this calls 
into question the interpretation of the jump 
at the cutoff point as the causal effect of the 
treatment. We discuss below several ways of 
testing explicitly for the existence of jumps at 
points other than the cutoff.

Note that the visual impact of the graph 
is typically enhanced by also plotting a rela-
tively flexible regression model, such as a 
polynomial model, which is a simple way 
of smoothing the graph. The advantage of 
showing both the flexible regression line 
and the unrestricted bin means is that the 
regression line better illustrates the shape of 
the regression function and the size of the 
jump at the cutoff point, and laying this over 
the unrestricted means gives a sense of the 
underlying noise in the data.

Of course, if bins are too narrow the esti-
mates will be highly imprecise. If they are 
too wide, the estimates may be biased as they 
fail to account for the slope in the regression 
line (negligible for very narrow bins). More 
importantly, wide bins make the compari-
sons on both sides of the cutoff less credible, 
as we are no longer comparing observations 
just to the left and right of the cutoff point.

This raises the question of how to choose 
the bandwidth (the width of the bin). In 
practice, this is typically done informally by 
trying to pick a bandwidth that makes the 
graphs look informative in the sense that bins 
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are wide enough to reduce the amount of 
noise, but narrow enough to compare obser-
vations “close enough” on both sides of the 
cutoff point. While it is certainly advisable to 
experiment with different bandwidths and 
see how the corresponding graphs look, it is 
also useful to have some formal guidance in 
the selection process.

One approach to bandwidth choice is 
based on the fact that, as discussed above, the 
mean outcomes by bin correspond to kernel 
regression estimates with a rectangular ker-
nel. Since the standard kernel regression is a 
special case of a local linear regression where 
the slope term is equal to zero, the cross-val-
idation procedure described in more detail 
in section 4.3.1 can also be used here by 
constraining the slope term to equal zero.26 
For reasons we discuss below, however, one 
should not solely rely on this approach to 
select the bandwidth since other reasonable 
subjective goals should be considered when 
choosing how to the plot the data.

Furthermore, a range a bandwidths often 
yield similar values of the cross-valida-
tion function in practical applications (see 
below). A researcher may, therefore, want 
to use some discretion in choosing a band-
width that provides a particularly compelling 
illustration of the RD design. An alternative 
approach is to choose a bandwidth based on 
a more heuristic visual inspection of the data, 
and then perform some tests to make sure 
this informal choice is not clearly rejected.

We suggest two such tests. Consider the 
case where one has decided to use K′ bins 
based on a visual inspection of the data. The 

26  In section 4.3.1, we consider the cross-validation 
function CVY (h) = (1/N)  ∑ i=1  

N
     (Yi −   ˆ 

 
 Y (Xi))2 where   ˆ 

 
 Y (Xi) 

is the predicted value of Yi based on a regression using 
observations with a bin of width h on either the left (for 
observations on left of the cutoff) or the right (for observa-
tions on the right of the cutoff) of observation i, but not 
including observation i itself. In the context of the graph 
discussed here, the only modification to the cross-valida-
tion function is that the predicted value   ˆ 

 
 Y  (Xi ) is based only

first test is a standard F-test comparing the fit 
of a regression model with K′ bin dummies 
to one where we further divide each bin into 
two equal sized smaller bins, i.e., increase the 
number of bins to 2K′ (reduce the bandwidth 
from h′ to h′/2). Since the model with K′ bins 
is nested in the one with 2K′ bins, a standard 
F-test with K′ degrees of freedom can be 
used. If the null hypothesis is not rejected, 
this provides some evidence that we are not 
oversmoothing the data by using only K′ bins.

Another test is based on the idea that if the 
bins are “narrow enough,” then there should 
not be a systematic relationship between Y 
and X, that we capture using a simple regres-
sion of Y on X, within each bin. Otherwise, 
this suggests the bin is too wide and that the 
mean value of Y over the whole bin is not 
representative of the mean value of Y at the 
boundaries of the bin. In particular, when 
this happens in the two bins next to the cut-
off point, a simple comparison of the two bin 
means yields a biased estimate of the treat-
ment effect. A simple test for this consists of 
adding a set of interactions between the bin 
dummies and X to a base regression of Y on 
the set of bin dummies, and testing whether 
the interactions are jointly significant. The 
test statistic once again follows a F distribu-
tion with  K′ degrees of freedom.

Figures 6–11 show the graphs for the 
share of Democrat vote in the next elec-
tion and the probability of Democrats win-
ning the next election, respectively. Three 
sets of graphs with different bandwidths are 
reported using a bandwidth of 0.02 in figures 
6 and 9, 0.01 in figures 7 and 10, and 0.005 

on a  regression with a constant term, which means   ˆ 
 

 Y  (Xi) 
is the average value of Y among all observations in the bin 
(excluding observation i). Note that this is slightly differ-
ent from the standard cross-validation procedure in kernel 
regressions where the left-out observation is in the middle 
instead of the edge of the bin (see, for example, Richard 
Blundell and Alan Duncan 1998). Our suggested procedure 
is arguably better suited to the RD context since estimation 
of the treatment effect takes place at boundary points.
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Figure 6. Share of Vote in Next Election, Bandwidth of 0.02 (50 bins)
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Figure 7. Share of Vote in Next Election, Bandwidth of 0.01 (100 bins)
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Figure 8. Share of Vote in Next Election, Bandwidth of 0.005 (200 bins)
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Figure 9. Winning the Next Election, Bandwidth of 0.02 (50 bins)
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Figure 10. Winning the Next Election, Bandwidth of 0.01 (100 bins)
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Figure 11. Winning the Next Election, Bandwidth of 0.005 (200 bins)
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in figures 8 and 11. In all cases, we also show 
the fitted values from a quartic regression 
model estimated separately on each side of 
the cutoff point. Note that the assignment 
variable is normalized as the difference 
between the share of vote to Democrats and 
Republicans in the previous election. This 
means that a Democrat is the incumbent 
when the  assignment variable exceeds zero. 
We also limit the range of the graphs to win-
ning margins of 50 percent or less (in abso-
lute terms) as data become relatively sparse 
for larger winning (or losing) margins.

All graphs show clear evidence of a discon-
tinuity at the cutoff point. While the graphs 
are all quite informative, the ones with the 
smallest bandwidth (0.005, figures 8 and 11) 
are more noisy and likely provide too many 
data points (200) for optimal visual impact.

The results of the bandwidth selection pro-
cedures are presented in table 1. Panel A shows 
the cross-validation procedure always suggests 
using a bandwidth of 0.02 or more, which cor-
responds to similar or wider bins than those 
used in figures 6 and 9 (those with the largest 
bins). This is true irrespective of whether we 
pick a separate bandwidth on each side of the 
cutoff (first two rows of the panel), or pick the 
bandwidth that minimizes the cross-validation 
function for the entire date range on both the 
left and right sides of the cutoff. In the case 
where the outcome variable is winning the 
next election, the cross-validation procedure 
for the data to the right of the cutoff point and 
for the entire range suggests using a very wide 
bin (0.049) that would only yield about ten 
bins on each side of the cutoff.

As it turns out, the cross-validation function 
for the entire data range has two local min-
ima at 0.021 and 0.049 that correspond to the 
optimal bandwidths on the left and right hand 
side of the cutoff. This is illustrated in figure 
12, which plots the cross-validation function 
as a function of the bandwidth. By contrast, 
the cross-validation function is better behaved 
and shows a global minimum around 0.020 

when the outcome variable is the vote share 
(figure 13). For both outcome variables, the 
value of the cross-validation function grows 
quickly for bandwidths smaller than 0.02, 
suggesting that the graphs with narrower bins 
(figures 7, 8, 10, and 11) are too noisy.

Panel B of table 1 shows the results of our 
two suggested specification tests. The tests 
based on doubling the number of bins and 
running regressions within each bin yield 
remarkably similar results. Generally speak-
ing, the results indicate that only fairly wide 
bins are rejected. Looking at both outcome 
variables, the tests systematically reject mod-
els with bandwidths of 0.05 or more (twenty 
bins over the –0.5 to 0.5 range). The models 
are never rejected for either outcome vari-
able once we hit bandwidths of 0.02 (fifty 
bins) or less. In practice, the testing proce-
dure rules out bins that are larger than those 
reported in figures 6–11.

At first glance, the results in the two pan-
els of table 1 appear to be contradictory. The 
cross-validation procedure suggests band-
widths ranging from 0.02 to 0.05, while the 
bin and regression tests suggest that almost 
all bandwidths of less than 0.05 are accept-
able. The reason for this discrepancy is that 
while the cross-validation procedure tries 
to balance precision and bias, the bin and 
regression tests only deal with the “bias” part 
of the equation by checking whether the 
value of Y is more or less constant within a 
given bin. Models with small bins easily pass 
this kind of test, although they may yield a 
very noisy graph. One alternative approach is 
to choose the largest possible bandwidth that 
passes the bin and the regression test, which 
turns out to be 0.033 in table 1, a bandwidth 
that is within the range of those suggested by 
the cross-validation procedure.

From a practical point of view, it seems to 
be the case that formal procedures, and in par-
ticular cross-validation, suggest bandwidths 
that are wider than those one would likely 
choose based on a simple visual examination  
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of the data. In particular, both figures 7 and 
10 (bandwidth of 0.01) look visually accept-
able but are clearly not recommended on the 
basis of the cross-validation procedure. This 
likely reflects the fact that one important 
goal of the graph is to show how the raw data 
look, and too much smoothing would defy the 
purpose of such a data illustration exercise. 
Furthermore, the regression estimates of the 
treatment effect accompanying the graphi-
cal results are a formal way of smoothing the 
data to get precise estimates. This suggests 
that there is probably little harm in under-

smoothing (relative to what formal bandwidth 
selection procedures would suggest) to better 
illustrate the variation in the raw data when 
graphically illustrating an RD design.

4.2 Regression Methods

4.2.1 Parametric or Nonparametric   
 Regressions?

When we introduced the RD design 
in section 2, we followed Thistlethwaite 
and Campbell (1960) in assuming that the 

TABLE 1
Choice of Bandwidth in Graph for Voting Example 

A. Optimal bandwidth selected by cross-validation

Side of cutoff Share of vote Win next election

Left 0.021 0.049  
Right 0.026 0.021 
Both 0.021 0.049 

B. P-values of tests for the numbers of bins in RD graph

Share of vote Win next election

No. of bins Bandwidth Bin test Regr. test Bin test Regr. test

10 0.100 0.000 0.000 0.001 0.000
20 0.050 0.000 0.000 0.026 0.049
30 0.033 0.163 0.390 0.670 0.129
40 0.025 0.157 0.296 0.024 0.020
50 0.020 0.957 0.721 0.477 0.552
60 0.017 0.159 0.367 0.247 0.131
70 0.014 0.596 0.130 0.630 0.743
80 0.013 0.526 0.740 0.516 0.222
90 0.011 0.815 0.503 0.806 0.803
100 0.010 0.787 0.976 0.752 0.883

Notes: Estimated over the range of the forcing variable (Democrat to Republican difference in the share of 
vote in the previous election) ranging between –0.5 and 0.5. The “bin test” is computed by comparing the fit 
of a model with the number of bins indicated in the table to an alternative where each bin is split in 2. The 
“regression test” is a joint test of significance of bin-specific regression estimates of the outcome variable on 
the share of vote in the previous election.
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Figure 12. Cross-Validation Function for Choosing the Bandwidth in a RD Graph:
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 underlying regression model was linear in 
the assignment variable X:

 Y =  α  +  Dτ + Xβ +  ε.

In general, as in any other setting, there is 
no particular reason to believe that the true 
model is linear. The consequences of using an 
incorrect functional form are more serious in 
the case of RD designs however, since mis-
specification of the functional form typically 
generates a bias in the treatment effect, τ.27 
This explains why, starting with Hahn, Todd, 
and van der Klaauw (2001), the estimation of 
RD designs have generally been viewed as a 
nonparametric estimation problem.

This being said, applied papers using the 
RD design often just report estimates from 
parametric models. Does this mean that 
these estimates are incorrect? Should all 
studies use nonparametric methods instead? 
As we pointed out in the introduction, we 
think that the distinction between parametric 
and nonparametric methods has sometimes 
been a source of confusion to practitioners. 
Before covering in detail the practical issues 
involved in the estimation of RD designs, we 
thus provide some background to help clarify 
the insights provided by nonparametric anal-
ysis, while also explaining why, in practice, 
RD designs can still be implemented using 
“parametric” methods.

Going beyond simple parametric linear 
regressions when the true functional form is 
unknown is a well-studied problem in econo-
metrics and statistics. A number of nonpara-
metric methods have been suggested to 
provide flexible estimates of the regression 

27  By contrast, when one runs a linear regression in a 
model where the true functional form is nonlinear, the esti-
mated model can still be interpreted as a linear predictor 
that minimizes specification errors. But since specification 
errors are only minimized globally, we can still have large 
specification errors at specific points including the cutoff 
point and, therefore, a large bias in RD estimates of the 
treatment effect.

function. As it turns out, however, the RD 
setting poses a particular problem because 
we need to estimate regressions at the cutoff 
point. This results in a “boundary problem” 
that causes some complications for nonpara-
metric methods.

From an applied perspective, a simple 
way of relaxing the linearity assumption is 
to include polynomial functions of X in the 
regression model. This corresponds to the 
series estimation approach often used in non-
parametric analysis. A possible disadvantage 
of the approach, however, is that it provides 
global estimates of the regression function 
over all values of X, while the RD design 
depends instead on local estimates of the 
regression function at the cutoff point. The 
fact that polynomial regression models use 
data far away from the cutoff point to predict 
the value of Y at the cutoff point is not intui-
tively appealing. That said, trying more flex-
ible specification by adding polynomials in X 
as regressors is an important and useful way of 
assessing the robustness of the RD estimates 
of the treatment effect.

The other leading nonparametric approach 
is kernel regressions. Unlike series (poly-
nomial) estimators, the kernel regression is 
fundamentally a local method well suited for 
estimating the regression function at a partic-
ular point. Unfortunately, this property does 
not help very much in the RD setting because 
the cutoff represents a boundary point where 
kernel regressions perform poorly.

These issues are illustrated in figure 2, 
which shows a situation where the relation-
ship between Y and X (under treatment or 
control) is nonlinear. First, consider the point 
D located away from the cutoff point. The 
kernel estimate of the regression of Y on X at 
X = Xd is simply a local mean of Y for values 
of X close to Xd. The kernel function provides 
a way of computing this local average by put-
ting more weight on observations with values 
of X close to Xd than on observations with val-
ues of X far away from  Xd. Following Imbens 
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and Lemieux (2008), we focus on the conve-
nient case of the  rectangular kernel. In this 
setting, computing kernel regressions simply 
amounts to computing the average value of Y 
in the bin illustrated in figure 2. The result-
ing local average is depicted as the horizontal 
line EF, which is very close to true value of Y 
evaluated at  X = Xd on the regression line.

Applying this local averaging approach is 
problematic, however, for the RD design. 
Consider estimating the value of the regres-
sion function just on the right of the cutoff 
point. Clearly, only observations on the right 
of the cutoff point that receive the treatment 
should be used to compute mean outcomes 
on the right hand side. Similarly, only observa-
tions on the left of the cutoff point that do not 
receive the treatment should be used to com-
pute mean outcomes on the left hand side. 
Otherwise, regression estimates would mix 
observations with and without the treatment, 
which would invalidate the RD approach.

In this setting, the best thing is to com-
pute the average value of Y in the bin just 
to the right and just to the left of the cutoff 
point. These two bins are shown in figure 2. 
The RD estimate based on kernel regres-
sions is then equal to B′ − A′. In this exam-
ple where the regression lines are upward 
sloping, it is clear, however, that the esti-
mate B′ − A′ overstates the true treatment 
effect represented as the difference B − A 
at the cutoff point. In other words, there 
is a systematic bias in kernel regression 
estimates of the treatment effect. Hahn, 
Todd, and van der Klaauw (2001) provide a 
more formal derivation of the bias (see also 
Imbens and Lemieux 2008 for a simpler 
exposition when the kernel is rectangu-
lar). In practical terms, the problem is that 
in finite samples the bandwidth has to be 
large enough to encompass enough obser-
vations to get a reasonable amount of pre-
cision in the estimated average values of 
Y. Otherwise, attempts to reduce the bias 
by shrinking the bandwidth will result in 

extremely noisy estimates of the treatment 
effect.28

As a solution to this problem, Hahn, Todd, 
and van der Klaauw (2001) suggests run-
ning local linear regressions to reduce the 
importance of the bias. In our setup with a 
rectangular kernel, this suggestion simply 
amounts to running standard linear regres-
sions within the bins on both sides of the 
cutoff point to better predict the value of the 
regression function right at the cutoff point. 
In this example, the regression lines within 
the bins around the cutoff point are close to 
linear. It follows that the predicted values of 
the local linear regressions at the cutoff point 
are very close to the true values of A and B. 
Intuitively, this means that running local 
linear regressions instead of just computing 
averages within the bins reduces the bias by 
an order of magnitude. Indeed, Hahn, Todd, 
and van der Klaauw (2001) show that the 
remaining bias is of an order of magnitude 
lower, and is comparable to the usual bias 
in kernel estimation at interior points like D 
(the small difference between the horizontal 
line EF and the true value of the regression 
line evaluated at D).

In the literature on nonparametric estima-
tion at boundary points, local linear regres-
sions have been introduced as a means of 
reducing the bias in standard kernel regres-
sion methods.29 One of the several contribu-
tions of Hahn, Todd, and van der Klaauw 
(2001) is to show how the same  bias-reducing 

28  The trade-off between bias and precision is a funda-
mental feature of kernel regressions. A larger bandwidth 
yields more precise, but potentially biased, estimates of the 
regression. In an interior point like D, however, we see that 
the bias is of an order of magnitude lower than at the cutoff 
(boundary) point. In more technical terms, it can be shown 
(see Hahn, Todd, and van der Klaauw 2001 or Imbens and 
Lemieux 2008) that the usual bias is of order h2 at interior 
points, but of order h at boundary points, where h is the 
bandwidth. In other words, the bias dies off much more 
quickly when h goes to zero when we are at interior, as 
opposed to boundary, points.

29  See Jianqing Fan and Irene Gijbels (1996).
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procedure should also be applied to the RD 
design. We have shown here that, in practice, 
this simply amounts to applying the original 
insight of Thistlethwaite and Campbell (1960) 
to a narrower window of observations around 
the cutoff point. When one is concerned that 
the regression function is not linear over the 
whole range of X, a highly sensible procedure 
is, thus, to restrict the estimation range to 
values closer to the cutoff point where the 
linear approximation of the regression line is 
less likely to result in large biases in the RD 
estimates. In practice, many applied papers 
present RD estimates with varying window 
widths to illustrate the robustness (or lack 
thereof) of the RD estimates to specifica-
tion issues. It is comforting to know that this 
common empirical practice can be justified 
on more formal econometric grounds like 
those presented by Hahn, Todd, and van der 
Klaauw (2001). The main conclusion we draw 
from this discussion of nonparametric meth-
ods is that it is essential to explore how RD 
estimates are robust to the inclusion of higher 
order polynomial terms (the series or poly-
nomial estimation approach) and to changes 
in the window width around the cutoff point 
(the local linear regression approach).

4.3 Estimating the Regression

A simple way of implementing RD designs 
in practice is to estimate two separate regres-
sions on each side of the cutoff point. In 
terms of computations, it is convenient to 
subtract the cutoff value from the covariate, 
i.e., transform X to X − c, so the intercepts 
of the two regressions yield the value of the 
regression functions at the cutoff point.

The regression model on the left hand side 
of the cutoff point (X < c) is

 Y =  αl +  fl (X − c) +  ε,

while the regression model on the right hand 
side of the cutoff point (X ≥ c) is 

	 Y =  αr +  fr (X − c) +  ε,

where fl (∙) and fr (∙) are functional forms that 
we discuss later. The treatment effect can 
then be computed as the difference between 
the two regressions intercepts, αr and αl  , 
on the two sides of the cutoff point. A more 
direct way of estimating the treatment effect 
is to run a pooled regression on both sides of 
the cutoff point: 

 Y =  αl +  τ D +  f  (X − c) + ε,

where τ = αr − αl and f (X − c) = fl (X − c)
+ D [  fr (X − c) − fl (X − c)]. One advan-
tage of the pooled approach is that it directly 
yields estimates and standard errors of the 
treatment effect τ. Note, however, that 
it is recommended to let the regression 
function differ on both sides of the cut-
off point by including interaction terms 
between D and X. For example, in the lin-
ear case where fl (X − c) = βl (X − c) and 
fr (X − c) = βr (X − c), the pooled regression 
would be

 Y =  αl + τ D + βl (X − c)

 +  (βr − βl) D (X − c) + ε.

The problem with constraining the slope of 
the regression lines to be the same on both 
sides of the cutoff (βr =βl) is best illustrated 
by going back to the separate regressions 
above. If we were to constrain the slope to 
be identical on both sides of the cutoff, this 
would amount to using data on the right 
hand side of the cutoff to estimate αl  , and 
vice versa. Remember from section 2 that 
in an RD design, the treatment effect is 
obtained by comparing conditional expec-
tations of Y when approaching from the 
left (αl = limx↑c E[Yi | Xi = x]) and from the 
right (αr = limx↓c E[Yi | Xi = x]) of the cut-
off. Constraining the slope to be the same 
would thus be inconsistent with the spirit of 
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the RD design, as data from the right of the 
cutoff would be used to estimate αl  , which 
is defined as a limit when approaching from 
the left of the cutoff, and vice versa.

In practice, however, estimates where 
the regression slope or, more generally, the 
regression function f (X − c) are constrained 
to be the same on both sides of the cutoff 
point are often reported. One possible justi-
fication for doing so is that if the functional 
form is indeed the same on both sides of the 
cutoff, then more efficient estimates of the 
treatment effect τ are obtained by imposing 
that constraint. Such a constrained specifica-
tion should only be viewed, however, as an 
additional estimate to be reported for the 
sake of completeness. It should not form the 
core basis of the empirical approach.

4.3.1 Local Linear Regressions and   
 Bandwidth Choice

As discussed above, local linear regres-
sions provide a nonparametric way of consis-
tently estimating the treatment effect in an 
RD design (Hahn, Todd, and van der Klaauw 
(2001), Jack Porter (2003)). Following 
Imbens and Lemieux (2008), we focus on 
the case of a rectangular kernel, which 
amounts to estimating a standard regression 
over a window of width h on both sides of the 
cutoff point. While other kernels (triangular, 
Epanechnikov, etc.) could also be used, the 
choice of kernel typically has little impact 
in practice. As a result, the convenience 
of working with a rectangular kernel com-
pensates for efficiency gains that could be 
achieved using more sophisticated kernels.30

30  It has been shown in the statistics literature (Fan and 
Gijbels 1996) that a triangular kernel is optimal for esti-
mating local linear regressions at the boundary. As it turns 
out, the only difference between regressions using a rect-
angular or a triangular kernel is that the latter puts more 
weight (in a linear way) on observations closer to the cutoff 
point. It thus involves estimating a weighted, as opposed 
to an unweighted, regression within a bin of width h. An

The regression model on the left hand side 
of the cutoff point is

 Y =  αl +  βl (X − c) + ε,

 where c − h ≤ X < c,

while the regression model on the right hand 
side of the cutoff point is 

 Y =  αr +  βr (X − c) +  ε,

 where c ≤ X ≤ c +  h.

As before, it is also convenient to estimate 
the pooled regression

 Y =  αl +  τ D +  βl (X − c)

 + (βr − βl) D (X − c) +  ε,

 where c − h ≤ X ≤ c +  h,

since the standard error of the estimated 
treatment effect can be directly obtained 
from the regression.

While it is straightforward to estimate the 
linear regressions within a given window of 
width h around the cutoff point, a more dif-
ficult question is how to choose this band-
width. In general, choosing a bandwidth 
in nonparametric estimation involves find-
ing an optimal balance between precision 
and bias. One the one hand, using a larger 
bandwidth yields more precise estimates as 
more observations are available to estimate 
the regression. On the other hand, the lin-
ear specification is less likely to be accurate 

arguably more transparent way of putting more weight on 
observations close to the cutoff is simply to reestimate a 
model with a rectangular kernel using a smaller bandwidth.  
In practice, it is therefore simpler and more transparent 
to just estimate standard linear regressions (rectangular 
kernel) with a variety of bandwidths, instead of trying out 
different kernels corresponding to particular weighted 
regressions that are more difficult to interpret.
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when a larger bandwidth is used, which can 
bias the estimate of the treatment effect. If 
the underlying conditional expectation is not 
linear, the linear specification will provide 
a close approximation over a limited range 
of values of X (small bandwidth), but an 
increasingly bad approximation over a larger 
range of values of X (larger bandwidth).

As the number of observations avail-
able increases, it becomes possible to use 
an increasingly small bandwidth since linear 
regressions can be estimated relatively pre-
cisely over even a small range of values of 
X. As it turns out, Hahn, Todd, and van der 
Klaauw (2001) show the optimal bandwidth 
is proportional to N −1/5, which corresponds 
to a fairly slow rate of convergence to zero. 
For example, this suggests that the bandwidth 
should only be cut in half when the sample 
size increases by a factor of 32 (25). For tech-
nical reasons, however, it would be preferable 
to undersmooth by shrinking the bandwidth 
at a faster rate requiring that h ∝ N −δ with 
1/5 < δ < 2/5, in order to eliminate an 
asymptotic bias that would remain when 
δ = 1/5. In the presence of this bias, the 
usual formula for the variance of a standard 
least square estimator would be invalid.31

In practice however, knowing at what rate 
the bandwidth should shrink in the limit does 
not really help since only one actual sam-
ple with a given number of observations is 

 available. The importance of undersmooth-
ing only has to do with a thought experi-
ment of how much the bandwidth should 
shrink if the sample size were larger so that 
one obtains asymptotically correct standard 
errors, and does not help one choose a par-
ticular bandwidth in a particular sample.32

In the econometrics and statistics litera-
ture, two procedures are generally consid-
ered for choosing bandwidths. The first 
procedure consists of characterizing the 
optimal bandwidth in terms of the unknown 
joint distribution of all variables. The rel-
evant components of this distribution can 
then be estimated and plugged into the opti-
mal bandwidth function.33 In the context 
of local linear regressions, Fan and Gijbels 
(1996) show this involves estimating a num-
ber of parameters including the curvature of 
the regression function. In practice, this can 
be done in two steps. In step one, a rule-of-
thumb (ROT) bandwidth is estimated over 
the whole relevant data range. In step two, 
the ROT bandwidth is used to estimate the 
optimal bandwidth right at the cutoff point. 
For the rectangular kernel, the ROT band-
width is given by:

 hROT =  2.702 s     ˜   σ    2 R ___________  
 ∑ i=1  

N
   U   ˜   m ′′  (xi) V  

2
 
   t  

1/5

 ,

33  A well known example of this procedure is the  
“rule-of-thumb” bandwidth selection formula in ker-
nel density estimation where an estimate of the dis-
persion in the variable (standard deviation or the 
interquartile range),   ˆ   σ , is plugged into the formula 
0.9 ∙   ˆ   σ  ∙ N −1/5. Bernard W. Silverman (1986) shows that 
this formula is the closed form solution for the optimal 
bandwidth choice problem when both the actual density 
and the kernel are Gaussian. See also Imbens and Karthik 
Kalyanaraman (2009), who derive an optimal bandwidth 
for this RD setting, and propose a data-dependent method 
for choosing the bandwidth.

31  See Hahn, Todd, and van der Klaauw (2001) and 
Imbens and Lemieux (2008) for more details.

32  The main purpose of asymptotic theory is to use the 
large sample properties of estimators to approximate the 
distribution of an estimator in the real sample being con-
sidered. The issue is a little more delicate in a nonparamet-
ric setting where one also has to think about how fast the 
bandwidth should shrink when the sample size approaches 
infinity. The point about undersmoothing is simply that 
one unpleasant property of the optimal bandwidth is that 
it does not yield the convenient least squares variance for-
mula. But this can be fixed by shrinking the bandwidth 
a little faster as the sample size goes to infinity. Strictly 
speaking, this is only a technical issue with how to perform 
the thought experiment (what happens when the sample 
size goes to infinity?) required for using  asymptotics to

approximate the variance of the RD estimator in the actual 
sample. This does not say anything about what bandwidth 
should be chosen in the actual sample available for imple-
menting the RD design.
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where   ˜   m ′′(∙) is the second derivative (curva-
ture) of an estimated regression of Y on X,   ˜   σ  
is the estimated standard error of the regres-
sion, R is the range of the assignment vari-
able over which the regression is estimated, 
and the constant 2.702 is a number specific to 
the rectangular kernel. A similar formula can 
be used for the optimal bandwidth, except 
both the regression standard error and the 
average curvature of the regression func-
tion are estimated locally around the cutoff 
point. For the sake of simplicity, we only 
compute the ROT bandwidth in our empiri-
cal example. Following the common practice 
in studies using these bandwidth selection 
methods, we also use a quartic specification 
for the regression function.34

The second approach is based on a cross-
validation procedure. In the case consid-
ered here, Jens Ludwig and Douglas Miller 
(2007) and Imbens and Lemieux (2008) have 
proposed a “leave one out” procedure aimed 
specifically at estimating the regression func-
tion at the boundary. The basic idea behind 
this procedure is the following. Consider an 
observation i. To see how well a linear regres-
sion with a bandwidth h fits the data, we run 
a regression with observation i left out and 
use the estimates to predict the value of Y at 
X = Xi. In order to mimic the fact that RD 
estimates are based on regression estimates 
at the boundary, the regression is estimated 
using only observations with values of X on 
the left of Xi (Xi − h ≤ X < Xi) for observa-
tions on the left of the cutoff point (Xi < c). 
For observations on the right of the cutoff 
point (Xi ≥ c), the regression is estimated 

34  See McCrary and Heather Royer (2003) for an 
example where the bandwidth is selected using the ROT 
procedure (with a triangular kernel), and Stephen L. 
DesJardins and Brian P. McCall (2008) for an example 
where the second step optimal bandwidth is computed 
(for the Epanechnikov kernel). Both papers use a quartic 
regression function m(x) = β0 + β1 x + … + β4 x4, which 
means that m′′(x) = 2β2 + 6β3 x + 12β4 x2. Note that the 
quartic regressions are estimated separately on both sides 
of the cutoff.

using only observations with values of X on 
the right of Xi (Xi < X ≤ Xi + h).

Repeating the exercise for each and every 
observation, we get a whole set of predicted 
values of Y that can be compared to the 
actual values of Y. The optimal bandwidth 
can be picked by choosing the value of h that 
minimizes the mean square of the difference 
between the predicted and actual value of Y.

More formally, let   ̂  
 

 Y (Xi) represent the pre-
dicted value of Y obtained using the regres-
sions described above. The cross-validation 
criterion is defined as 

(9)  CVY(h) =    1 _ 
N

    ∑ 
i=1

  
N

   (Yi  −   ̂  
 

 Y (Xi))2

with the corresponding cross-validation 
choice for the bandwidth 

  h  CV  opt  =   arg min     
h
   CVY (h).

Imbens and Lemieux (2008) discuss this pro-
cedure in more detail and point out that since 
we are primarily interested in what happens 
around the cutoff, it may be advisable to only 
compute CVY (h) for a subset of observations 
with values of X close enough to the cutoff 
point. For instance, only observations with 
values of X between the median value of X to 
the left and right of the cutoff could be used 
to perform the cross-validation.

The second rows of tables 2 and 3 show the 
local linear regression estimates of the treat-
ment effect for the two outcome variables 
(share of vote and winning the next election). 
We show the estimates for a wide range of 
bandwidths going from the entire data range 
(bandwidth of 1 on each side of the cutoff) 
to a very small bandwidth of 0.01 (winning 
margins of one percent or less). As expected, 
the precision of the estimates declines 
quickly as we approach smaller and smaller 
bandwidths. Notice also that estimates based 
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on very wide bandwidths (0.5 or 1) are sys-
tematically larger than those for the smaller 
bandwidths (in the 0.05 to 0.25 range) that 
are still large enough for the estimates to be 
reasonably precise. A closer examination of 
figures 6–11 also suggests that the estimates 
for very wide bandwidths are larger than 
what the graphical evidence would suggest.35 
This is consistent with a substantial bias for 

35  In the case of the vote share, the quartic regression 
shown in figures 6–8 implies a treatment effect of 0.066, 
which is substantially smaller than the local linear regres-
sion estimates with a bandwidth of 0.5 (0.090) or 1 (0.118).

these estimates linked to the fact that the lin-
ear approximation does not hold over a wide 
data range. This is particularly clear in the 
case of winning the next election where fig-
ures 9–11 show some clear curvature in the 
regression function.

Table 4 shows the optimal bandwidth 
obtained using the ROT and cross-valida-
tion procedure. Consistent with the above 

Similarly, the quartic regression shown in figures 9–11 for 
winning the next election implies a treatment effect of 
0.375, which is again smaller than the local linear regres-
sion estimates with a bandwidth of 0.5 (0.566) or 1 (0.689).

TABLE 2
RD Estimates of the Effect of Winning the Previous Election on the  

Share of Votes in the Next Election

Bandwidth: 1.00 0.50 0.25 0.15 0.10 0.05 0.04 0.03 0.02 0.01

Polynomial of order:
Zero 0.347 0.257 0.179 0.143 0.125 0.096 0.080 0.073 0.077 0.088

(0.003) (0.004) (0.004) (0.005) (0.006) (0.009) (0.011) (0.012) (0.014) (0.015)
[0.000] [0.000] [0.000] [0.000] [0.003] [0.047] [0.778] [0.821] [0.687]

One 0.118 0.090 0.082 0.077 0.061 0.049 0.067 0.079 0.098 0.096
(0.006) (0.007) (0.008) (0.011) (0.013) (0.019) (0.022) (0.026) (0.029) (0.028)
[0.000] [0.332] [0.423] [0.216] [0.543] [0.168] [0.436] [0.254] [0.935]

Two 0.052 0.082 0.069 0.050 0.057 0.100 0.101 0.119 0.088 0.098
(0.008) (0.010) (0.013) (0.016) (0.020) (0.029) (0.033) (0.038) (0.044) (0.045)
[0.000] [0.335] [0.371] [0.385] [0.458] [0.650] [0.682] [0.272] [0.943]

Three 0.111 0.068 0.057 0.061 0.072 0.112 0.119 0.092 0.108 0.082
(0.011) (0.013) (0.017) (0.022) (0.028) (0.037) (0.043) (0.052) (0.062) (0.063)
[0.001] [0.335] [0.524] [0.421] [0.354] [0.603] [0.453] [0.324] [0.915]

Four 0.077 0.066 0.048 0.074 0.103 0.106 0.088 0.049 0.055 0.077
(0.013) (0.017) (0.022) (0.027) (0.033) (0.048) (0.056) (0.067) (0.079) (0.063)
[0.014] [0.325] [0.385] [0.425] [0.327] [0.560] [0.497] [0.044] [0.947]

Optimal order of 
 the polynomial

6 3 1 2 1 2 0 0 0 0

Observations 6,558 4,900 2,763 1,765 1,209 610 483 355 231 106

Notes: Standard errors in parentheses. P-values from the goodness-of-fit test in square brackets. The goodness-of-fit 
test is obtained by jointly testing the significance of a set of bin dummies included as additional regressors in the 
model. The bin width used to construct the bin dummies is 0.01. The optimal order of the polynomial is chosen using 
Akaike’s criterion (penalized cross-validation).
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discussion, the suggested bandwidth ranges 
from 0.14 to 0.28, which is large enough to 
get precise estimates, but narrow enough to 
minimize the bias. Two interesting patterns 
can be observed in table 4. First, the band-
width chosen by cross-validation tends to be 
a bit larger than the one based on the rule-
of-thumb. Second, the bandwidth is gener-
ally smaller for winning the next election 
(second column) than for the vote share (first 
column). This is particularly clear when the 
optimal bandwidth is constrained to be the 
same on both sides of the cutoff point. This 
is consistent with the graphical evidence 

showing more curvature for winning the next 
election than the vote share, which calls for a 
smaller bandwidth to reduce the estimation 
bias linked to the linear approximation.

Figures 14 and 15 plot the value of the 
cross-validation function over a wide range 
of bandwidths. In the case of the vote share 
where the linearity assumption appears more 
accurate (figures 6–8), the cross-validation 
function is fairly flat over a sizable range of 
values for the bandwidth (from about 0.16 
to 0.29). This range includes the optimal 
bandwidth suggested by cross-validation 
(0.282) at the upper end, and the ROT  

TABLE 3
RD Estimates of the Effect of Winning the Previous Election on 

Probability of Winning the Next Election

Bandwidth: 1.00 0.50 0.25 0.15 0.10 0.05 0.04 0.03 0.02 0.01

Polynomial of order:
Zero 0.814 0.777 0.687 0.604 0.550 0.479 0.428 0.423 0.459 0.533

(0.007) (0.009) (0.013) (0.018) (0.023) (0.035) (0.040) (0.047) (0.058) (0.082)
[0.000] [0.000] [0.000] [0.000] [0.011] [0.201] [0.852] [0.640] [0.479]

One 0.689 0.566 0.457 0.409 0.378 0.378 0.472 0.524 0.567 0.453
(0.011) (0.016) (0.026) (0.036) (0.047) (0.073) (0.083) (0.099) (0.116) (0.157)
[0.000] [0.000] [0.126] [0.269] [0.336] [0.155] [0.400] [0.243] [0.125]

Two 0.526 0.440 0.375 0.391 0.450 0.607 0.586 0.589 0.440 0.225
(0.016) (0.023) (0.039) (0.055) (0.072) (0.110) (0.124) (0.144) (0.177) (0.246)
[0.075] [0.145] [0.253] [0.192] [0.245] [0.485] [0.367] [0.191] [0.134]

Three 0.452 0.370 0.408 0.435 0.472 0.566 0.547 0.412 0.266 0.172
(0.021) (0.031) (0.052) (0.075) (0.096) (0.143) (0.166) (0.198) (0.247) (0.349)
[0.818] [0.277] [0.295] [0.115] [0.138] [0.536] [0.401] [0.234] [0.304]

Four 0.385 0.375 0.424 0.529 0.604 0.453 0.331 0.134 0.050 0.168
(0.026) (0.039) (0.066) (0.093) (0.119) (0.183) (0.214) (0.254) (0.316) (0.351)
[0.965] [0.200] [0.200] [0.173] [0.292] [0.593] [0.507] [0.150] [0.244]

Optimal order of 
 the polynomial 

4 3 2 1 1 2 0 0 0 1

Observations 6,558 4,900 2,763 1,765 1,209 610 483 355 231 106

Notes: Standard errors in parentheses. P-values from the goodness-of-fit test in square brackets. The goodness-of-fit 
test is obtained by jointly testing the significance of a set of bin dummies included as additional regressors in the 
model. The bin width used to construct the bin dummies is 0.01. The optimal order of the polynomial is chosen using 
Akaike’s criterion (penalized cross-validation).
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bandwidth (0.180) at the lower end. In the 
case of winning the next election (figure 
15), the cross-validation procedure yields 
a sharper suggestion of optimal bandwidth 
around 0.15, which is quite close to both the 
optimal cross-validation bandwidth (0.172) 
and the ROT bandwidth (0.141).

The main difference between the two 
outcome variables is that larger bandwidths 
start getting penalized more quickly in the 
case of winning the election (figure 15) than 
in the case of the vote share (figure 14). This 
is consistent with the graphical evidence in 
figures 6–11. Since the regression function 
looks fairly linear for the vote share, using 
larger bandwidths does not get penalized as 
much since they improve efficiency without 
generating much of a bias. But in the case 
of winning the election where the regression 
function exhibits quite a bit of curvature, 
larger bandwidths are quickly penalized for 
introducing an estimation bias. Since there 
is a real tradeoff between precision and 
bias, the cross-validation procedure is quite 
informative. By contrast, there is not much 
of a tradeoff when the regression function is 
more or less linear, which explains why the 

optimal bandwidth is larger in the case of the 
vote share.

This example also illustrates the impor-
tance of first graphing the data before run-
ning regressions and trying to choose the 
optimal bandwidth. When the graph shows 
a more or less linear relationship, it is natu-
ral to expect different bandwidths to yield 
similar results and the bandwidth selection 
procedure not to be terribly informative. But 
when the graph shows substantial curvature, 
it is natural to expect the results to be more 
sensitive to the choice of bandwidth and that 
bandwidth selection procedures will play a 
more important role in selecting an appro-
priate empirical specification.

4.3.2 Order of Polynomial in Local   
 Polynomial Modeling

In the case of polynomial regressions, 
the equivalent to bandwidth choice is 
the choice of the order of the polynomial 
regressions. As in the case of local linear 
regressions, it is advisable to try and report 
a number of specifications to see to what 
extent the results are sensitive to the order 
of the polynomial. For the same reason 

TABLE 4
Optimal Bandwidth for Local Linear Regressions,  

Voting Example

A. Rule-of-thumb bandwidth Share of vote Win next election
 Left 0.162 0.164
 Right 0.208 0.130
 Both 0.180 0.141
B. Optimal bandwidth selected by cross-validation
 Left 0.192 0.247
 Right 0.282 0.141
 Both 0.282 0.172

Notes: Estimated over the range of the forcing variable (Democrat to Republican difference in the share of vote in 
the previous election) ranging between –0.5 and 0.5. See the text for a description of the rule-of-thumb and cross-
validation procedures for choosing the optimal bandwidth.
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Figure 14. Cross-Validation Function for Local Linear Regression: Share of Vote at Next Election
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Figure 15. Cross-Validation Function for Local Linear Regression: Winning the Next Election
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mentioned earlier, it is also preferable to 
estimate separate regressions on the two 
sides of the cutoff point.

The simplest way of implementing poly-
nomial regressions and computing standard 
errors is to run a pooled regression. For 
example, in the case of a third order polyno-
mial regression, we would have 

Y = αl + τ D + βl1 (X − c)

  + βl2 (X − c)2 + βl3 (X − c)3

  + (βr1 − βl1) D (X − c)

  + (βr2 − βl2) D (X − c)2

  + (βr3 − βl3) D (X − c)3 + ε.

While it is important to report a number of 
specifications to illustrate the robustness of 
the results, it is often useful to have some 
more formal guidance on the choice of the 
order of the polynomial. Starting with van 
der Klaauw (2002), one approach has been 
to use a generalized cross-validation proce-
dure suggested in the literature on nonpara-
metric series estimators.36 One special case 
of generalized cross-validation (used by Dan 
A. Black, Jose Galdo, and Smith (2007a), for 
example), which we also use in our empirical 
example, is the well known Akaike informa-
tion criterion (AIC) of model selection. In a 
regression context, the AIC is given by

 AIC = N ln (  ˆ   σ  2) + 2p,

where    ˆ   σ  2  is the mean squared error of the 
regression, and  p  is the number of param-
eters in the regression model (order of the 
polynomial plus one for the intercept).

One drawback of this approach is that it 
does not provide a very good sense of how 

36  See Blundell and Duncan (1998) for a more general 
discussion of series estimators.

a particular parametric model (say a cubic 
model) compares relative to a more general 
nonparametric alternative. In the context 
of the RD design, a natural nonparametric 
alternative is the set of unrestricted means of 
the outcome variable by bin used to graphi-
cally depict the data in section 4.1. Since one 
virtue of polynomial regressions is that they 
provide a smoothed version of the graph, 
it is natural to ask how well the polynomial 
model fits the unrestricted graph. A simple 
way of implementing the test is to add the 
set of bin dummies to the polynomial regres-
sion and jointly test the significance of the 
bin dummies. For example, in a first order 
polynomial model (linear regression), the 
test can be computed by including K − 2 
bin dummies Bk, for k = 2 to K − 1, in the 
model

 Y =  αl + τ D + βl1 (X − c)

  +  (βr1 − βl1) D (X − c)

  +   ∑ 
k=2

  
K−1

  ϕk Bk  + ε

and testing the null hypothesis that 
ϕ2 = ϕ3 = … = ϕK−1 = 0. Note that two of 
the dummies are excluded because of col-
linearity with the constant and the treatment 
dummy, D.37 In terms of specification choice 
procedure, the idea is to add a higher order 
term to the polynomial until the bin dum-
mies are no longer jointly significant.

Another major advantage of this proce-
dure is that testing whether the bin dum-
mies are significant turns out to be a test for 

37  While excluding dummies for the two bins next to the 
cutoff point yields more interpretable results (τ remains 
the treatment effect), the test is invariant to the excluded 
bin dummies, provided that one excluded dummy is on the 
left of the cutoff point and the other one is on the right 
(something standard regression packages will automati-
cally do if all K dummies are included in the regression).



327Lee and Lemieux: Regression Discontinuity Designs in Economics

the presence of discontinuities in the regres-
sion function at points other than the cutoff 
point. In that sense, it provides a falsification 
test of the RD design by examining whether 
there are other unexpected discontinuities in 
the regression function at randomly  chosen 
points (the bin thresholds). To see this, 
rewrite  ∑ k=1  

K
   ϕk  Bk  as

 ∑ 
k=1

  
K

   ϕk Bk  =  ϕ1 +   ∑ 
k=2

  
K

   (ϕk  − ϕk−1)  B  k  
+ ,

where  B  k  
+  =  ∑ j=k  

K
   Bj  is a dummy variable 

indicating that the observation is in bin 
k or above, i.e., that the assignment variable 
X is above the bin cutoff bk. Testing whether 
all the ϕk − ϕk−1 are equal to zero is equiva-
lent to testing that all the ϕk are the same 
(the above test), which amounts to testing 
that the regression line does not jump at the 
bin thresholds bk.

Tables 2 and 3 show the estimates of the 
treatment effect for the voting example. For 
the sake of completeness, a wide range of 
bandwidths and specifications are presented, 
along with the corresponding p-values for 
the goodness-of fit test discussed above (a 
bandwidth of 0.01 is used for the bins used 
to construct the test). We also indicate at the 
bottom of the tables the order of the polyno-
mial selected for each bandwidth using the 
AIC. Note that the estimates of the treat-
ment effect for the “order zero” polynomi-
als are just comparisons of means on the two 
sides of the cutoff point, while the estimates 
for the “order one” polynomials are based on 
(local) linear regressions.

Broadly speaking, the goodness-of-fit tests 
do a very good job ruling out clearly mis-
specified models, like the zero order poly-
nomials with large bandwidths that yield 
upward biased estimates of the treatment 
effect. Estimates from models that pass 
the goodness-of-fit test mostly fall in the 
0.05–0.10 range for the vote share (table 2) 

and 0.37–0.57 for the probability of winning 
(table 3). One set of models the goodness-of-
fit test does not rule out, however, is higher 
order polynomial models with small band-
widths that tend to be imprecisely estimated 
as they “overfit” the data.

Looking informally at both the fit of the 
model (goodness-of-fit test) and the preci-
sion of the estimates (standard errors) sug-
gests the following strategy: use higher 
order polynomials for large bandwidths of 
0.50 and more, lower order polynomials for 
bandwidths between 0.05 and 0.50, and zero 
order polynomials (comparisons of means) 
for bandwidths of less than 0.05, since the 
latter specification passes the goodness-
of-fit test for these very small bandwidths. 
Interestingly, this informal approach more or 
less corresponds to what is suggested by the 
AIC. In this specific example, it seems that 
given a specific bandwidth, the AIC provides 
reasonable suggestions on which order of the 
polynomial to use.

4.3.3 Estimation in the Fuzzy RD Design

As discussed earlier, in both the “sharp” 
and the “fuzzy” RD designs, the probability 
of treatment jumps discontinuously at the 
cutoff point. Unlike the case of the sharp RD 
where the probability of treatment jumps 
from 0 to 1 at the cutoff, in the fuzzy RD 
case, the probability jumps by less than one. 
In other words, treatment is not solely deter-
mined by the strict cutoff rule in the fuzzy 
RD design. For example, even if eligibility for 
a treatment solely depends on a cutoff rule, 
not all the eligibles may get the treatment 
because of imperfect compliance. Similarly, 
program eligibility may be extended in some 
cases even when the cutoff rule is not satis-
fied. For example, while Medicare eligibility 
is mostly determined by a cutoff rule (age 65 
or older), some disabled individuals under 
the age of 65 are also eligible.

Since we have already discussed the inter-
pretation of estimates of the treatment effect 
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in a fuzzy RD design in section 3.4.1, here we 
just focus on estimation and implementation 
issues. The key message to remember from 
the earlier discussion is that, as in a standard 
IV framework, the estimated treatment effect 
can be interpreted as a local average treat-
ment effect, provided monotonicity holds.

In the fuzzy RD design, we can write the 
probability of treatment as 

	Pr (D = 1 | X = x) =  γ +  δT +  g(x − c),

where T = 1[X ≥ c] indicates whether the 
assignment variable exceeds the eligibil-
ity threshold c.38 Note that the sharp RD is 
a special case where γ = 0, g(∙) = 0, and  
δ = 1. It is advisable to draw a graph for 
the treatment dummy D as a function of the 
assignment variable X using the same proce-
dure discussed in section 4.1. This provides 
an informal way of seeing how large the 
jump in the treatment probability δ is at the 
cutoff point, and what the functional form 
g(∙) looks like.

Since D = Pr(D = 1 | X = x) + ν, where  
ν is an error term independent of X, the 
fuzzy RD design can be described by the two 
equation system: 

(10) Y =  α  +  τD +  f(X − c) +  ε,

(11) D =  γ  +  δT +  g(X − c) +  ν.

Looking at these equations suggests esti-
mating the treatment effect τ by instru-
menting the treatment dummy D with 
T. Note also that substituting the treat-
ment determining equation into the out-
come equation yields the reduced form

38  Although the probability of treatment is modeled as 
a linear probability model here, this does not impose any 
restrictions on the probability model since g(x − c) is unre-
stricted on both sides of the cutoff c, while T is a dummy 
variable. So there is no need to write the model using a 
probit or logit formulation.

(12) Y =  αr +  τr T +  fr (X − c) +  εr,

where τr = τ δ. In this setting, τr can be 
interpreted as an “intent-to-treat” effect.

Estimation in the fuzzy RD design can 
be performed using either the local linear 
regression approach or polynomial regres-
sions. Since the model is exactly identified, 
2SLS estimates are numerically identical to 
the ratio of reduced form coefficients τr/δ, 
provided that the same bandwidth is used 
for equations (11) and (12) in the local lin-
ear regression case, and that the same order 
of polynomial is used for g(∙) and f (∙) in the 
polynomial regression case.

In the case of the local linear regression, 
Imbens and Lemieux (2008) recommend 
using the same bandwidth in the treatment 
and outcome regression. When we are close 
to a sharp RD design, the function g(∙) 
is expected to be very flat and the optimal 
bandwidth to be very wide. In contrast, there 
is no particular reason to expect the func-
tion f (∙) in the outcome equation to be flat 
or linear, which suggests the optimal band-
width would likely be less than the one for 
the treatment equation. As a result, Imbens 
and Lemieux (2008) suggest focusing on the 
outcome equation for selecting bandwidth, 
and then using the same bandwidth for the 
treatment equation.

While using a wider bandwidth for the 
treatment equation may be advisable on 
efficiency grounds, there are two practi-
cal reasons that suggest not doing so. First, 
using different bandwidths complicates the 
computation of standard errors since the 
outcome and treatment samples used for the 
estimation are no longer the same, meaning 
the usual 2SLS standard errors are no longer 
valid. Second, since it is advisable to explore 
the sensitivity of results to changes in the 
bandwidth, “trying out” separate bandwidths 
for each of the two equations would lead to 
a large and difficult-to-interpret number of 
specifications.
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The same broad arguments can be used in 
the case of local polynomial regressions. In 
principle, a lower order of polynomial could 
be used for the treatment equation (11) than 
for the outcome equation (12). In practice, 
however, it is simpler to use the same order 
of polynomial and just run 2SLS (and use 
2SLS standard errors).

4.3.4 How to Compute Standard Errors?

As discussed above, for inference in the 
sharp RD case we can use standard least 
squares methods. As usual, it is recom-
mended to use heteroskedasticity-robust 
standard errors (Halbert White 1980) instead 
of standard least squares standard errors. One 
additional reason for doing so in the RD case 
is to ensure the standard error of the treat-
ment effect is the same when either a pooled 
regression or two separate regressions on 
each side of the cutoff are used to compute 
the standard errors. As we just discussed, it 
is also straightforward to compute standard 
errors in the fuzzy RD case using 2SLS meth-
ods, although robust standard errors should 
also be used in this case. Imbens and Lemieux 
(2008) propose an alternative way of comput-
ing standard errors in the fuzzy RD case, but 
nonetheless suggest using 2SLS standard 
errors readily available in econometric soft-
ware packages.

One small complication that arises in the 
nonparametric case of local linear regres-
sions is that the usual (robust) standard errors 
from least squares are only valid provided that 
h ∝ N −δ with 1/5 < δ < 2/5. As we men-
tioned earlier, this is not a very important point 
in practice, and the usual standard errors can 
be used with local linear regressions.

4.4 Implementing Empirical Tests of RD 
Validity and Using Covariates 

In this part of the section, we describe 
how to implement tests of the validity of the 
RD design and how to incorporate covariates 
in the analysis.

4.4.1 Inspection of the Histogram of the   
 Assignment Variable

Recall that the underlying assumption 
that generates the local random assignment 
result is that each individual has impre-
cise control over the assignment variable, 
as defined in section 3.1.1. We cannot test 
this directly (since we will only observe one 
observation on the assignment variable per 
individual at a given point in time), but an 
intuitive test of this assumption is whether 
the aggregate distribution of the assignment 
variable is discontinuous, since a mixture of 
individual-level continuous densities is itself 
a continuous density.

McCrary (2008) proposes a simple two-
step procedure for testing whether there is a 
discontinuity in the density of the assignment 
variable. In the first step, the assignment vari-
able is partitioned into equally spaced bins 
and frequencies are computed within those 
bins. The second step treats the frequency 
counts as a dependent variable in a local linear 
regression. See McCrary (2008), who adopts 
the nonparametric framework for asymptot-
ics, for details on this procedure for inference.

As McCrary (2008) points out, this test can 
fail to detect a violation of the RD identifica-
tion condition if for some individuals there is 
a “jump” up in the density, offset by jumps 
“down” for others, making the aggregate den-
sity continuous at the threshold. McCrary 
(2008) also notes it is possible the RD esti-
mate could remain unbiased, even when 
there is important manipulation of the assign-
ment variable causing a jump in the density. 
It should be noted, however, that in order to 
rely upon the RD estimate as unbiased, one 
needs to invoke other identifying assumptions 
and cannot rely upon the mild conditions we 
focus on in this article.39

39  McCrary (2008) discusses an example where students 
who barely fail a test are given extra points so that they 
barely pass. The RD estimator can remain unbiased if one 
assumes that those who are given extra points were chosen 
randomly from those who barely failed.
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One of the examples McCrary uses for his 
test is the voting model of Lee (2008) that 
we used in the earlier empirical examples. 
Figure 16 shows a graph of the raw densi-
ties computed over bins with a bandwidth 
of 0.005 (200 bins in the graph), along with 
a smooth second order polynomial model. 
Consistent with McCrary (2008), the graph 
shows no evidence of discontinuity at the 
cutoff. McCrary also shows that a formal 
test fails to reject the null hypothesis of no 
discontinuity in the density at the cutoff.

4.4.2 Inspecting Baseline Covariates

An alternative approach for testing the 
validity of the RD design is to examine 
whether the observed baseline covariates 
are “locally” balanced on either side of the 
threshold, which should be the case if the 
treatment indicator is locally randomized.

A natural thing to do is conduct both 
a graphical RD analysis and a formal 

 estimation, replacing the dependent vari-
able with each of the observed baseline 
covariates in W. A discontinuity would indi-
cate a violation in the underlying assump-
tion that predicts local random assignment. 
Intuitively, if the RD design is valid, we 
know that the treatment variable cannot 
influence variables determined prior to the 
realization of the assignment variable and 
treatment assignment; if we observe it does, 
something is wrong in the design.

If there are many covariates in W, even 
abstracting from the possibility of misspecifi-
cation of the functional form, some discon-
tinuities will be statistically significant by 
random chance. It is thus useful to combine 
the multiple tests into a single test statistic to 
see if the data are consistent with no discon-
tinuities for any of the observed covariates. 
A simple way to do this is with a Seemingly 
Unrelated Regression (SUR) where each 
equation represents a different baseline 
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Figure 16. Density of the Forcing Variable (Vote Share in Previous Election)
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covariate, and then perform a χ2 test for 
the discontinuity gaps in all questions being 
zero. For example, supposing the underlying 
functional form is linear, one would estimate 
the system

 w1 =  α1 +  Dβ1 +  Xγ1 +  ε1
………

 wK =  αK +  DβK +  XγK +  εK

and test the hypothesis that β1, …, βK are 
jointly equal to zero, where we allow the  
ε’s to be correlated across the K equations. 
Alternatively, one can simply use the OLS 
estimates of β1, … , βK obtained from a 
“stacked” regression where all the equations 
for each covariate are pooled together, while 
D and X are fully interacted with a set of K 
dummy variables (one for each covariate wk). 
Correlation in the error terms can then be 
captured by clustering the standard errors 
on individual observations (which appear 
in the stacked dataset K times). Under the 
null hypothesis of no discontinuities, the 
Wald test statistic N  ˆ 

 
 β ′   ˆ   V  −1  ̂  

 
 β   (where    ˆ 

 
 β   is 

the vector of estimates of β1  , …, βK, and   ˆ 
 

 V   
is the cluster-and-heteroskedasticity con-
sistent estimate of the asymptotic variance 
of   ˆ 

 
 β ) converges in distribution to a χ2 with 

K degrees of freedom.
Of course, the importance of functional 

form for RD analysis means a rejection of 
the null hypothesis tells us either that the 
underlying assumptions for the RD design 
are invalid, or that at least some of the equa-
tions are sufficiently misspecified and too 
restrictive, so that nonzero discontinuities 
are being estimated, even though they do 
not exist in the population. One could use 
the parametric specification tests discussed 
earlier for each of the individual equations to 
see if misspecification of the functional form 
is an important problem. Alternatively, the 
test could be performed only for  observations 

within a narrower window around the cut-
off point, such as the one suggested by the 
bandwidth selection procedures discussed in 
section 4.3.1.

Figure 17 shows the RD graph for a base-
line covariate, the Democratic vote share in 
the election prior to the one used for the 
assignment variable (four years prior to 
the current election). Consistent with Lee 
(2008), there is no indication of a disconti-
nuity at the cutoff. The actual RD estimate 
using a quartic model is –0.004 with a stan-
dard error of 0.014. Very similar results are 
obtained using winning the election as the 
outcome variable instead (RD estimate of 
–0.003 with a standard error of 0.017).

4.5 Incorporating Covariates in Estimation

If the RD design is valid, the other use for 
the baseline covariates is to reduce the sam-
pling variability in the RD estimates. We dis-
cuss two simple ways to do this. First, one can 
“residualize” the dependent variable—sub-
tract from Y a prediction of Y based on the 
baseline covariates W—and then conduct an 
RD analysis on the residuals. Intuitively, this 
procedure nets out the portion of the varia-
tion in Y we could have predicted using the 
predetermined characteristics, making the 
question whether the treatment variable 
can explain the remaining residual varia-
tion in Y. The important thing to keep in 
mind is that if the RD design is valid, this 
procedure provides a consistent estimate of 
the same RD parameter of interest. Indeed, 
any combination of covariates can be used, 
and abstracting from functional form issues, 
the estimator will be consistent for the same 
parameter, as discussed above in equation 
(4). Importantly, this two-step approach also 
allows one to perform a graphical analysis of 
the residual.

To see this more formally in the paramet-
ric case, suppose one is willing to assume 
that the expectation of Y as a function of X 
is a polynomial, and the expectation of each 
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element of W is also a polynomial function of 
X. This implies

(13) Y =  Dτ +    ̃  
 

 X   ̃    γ  +  ε

 W =    ̃  
 

 X δ +  u,

where   ˜ 
 

 X   is a vector of polynomial terms in X, 
δ and u are of conformable dimension, and 
ε and u are by construction orthogonal to D 
and   ˜ 

 
 X . It follows that

(14)   Y − Wπ =  Dτ +    ̃  
 

 X   ̃    γ  − Wπ +  ε

=  Dτ +    ̃  
 

 X (  ̃    γ  − δπ) − uπ + ε

  =  Dτ +    ̃  
 

 X γ − uπ +  ε.

This makes clear that a regression of  Y − Wπ 
on D and   ˜ 

 
 X  will give consistent estimates of  

τ and γ. This is true no matter the value of π. 
Furthermore, as long as the specification in 

equation (13) is correct, in computing esti-
mated standard errors in the second step, 
one can ignore the fact that the first step was 
estimated.40

The second approach—which uses the 
same assumptions implicit in equation (13)—
is to simply add W to the regression. While 
this may seem to impose linearity in how W 

40  The two-step procedure solves the sample analogue 
to the following set of moment equations:

E c a	D   
  ˜ 
 

 X 
 b (Y − Wπ0 − Dτ −   ˜ 

 
 X γ)d =  0

 E CW(Y − Wπ0)D =  0.

As noted above, the second-step estimator for τ is con-
sistent for any value of π. Letting θ ≡ A	   τ   γ   B, and using the 
notation of Whitney K. Newey and Daniel L. McFadden 
(1994), this means that the first row of ∇πθ(π0) = − G  θ  −1  Gπ  
is a row of zeros. It follows from their theorem 6.1, with 
the 1,1 element of  V being the asymptotic variance of the 
estimator for τ, that the 1,1 element of  V is equal to the 1,1 
element of  G  θ  −1  E[ g(z)g(z)′ ] G  θ  −1 ′ , which is the asymptotic 
covariance matrix of the second stage estimator ignoring 
estimation in the first step.
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Figure 17. Discontinuity in Baseline Covariate (Share of Vote in Prior Election)
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affects Y, it can be shown that the inclusion 
of these regressors will not affect the consis-
tency of the estimator for τ.41 The advantage 
of this second approach is that under these 
functional form assumptions and with homo-
skedasticity, the estimator for τ is guaranteed 
to have a lower asymptotic variance.42 By 
contrast, the  “residualizing” approach can in 
some cases raise standard errors.43

The disadvantage of solely relying upon 
this second approach, however, is that it does 
not help distinguish between an inappropri-
ate functional form and discontinuities in W, 
as both could potentially cause the estimates 
of τ to change significantly when W is includ-
ed.44 On the other hand, the “residualizing” 
approach allows one to examine how well the 
residuals fit the assumed order of polynomial 
(using, for example, the methods described 
in subsection 4.3.2). If it does not fit well, 
then it suggests that the use of that order of 
polynomial with the second approach is not 
justified. Overall, one sensible approach is to 
directly enter the covariates, but then to use 
the  “residualizing” approach as an additional 
diagnostic check on whether the assumed 
order of the polynomial is justified.

As discussed earlier, an alternative 
approach to estimating the discontinuity 

involves limiting the estimation to a window 
of data around the threshold and using a lin-
ear specification within that window.45 We 
note that as the neighborhood shrinks, the 
true expectation of W conditional on X will 
become closer to being linear, and so equa-
tion (13) (with   ˜ 

 
 X  containing only the linear 

term) will become a better approximation.
For the voting example used throughout 

this paper, Lee (2008) shows that adding a 
set of covariates essentially has no impact on 
the RD estimates in the model where the 
outcome variable is winning the next elec-
tion. Doing so does not have a large impact 
on the standard errors either, at least up 
to the third decimal. Using the procedure 
based on residuals instead actually slightly 
increases the second step standard errors—
a possibility mentioned above. Therefore in 
this particular example, the main advantage 
of using baseline covariates is to help estab-
lish the validity of the RD design, as opposed 
to improving the efficiency of the estimators.

4.6 A Recommended “Checklist” for 
Implementation

Below is a brief summary of our recom-
mendations for the analysis, presentation, 
and estimation of RD designs.

41  To see this, rewrite equation (13) as Y = Dτ +   ̃  
 

 X   ̃    γ  + 
Da +   ̃  

 
 X b + Wc + μ, where a, b, c, and μ are linear projec-

tion coefficients and the residual from a population regres-
sion ε on D,   ˜ 

 
 X , and W. If a = 0, then adding W will not 

affect the coefficient on D. This will be true—applying the 
Frisch–Waugh theorem—when the covariance between 
ε and D −   ˜ 

 
 X d − We (where d and e are coefficients from 

projecting D on   ˜ 
 

 X  and W ) is zero. This will be true when 
e = 0, because ε is by assumption orthogonal to both D 
and   ˜ 

 
 X . Applying the Frisch–Waugh theorem again, e is the 

coefficient obtained by regressing D on W −   ˜ 
 

 X δ ≡ u; by 
assumption u and D are uncorrelated, so e = 0.

42  The asymptotic variance for the least squares esti-
mator (without including W) of τ is given by the ratio
V(ε)/V(  ˜ 

 
 D ) where   ˜ 

 
 D  is the residual from the population 

regression of D on   ˜ 
 

 X . If W is included, then the least 
squares estimator has asymptotic variance of σ  2/V(D −
  ˜ 
 

 X d − We), where σ  2 is the variance of the error when W 
is included, and d and e are coefficients from projecting 
D on   ˜ 

 
 X  and W. σ  2 cannot exceed V(ε), and as shown in 

the footnote above, e = 0,  and thus D −   ˜ 
 

 X d =   ˜   D , imply-
ing that the denominator in the ratio does not change when 
W is included.

43  From equation (14), the regression error variance 
will increase if V(ε − uπ) > V(ε) ⇔ V(uπ) − 2C(ε, uπ) > 
0, which will hold when, for example, ε is orthogonal to u 
and π is nonzero.

44  If the true equation for W contains more polyno-
mial terms than   ˜ 

 
 X , then e, as defined in the preceding 

footnotes (the coefficient obtained by regressing D on the 
residual from projecting W on   ˜ 

 
 X ), will not be zero. This 

implies that including W will generally lead to inconsis-
tent estimates of τ, and may cause the asymptotic variance
to increase (since V(D −   ˜ 

 
 X d − We) ≤ V(  ˜ 

 
 D )).

45  And we have noted that one can justify this by assum-
ing that in that specified neighborhood, the underlying 
function is in fact linear, and make standard parametric 
inferences. Or one can conduct a nonparametric inference 
approach by making assumptions about the rate at which 
the bandwidth shrinks as the sample size grows.
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	 1.  To assess the possibility of manipula-
tion of the assignment variable, show 
its distribution. The most straightfor-
ward thing to do is to present a histo-
gram of the assignment variable, using 
a fixed number of bins. The bin widths 
should be as small as possible, without 
compromising the ability to visually see 
the overall shape of the distribution. 
For an example, see figure 16. The bin-
to-bin jumps in the frequencies can 
provide a sense in which any jump at 
the threshold is “unusual.” For this rea-
son, we recommend against plotting a 
smooth function comprised of kernel 
density estimates. A more formal test 
of a discontinuity in the density can be 
found in McCrary (2008).

 2.  Present the main RD graph using 
binned local averages.	As with the his-
togram, we recommend using a fixed 
number of nonoverlapping bins, as 
described in subsection 4.1. For exam-
ples, see figures 6–11. The nonover-
lapping nature of the bins for the local 
averages is important; we recommend 
against simply presenting a continuum 
of nonparametric estimates (with a sin-
gle break at the threshold), as this will 
naturally tend to give the impression of 
a discontinuity even if there does not 
exist one in the population. We recom-
mend reporting bandwidths implied by 
cross-validation, as well as the range of 
widths that are not statistically rejected 
in favor of strictly less restrictive alterna-
tives (for an example, see table 1). We 
recommend generally “undersmooth-
ing,” while at the same time avoiding 
“too narrow” bins that produce a scatter 
of data points, from which it is difficult 
to see the shape of the underlying func-
tion. Indeed, we recommend against 
simply plotting the raw data without a 
minimal amount of local averaging.

 3.  Graph a benchmark polynomial 
specification. Superimpose onto the 
graph the predicted values from a low-
order polynomial specification (see fig-
ures 6–11). One can often informally 
assess by comparing the two functions 
whether a simple polynomial specifi-
cation is an adequate summary of the 
data. If the local averages represent the 
most flexible  “nonparametric” repre-
sentation of the function, the polyno-
mial represents a “best case” scenario 
in terms of the variance of the RD 
estimate, since if the polynomial speci-
fication is correct, under certain con-
ditions, the least squares estimator is 
efficient.

 4.  Explore the sensitivity of the results 
to a range of bandwidths, and a range 
of orders to the polynomial. For an 
example, see tables 2 and 3. The tables 
should be supplemented with infor-
mation on the implied rule-of-thumb 
bandwidth and cross-validation band-
widths for local linear regression (as 
in table 4), as well as the AIC-implied 
optimal order of the polynomial. The 
specification tests that involve add-
ing bin dummies to the polynomial 
specifications can help rule out overly 
restrictive specifications. Among all the 
specifications that are not rejected by 
the bin-dummy tests, and among the 
polynomial orders recommended by 
the AIC, and the estimates given by 
both rule of thumb and CV bandwidths, 
report a  “typical” point estimate and 
a range of point estimates. A useful 
graphical device for illustrating the 
sensitivity of the results to bandwidths 
is to plot the local linear discontinuity 
estimate against a continuum of band-
widths (within a range of bandwidths 
that are not ruled out by the above 
specification tests). For an example 
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of such a presentation, see the online 
appendix to Card, Carlos Dobkin, and 
Nicole Maestas (2009), and figure 18.

 5.  Conduct a parallel RD analysis on 
the baseline covariates. As discussed 
earlier, if the assumption that there is 
no precise manipulation or sorting of 
the assignment variable is valid, then 
there should be no discontinuities in 
variables that are determined prior 
to the assignment. See figure 17, for 
example.

 6.  Explore the sensitivity of the results 
to the inclusion of baseline covari-
ates. As discussed above, the inclusion 
of baseline covariates—no matter how 
highly correlated they are with the out-
come—should not affect the estimated 
discontinuity, if the no-manipulation 

assumption holds. If the estimates do 
change in an important way, it may indi-
cate a potential sorting of the assign-
ment variable that may be reflected in 
a discontinuity in one or more of the 
baseline covariates. In terms of imple-
mentation, in subsection 4.5, we sug-
gest simply including the covariates 
directly, after choosing a suitable order 
of polynomial. Significant changes in 
the estimated effect or increases in the 
standard errors may be an indication of 
a misspecified functional form. Another 
check is to perform the “residualizing” 
procedure suggested there, to see if 
that same order of polynomial provides 
a good fit for the residuals, using the 
specification tests from point 4.

We recognize that, due to space  limitations, 
researchers may be unable to present every 

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00
0             0.05             0.1            0.15            0.2            0.25             0.3            0.35            0.4            0.45            0.5              

E
st

im
at

ed
 tr

ea
tm

en
t e

ff
ec

t

Bandwidth

Quadratic �t

95 percent
con�dence bands

LLR estimate of
the treatment
effect

Figure 18. Local Linear Regression with Varying Bandwidth: Share of Vote at Next Election



Journal of Economic Literature, Vol. XLVIII (June 2010)336

permutation of presentation (e.g., points 
2–4 for every one of 20 baseline covariates) 
within a published article. Nevertheless, we 
do believe that documenting the sensitiv-
ity of the results to these array of tests and 
alternative specifications—even if they only 
appear in unpublished, online appendices—
is an important component of a thorough 
RD analysis.

5. Special Cases

In this section, we discuss how the RD 
design can be implemented in a number of 
specific cases beyond the one considered up 
to this point (that of a single cross-section 
with a continuous assignment variable).

5.1 Discrete Assignment Variable and 
Specification Errors

Up until now, we have assumed the assign-
ment variable was continuous. In practice, 
however, X is often discrete. For example, 
age or date of birth are often only available 
at a monthly, quarterly, or annual frequency 
level. Studies relying on an age-based cut-
off thus typically rely on discrete values of 
the age variable when implementing an RD 
design.

Lee and Card (2008) study this case in 
detail and make a number of important 
points. First, with a discrete assignment vari-
able, it is not possible to compare outcomes 
in very narrow bins just to the right and left 
of the cutoff point. Consequently, one must 
use regressions to estimate the conditional 
expectation of the outcome variable at the 
cutoff point by extrapolation. As discussed 
in section 4, however, in practice we always 
extrapolate to some extent, even in the case 
of a continuous assignment variable. So the 
fact we must do so in the case of a discrete 
assignment variable does not introduce par-
ticular complications from an econometric 
point of view, provided the discrete variable 
is not too coarsely distributed.

Additionally, the various estimation and 
graphing techniques discussed in section 
4 can readily be used in the case of a dis-
crete assignment variable. For instance, 
as with a continuous assignment variable, 
either local linear regressions or polyno-
mial regressions can be used to estimate the 
jump in the regression function at the cutoff 
point. Furthermore, the discreteness of the 
assignment variable simplifies the problem 
of bandwidth choice when graphing the 
data since, in most cases, one can simply 
compute and graph the mean of the out-
come variable for each value of the discrete 
assignment variable. The fact that the vari-
able is discrete also provides a natural way 
of testing whether the regression model is 
well specified by comparing the fitted model 
to the raw dispersion in mean outcomes at 
each value of the assignment variable. Lee 
and Card (2008) show that, when errors are 
homoskedastic, the model specification can 
be tested using the standard goodness-of-fit 
statistic

 G ≡   
(ESSR − ESSUR)/( J − K)

  __  
ESSUR/(N − J)

   ,

where ESSR is the estimated sum of squares 
of the restricted model (e.g., low order poly-
nomial), while ESSUR is the estimated sum 
of squares of the unrestricted model where 
a full set of dummies (for each value of the 
assignment variable) are included. In this 
unrestricted model, the fitted regression cor-
responds to the mean outcome in each cell. 
G follows a F ( J − K, N − J) distribution 
where J is the number of values taken by the 
assignment variables and K is the number of 
parameters of the restricted model.

This test is similar to the test in section 
4 where we suggested including a full set 
of bin dummies in the regression model 
and testing whether the bin dummies were 
jointly  significant. The procedure is even 
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simpler here, as bin dummies are replaced 
by dummies for each value of the discrete 
assignment variable. In the presence of het-
eroskedasticity, the goodness-of-fit test can 
be computed by estimating the model and 
testing whether a set of dummies for each 
value of the discrete assignment variable are 
jointly significant. In that setting, the test sta-
tistic follows a chi-square distribution with 
J − K degrees of freedom.

In Lee and Card (2008), the difference 
between the true conditional expectation  
E [Y | X = x] and the estimated regression 
function forming the basis of the goodness-
of-fit test is interpreted as a random specifi-
cation error that introduces a group structure 
in the standard errors. One way of correcting 
the standard errors for group structure is to 
run the model on cell means.46 Another way 
is to “cluster” the standard errors. Note that 
in this setting, the goodness-of-fit test can also 
be interpreted as a test of whether standard 
errors should be adjusted for the group struc-
ture. In practice, it is nonetheless advisable to 
either group the data or cluster the standard 
errors in micro-data models irrespective of the 
results of the goodness-of-fit test. The main 
purpose of the test should be to help choose a 
reasonably accurate regression model.

Lee and Card (2008) also discuss a num-
ber of issues including what to do when 
specification errors under treatment and 
control are correlated, and how to possibly 
adjust the RD estimates in the presence of 
specification errors. Since these issues are 
beyond the scope of this paper, interested 
readers should consult Lee and Card (2008) 
for more detail.

46  When the discrete assignment variable—and the  
“treatment” dummy solely dependent on this variable—is 
the only variable used in the regression model, standard 
OLS estimates will be numerically equivalent to those 
obtained by running a weighted regression on the cell 
means, where the weights are the number of observations 
(or the sum of individual weights) in each cell.

5.2 Panel Data and Fixed Effects

In some situations, the RD design will 
be embedded in a panel context, whereby 
period by period, the treatment variable is 
determined according to the realization of 
the assignment variable X. Again, it seems 
natural to propose the model

 Yit =  Ditτ + f (Xit; γ) + ai + εit

(where i and t denote the individuals and 
time, respectively), and simply estimate a 
fixed effects regression by including indi-
vidual dummy variables to capture the unit-
specific error component, ai . It is important 
to note, however, that including fixed effects 
is unnecessary for identification in an RD 
design. This sharply contrasts with a more 
traditional panel data setting where the error 
component ai is allowed to be correlated 
with the observed covariates, including the 
treatment variable Dit, in which case includ-
ing fixed effects is essential for consistently 
estimating the treatment effect τ.

An alternative is to simply conduct the 
RD analysis for the entire pooled-cross-
section dataset, taking care to account for 
within-individual correlation of the errors 
over time using clustered standard errors. 
The source of identification is a compari-
son between those just below and above 
the threshold, and can be carried out with 
a single cross-section. Therefore, impos-
ing a specific dynamic structure intro-
duces more restrictions without any gain in 
identification.

Time dummies can also be treated like 
any other baseline covariate. This is appar-
ent by applying the main RD identification 
result: conditional on what period it is, we 
are assuming the density of X is continuous 
at the threshold and, hence, conditional on 
X, the probability of an individual observa-
tion coming from a particular period is also 
continuous.
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We note that it becomes a little bit more 
awkward to use the justification proposed in 
subsection 4.5 for directly including dum-
mies for individuals and time periods on 
the right hand side of the regression. This 
is because the assumption would have to 
be that the probability that an observation 
belonged to each individual (or the probabil-
ity that an observation belonged to each time 
period) is a polynomial function in X and, 
strictly speaking, nontrivial polynomials are 
not bounded between 0 and 1.

A more practical concern is that inclusion 
of individual dummy variables may lead to an 
increase in the variance of the RD estimator 
for another reason. If there is little “within-
unit” variability in treatment status, then 
the variation in the main variable of interest 
(treatment after partialling out the individual 
heterogeneity) may be quite small. Indeed, 
seeing standard errors rise when including 
fixed effects may be an indication of a mis-
specified functional form.47

Overall, since the RD design is still valid 
ignoring individual or time effects, then the 
only rationale for including them is to reduce 
sampling variance. But there are other ways 
to reduce sampling variance by exploiting the 
structure of panel data. For instance, we can 
treat the lagged dependent variable Yit−1 as 
simply another baseline covariate in period 
t. In cases where Yit is highly persistent over 
time, Yit−1 may well be a very good predic-
tor and has a very good chance of reducing 
the sampling error. As we have also discussed 
earlier, looking at possible discontinuities in 
baseline covariates is an important test of the 
validity of the RD design. In this particular 
case, since Yit can be highly correlated with 
Yit−1, finding a discontinuity in Yit but not 
in Yit−1 would be a strong piece of evidence 
supporting the validity of the RD design.

47  See the discussion in section 4.5.

In summary, one can utilize the panel 
nature of the data by conducting an RD 
analysis on the entire dataset, using lagged 
variables as baseline covariates for inclusion 
as described in subsection 4.5. The primary 
caution in doing this is to ensure that for 
each period, the included covariates are the 
variables determined prior to the present 
period’s realization of Xit.

6. Applications of RD Designs in 
Economics

In what areas has the RD design been 
applied in economic research? Where do 
discontinuous rules come from and where 
might we expect to find them? In this section, 
we provide some answers to these questions 
by providing a survey of the areas of applied 
economic research that have employed the 
RD design. Furthermore, we highlight some 
examples from the literature that illustrate 
what we believe to be the most important 
elements of a compelling, “state-of-the-art” 
implementation of RD.

6.1 Areas of Research Using RD

As we suggested in the introduction, the 
notion that the RD design has limited appli-
cability to a few specific topics is inconsistent 
with our reading of existing applied research 
in economics. Table 5 summarizes our survey 
of empirical studies on economic topics that 
have utilized the RD design. In compiling 
this list, we searched economics journals as 
well as listings of working papers from econ-
omists, and chose any study that recognized 
the potential use of an RD design in their 
given setting. We also included some papers 
from non-economists when the research was 
closely related to economic work.

Even with our undoubtedly incomplete 
compilation of over sixty studies, table 5 
illustrates that RD designs have been applied 
in many different contexts. Table 5 summa-
rizes the context of the study, the outcome 
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TABLE 5
Regression Discontinuity Applications in Economics

Study Context Outcome(s) Treatment(s) Assignment variable(s)

Education 
Angrist and Lavy (1999) Public Schools  

(Grades 3–5), Israel 
Test scores Class size Student enrollment

Asadullah (2005) Secondary schools, 
 Bangladesh 

Examination pass rate Class size Student enrollment

Bayer, Ferreira,  
 and McMillan (2007) 

Valuation of schools  
 and neighborhoods, 
 Northern California 

Housing prices,  
 school test scores,  
 demographic 
 characteristics 

Inclusion in school  
 attendance region 

Geographic location

Black (1999) Valuation of school  
 quality, Massachusetts 

Housing prices Inclusion in school  
 attendance region 

Geographic location

Canton and Blom (2004) Higher education, 
 Mexico 

University enrollment, 
 GPA, Part-time 
 employment, Career 
 choice 

Student loan receipt Economic need index

Cascio and Lewis (2006) Teenagers,  
 United States 

AFQT test scores Age at school entry Birthdate

Chay, McEwan,  
 and Urquiola (2005) 

Elementary schools, 
 Chile 

Test scores Improved infrastructure, 
 more resources 

School averages of test 
 scores

Chiang (2009) School accountability, 
 Florida

Test scores, education 
 quality

Threat of sanctions School’s assessment 
 score 

Clark (2009) High schools, U.K. Examination pass rates “Grant maintained”
 school status

Vote share

Ding and Lehrer (2007) Secondary school  
 students, China

Academic achievement 
(Test scores) 

School assignment Entrance examination 
 scores

Figlio and Kenny (2009) Elementary and middle 
 schools, Florida

Private donations to 
 school

D or F grade in school 
 performance measure

Grading points 

Goodman (2008) College enrollment,  
 Massachusetts

School choice Scholarship offer Test scores

Goolsbee and  
 Guryan (2006)

Public schools,  
 California

Internet access in  
 classrooms, test scores

E-Rate subsidy amount Proportion of students 
 eligible for lunch 
 program

Guryan (2001) State-level equalization: 
 elementary, middle 
 schools, Massachusetts 

Spending on schools,  
 test scores 

State education aid Relative average  
 property values

Hoxby (2000) Elementary schools, 
 Connecticut 

Test scores Class size Student enrollment

Kane (2003) Higher education, 
 California 

College attendance Financial aid receipt Income, assets, GPA

Lavy (2002) Secondary schools,  
 Israel

Test scores,  
 drop out rates

Performance based 
 incentives for teachers 

Frequency of school 
 type in community 

Lavy (2004) Secondary schools,  
 Israel 

Test scores Pay-for-performance 
 incentives 

School matriculation 
 rates

Lavy (2006) Secondary schools,  
 Tel Aviv 

Dropout rates,  
 test scores 

School choice Geographic location

Jacob and Lefgren (2004a) Elementary schools, 
 Chicago 

Test scores Teacher training School averages on 
 test scores



Journal of Economic Literature, Vol. XLVIII (June 2010)340

TABLE 5 (continued)
Regression Discontinuity Applications in Economics

Study Context Outcome(s) Treatment(s) Assignment variable(s)

Jacob and Lefgren (2004b) Elementary schools, 
 Chicago 

Test scores Summer school  
 attendance, grade 
 retention 

Standardized test 
 scores

Leuven, Lindahl,  
 Oosterbeek, and  
 Webbink (2007) 

Primary schools,  
 Netherlands 

Test scores Extra funding Percent disadvantaged 
 minority pupils

Matsudaira (2008) Elementary schools, 
 Northeastern United 
 States 

Test scores Summer school,  
 grade promotion 

Test scores

Urquiola (2006) Elementary schools, 
 Bolivia 

Test scores Class size Student enrollment

Urquiola and  
 Verhoogen (2009)

Class size sorting- RD 
 violations, Chile

Test scores Class size Student enrollment 

Van der Klaauw  
 (2002, 1997) 

College enrollment,  
 East Coast College 

Enrollment Financial Aid offer SAT scores, GPA

Van der Klaauw (2008a) Elementary/middle 
 schools, New York  
 City 

Test scores,  
 student attendance 

Title I federal funding Poverty rates

Labor Market 

Battistin and Rettore  
 (2002) 

Job training, Italy Employment rates Training program  
 (computer skills) 

Attitudinal test score

Behaghel, Crepon,  
 and Sedillot (2008)

Labor laws, France Hiring among age  
 groups 

Tax exemption for  
 hiring firm 

Age of worker 

Black, Smith, Berger, and 
 Noel (2003); Black, 
 Galdo, and Smith (2007b) 

UI claimants, Kentucky Earnings, benefit  
 receipt/duration 

Mandatory reemploy- 
 ment services (job 
 search assistance) 

Profiling score 
 (expected benefit 
 duration)

 Card, Chetty,  
 and Weber (2007) 

 Unemployment  
 benefits, Austria 

Unemployment  
 duration 

Lump-sum severance  
 pay, extended UI 
 benefits 

Months employed,  
 job tenure

Chen and van der Klaauw 
(2008) 

Disability insurance  
 beneficiaries,  
 United States 

Labor force  
 participation 

Disability insurance 
 benefits 

Age at disability 
 decision

De Giorgi (2005) Welfare-to-work  
 program, United 
 Kingdom 

Re-employment  
 probability 

Job search assistance, 
 training, education 

Age at end of  
 unemployment spell

DiNardo and Lee (2004) Unionization,  
 United States 

Wages, employment, 
 output 

Union victory in NLRB 
 election 

Vote share

Dobkin and  
 Ferreira (2009) 

Individuals, California 
 and Texas 

Educational attainment, 
 wages 

Age at school entry Birthdate

Edmonds (2004) Child labor supply and 
 school attendance, 
 South Africa 

Child labor supply, school 
attendance 

 Pension receipt of oldest 
family member 

 Age

Hahn, Todd, and  
 van der Klaauw (1999) 

Discrimination,  
 United States 

Minority employment Coverage of federal 
 antidiscrimination law 

Number of employees 
 at firm

Lalive (2008) Unemployment  
 Benefits, Austria 

Unemployment  
 duration 

Maximum benefit  
 duration 

Age at start of 
 unemployment 
 spell, geographic 
 location
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TABLE 5 (continued)
Regression Discontinuity Applications in Economics

Study Context Outcome(s) Treatment(s) Assignment variable(s)

Lalive (2007) Unemployment,  
 Austria 

Unemployment duration, 
 duration of job search, 
 quality of post- 
 unemployment jobs 

Benefits duration Age at start of  
 unemployment spell

Lalive, Van Ours,  
 and Zweimller (2006)

Unemployment,  
 Austria 

Unemployment  
 duration 

Benefit replacement  
 rate, potential benefit 
 duration 

Pre-unemployment 
 income, age 

Leuven and Oosterbeek 
 (2004) 

Employers,  
 Netherlands 

Training, wages Business tax deduction, 
 training 

Age of employee

Lemieux and Milligan  
 (2008) 

Welfare, Canada Employment, marital  
 status, living  
 arrangements 

Cash benefit Age

Oreopoulos (2006) Returns to education, 
 U.K. 

Earnings Coverage of compulsory 
schooling law 

Birth year

Political Economy

Albouy (2009) Congress, United States Federal expenditures Party control of seat Vote share in election

Albouy (2008) Senate, United States Roll call votes Incumbency Initial vote share

Ferreira and Gyourko  
 (2009) 

Mayoral Elections, 
 United States 

Local expenditures Incumbency Initial vote share

Lee (2008, 2001) Congressional elections, 
 United States 

Vote share in next  
 election 

Incumbency Initial vote share

Lee, Moretti, and Butler 
 (2004) 

House of Representa- 
 tives, United States 

Roll call votes Incumbency Initial vote share

McCrary (2008) House of Representa- 
 tives, United States 

N/A Passing of resolution Share of roll call vote 
 “Yeay”

Pettersson-Lidbom (2006) Local Governments, 
 Sweden and Finland 

Expenditures,  
 tax revenues 

Number of council seats Population

Pettersson-Lidbom (2008) Local Governments, 
 Sweden 

Expenditures,  
 tax revenues 

Left-, right-wing bloc Left-wing parties’ 
 share

Health 

Card and Shore-Sheppard 
 (2004) 

Medicaid,  
 United States 

Overall insurance  
 coverage 

Medicaid eligibility Birthdate

 Card, Dobkin,  
 and Maestas (2008) 

Medicare,  
 United States 

Health care utilization Coverage under  
 Medicare 

Age

 Card, Dobkin,  
 and Maestas (2009)

Medicare, California Insurance coverage, 
Health services, Mortality 

Medicare coverage Age 

Carpenter and Dobkin 
 (2009) 

Alcohol and mortality, 
 United States 

Mortality Attaining minimum 
 legal drinking age 

Age

Ludwig and Miller (2007) Head Start,  
 United States 

Child mortality,  
 educational attainment 

Head Start funding County poverty rates

McCrary and Royer (2003)  Maternal education, 
 United States,  
 California and Texas 

 Infant health, fertility 
 timing 

Age of school entry Birthdate

Snyder and Evans (2006) Social Security  
 recipients, United 
 States 

Mortality Social security  
 payments ($) 

Birthdate 
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TABLE 5 (continued)
Regression Discontinuity Applications in Economics

Study Context Outcome(s) Treatment(s) Assignment variable(s)

Crime 

Berk and DeLeeuw (1999) Prisoner behavior in 
 California 

Inmate misconduct Prison security levels Classification score

Berk and Rauma (1983) Ex-prisoners recidivism, 
 California 

Arrest, parole violation Unemployment  
 insurance benefit 

Reported hours of 
 work

Chen and Shapiro (2004) Ex-prisoners recidivism, 
 United States 

Arrest rates Prison security levels Classification score

Lee and McCrary (2005) Criminal offenders, 
 Florida 

Arrest rates Severity of sanctions Age at arrest

Hjalmarsson (2009) Juvenile offenders, 
 Washington State 

Recidivism Sentence length Criminal history score

Environment 

Chay and Greenstone  
 (2003) 

Health effects of  
 pollution, United States

Infant mortality Regulatory status Pollution levels

Chay and Greenstone  
 (2005) 

Valuation of air quality, 
 United States 

Housing prices Regulatory status Pollution levels

Davis (2008) Restricted driving  
 policy, Mexico 

Hourly air pollutant 
 measures 

Restricted automobile 
 use 

Time 

Greenstone and Gallagher 
 (2008) 

 Hazardous waste, 
 United States 

Housing prices Superfund clean-up 
 status 

Ranking of level of 
 hazard

Other

Battistin and Rettore  
 (2008) 

Mexican anti-poverty 
 program  
 (PROGRESA) 

School attendance Cash grants Pre-assigned  
 probability of being 
 poor

Baum-Snow and Marion 
 (2009)

Housing subsidies, 
 United States 

Residents’  
 characteristics, new 
 housing construction 

Increased subsidies Percentage of eligible 
 households in area 

Buddelmeyer and Skoufias 
 (2004) 

Mexican anti-poverty 
 program  
 (PROGRESA) 

Child labor and  
 school attendance 

Cash grants Pre-assigned  
 probability of being 
 poor

Buettner (2006) Fiscal equalization  
 across municipalities, 
 Germany 

Business tax rate Implicit marginal tax  
 rate on grants to 
 localities 

Tax base

Card, Mas, and Rothstein 
 (2008) 

Racial segregation, 
 United States 

Changes in census tract 
 racial composition 

Minority share exceeding 
 “tipping” point 

Initial minority share

Cole (2009) Bank nationalization, 
 India 

Share of credit granted 
 by public banks 

Nationalization of  
 private banks 

Size of bank 

Edmonds, Mammen, and 
 Miller (2005) 

Household structure, 
 South Africa 

Household composition Pension receipt of  
 oldest family member 

Age

Ferreira (2007) Residential mobility, 
 California 

Household mobility Coverage of tax benefit Age

Pence (2006) Mortgage credit,  
 United States 

Size of loan State mortgage credit 
 laws 

Geographic location

Pitt and Khandker (1998) Poor households,  
 Bangladesh 

Labor supply, children 
 school enrollment 

Group-based credit 
 program 

Acreage of land

Pitt, Khandker, McKernan, 
 and Latif (1999) 

Poor households,  
 Bangladesh 

Contraceptive use, 
 Childbirth 

Group-based credit 
 program 

Acreage of land
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variable, the treatment of interest, and the 
assignment variable employed.

While the categorization of the various 
studies into broad areas is rough and some-
what arbitrary, it does appear that a large share 
come from the area of education, where the 
outcome of interest is often an achievement 
test score and the assignment variable is also 
a test score, either at the individual or group 
(school) level. The second clearly identifiable 
group are studies that deal with labor market 
issues and outcomes. This probably reflects 
that, within economics, the RD design has so 
far primarily been used by labor economists, 
and that the use of quasi-experiments and 
program evaluation methods in documenting 
causal relationships is more prevalent in labor 
economics research.

There is, of course, nothing in the struc-
ture of the RD design tying it specifically to 
labor economics applications. Indeed, as the 
rest of the table shows, the remaining half 
of the studies are in the areas of political 
economy, health, crime, environment, and 
other areas.

6.2 Sources of Discontinuous Rules

Where do discontinuous rules come from, 
and in what situations would we expect to 
encounter them? As table 5 shows, there is 
a wide variety of contexts where discontinu-
ous rules determine treatments of interest. 
There are, nevertheless, some patterns that 
emerge. We organize the various discontinu-
ous rules below.

Before doing so, we emphasize that a good 
RD analysis—as with any other approach 
to program evaluation—is careful in clearly 
spelling out exactly what the treatment is, 
and whether it is of any real salience, inde-
pendent of whatever effect it might have on 
the outcome. For example, when a pretest 
score is the assignment variable, we could 
always define a “treatment” as being “having 
passed the exam” (with a test score of 50 per-
cent or higher), but this is not a very inter-

esting “treatment” to examine since it seems 
nothing more than an arbitrary label. On the 
other hand, if failing the exam meant not 
being able to advance to the next grade in 
school, the actual experience of treated and 
control individuals is observably different, no 
matter how large or small the impact on the 
outcome.

As another example, in the U.S. Congress, 
a Democrat obtaining the most votes in 
an election means something real—the 
Democratic candidate becomes a represen-
tative in Congress; otherwise, the Democrat 
has no official role in the government. But 
in a three-way electoral race, the treatment 
of the Democrat receiving the second-most 
number of votes (versus receiving the low-
est number) is not likely a treatment of inter-
est: only the first-place candidate is given 
any legislative authority. In principle, stories 
could be concocted about the psychological 
effect of placing second rather than third 
in an election, but this would be an exam-
ple where the salience of the treatment is 
more speculative than when treatment is a 
concrete and observable event (e.g., a can-
didate becoming the sole representative of a 
constituency).

6.2.1 Necessary Discretization

Many discontinuous rules come about 
because resources cannot, for all practical 
purposes, be provided in a continuous man-
ner. For example, a school can only have a 
whole number of classes per grade. For 
a fixed level of enrollment, the moment a 
school adds a single class, the average class 
size drops. As long as the number of classes 
is an increasing function of enrollment, 
there will be discontinuities at enrollments 
where a teacher is added. If there is a man-
dated maximum for the student to teacher 
ratio, this means that these discontinuities 
will be expected at enrollments that are 
exact multiples of the maximum. This is the 
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essence of the discontinuous rules used in 
the analyses of Angrist and Lavy (1999), M. 
Niaz Asadullah (2005), Caroline M. Hoxby 
(2000), Urquiola (2006), and Urquiola and 
Verhoogen (2009).

Another example of necessary discretiza-
tion arises when children begin their school-
ing years. Although there are certainly 
exceptions, school districts typically follow a 
guideline that aims to group children together 
by age, leading to a grouping of children 
born in year-long intervals, determined by 
a single calendar date (e.g., September 1). 
This means children who are essentially of 
the same age (e.g., those born on August 31 
and September 1), start school one year apart. 
This allocation of students to grade cohorts 
is used in Elizabeth U. Cascio and Ethan G. 
Lewis (2006), Dobkin and Fernando Ferreira 
(2009), and McCrary and Royer (2003).

Choosing a single representative by way 
of an election is yet another example. When 
the law or constitution calls for a single rep-
resentative of some constituency and there 
are many competing candidates, the choice 
can be made via a “first-past-the-post” or 
“winner-take-all” election. This is the typi-
cal system for electing government officials 
at the local, state, and federal level in the 
United States. The resulting discontinuous 
relationship between win/loss status and the 
vote share is used in the context of the U.S. 
Congress in Lee (2001, 2008), Lee, Enrico 
Moretti and Matthew J. Butler (2004), 
David Albouy (2009), Albouy (2008), and in 
the context of mayoral elections in Ferreira 
and Joseph Gyourko (2009). The same idea 
is used in examining the impacts of union 
recognition, which is also decided by a secret 
ballot election (DiNardo and Lee 2004).

6.2.2 Intentional Discretization

Sometimes resources could potentially 
be allocated on a continuous scale but, in 
practice, are instead done in discrete lev-
els. Among the studies we surveyed, we 

 identified three broad motivations behind 
the use of these discontinuous rules.

First, a number of rules seem driven 
by a compensatory or equalizing motive. 
For example, in Kenneth Y. Chay, Patrick 
J. McEwan and Urquiola (2005), Edwin 
Leuven et al. (2007), and van der Klaauw 
(2008a), extra resources for schools were allo-
cated to the neediest communities, either on 
the basis of school-average test scores, dis-
advantaged minority proportions, or poverty 
rates. Similarly, Ludwig and Miller (2007), 
Erich Battistin and Enrico Rettore (2008), 
and Hielke Buddelmeyer and Emmanuel 
Skoufias (2004) study programs designed to 
help poor communities, where the eligibility 
of a community is based on poverty rates. In 
each of these cases, one could imagine pro-
viding the most resources to the neediest and 
gradually phasing them out as the need index 
declines, but in practice this is not done, per-
haps because it was impractical to provide 
very small levels of the treatment, given the 
fixed costs in administering the program.

A second motivation for having a discon-
tinuous rule is to allocate treatments on the 
basis of some measure of merit. This was 
the motivation behind the merit award from 
the analysis of Thistlethwaite and Campbell 
(1960), as well as recent studies of the effect 
of financial aid awards on college enroll-
ment, where the assignment variable is some 
measure of student achievement or test 
score, as in Thomas J. Kane (2003) and van 
der Klaauw (2002).

Finally, we have observed that a number 
of discontinuous rules are motivated by the 
need to most effectively target the treatment. 
For example, environmental regulations or 
clean-up efforts naturally will focus on the 
most polluted areas, as in Chay and Michael 
Greenstone (2003), Chay and Greenstone 
(2005), and Greenstone and Justin Gallagher 
(2008). In the context of criminal behav-
ior, prison security levels are often assigned 
based on an underlying score that quantifies 
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potential security risks, and such rules were 
used in Richard A. Berk and Jan de Leeuw 
(1999) and M. Keith Chen and Jesse M. 
Shapiro (2004).

6.3 Nonrandomized Discontinuity Designs

Throughout this article, we have focused 
on regression discontinuity designs that fol-
low a certain structure and timing in the 
assignment of treatment. First, individuals 
or communities—potentially in anticipa-
tion of the assignment of treatment—make 
decisions and act, potentially altering their 
probability of receiving treatment. Second, 
there is a stochastic shock due to “nature,” 
reflecting that the units have incomplete 
control over the assignment variable. And 
finally, the treatment (or the intention to 
treat) is assigned on the basis of the assign-
ment variable.

We have focused on this structure because 
in practice most RD analyses can be viewed 
along these lines, and also because of the 
similarity to the structure of a randomized 
experiment. That is, subjects of a random-
ized experiment may or may not make deci-
sions in anticipation to participating in a 
randomized controlled trial (although their 
actions will ultimately have no influence on 
the probability of receiving treatment). Then 
the stochastic shock is realized (the random-
ization). Finally, the treatment is adminis-
tered to one of the groups.

A number of the studies we surveyed 
though, did not seem to fit the spirit or 
essence of a randomized experiment. Since it 
is difficult to think of the treatment as being 
locally randomized in these cases, we will 
refer to the two research designs we identi-
fied in this category as “nonrandomized” dis-
continuity designs.

6.3.1 Discontinuities in Age with Inevitable  
 Treatment

Sometimes program status is turned 
on when an individual reaches a certain 

age. Receipt of pension benefits is typi-
cally tied to reaching a particular age (see 
Eric V. Edmonds 2004; Edmonds, Kristin 
Mammen, and Miller 2005) and, in the 
United States, eligibility for the Medicare 
program begins at age 65 (see Card,  
Dobkin, and Maestas 2008) and young 
adults reach the legal drinking age at 21 
(see Christopher Carpenter and Dobkin 
2009). Similarly, one is subject to the less 
punitive juvenile justice system until the 
age of majority (typically, 18) (see Lee and 
McCrary 2005).

These cases stand apart from the typical 
RD designs discussed above because here 
assignment to treatment is essentially inevi-
table, as all subjects will eventually age into 
the program (or, conversely, age out of the 
program). One cannot, therefore, draw any 
parallels with a randomized experiment, 
which necessarily involves some ex ante 
uncertainty about whether a unit ultimately 
receives treatment (or the intent to treat).

Another important difference is that 
the tests of smoothness in baseline char-
acteristics will generally be uninformative. 
Indeed, if one follows a single cohort over 
time, all characteristics determined prior to 
reaching the relevant age threshold are by 
 construction identical just before and after 
the cutoff.48 Note that in this case, time is 
the assignment variable, and therefore can-
not be manipulated.

This design and the standard RD share 
the necessity of interpreting the discontinu-
ity as the combined effect of all factors that 
switch on at the threshold. In the example of 
Thistlethwaite and Campbell (1960), if pass-
ing a scholarship exam provides the symbolic 

48  There are exceptions to this. There could be attrition 
over time, so that in principle, the number of observations 
could discontinuously drop at the threshold, changing the 
composition of the remaining observations. Alternatively, 
when examining a cross-section of different birth cohorts at 
a given point in time, it is possible to have sharp changes in 
the characteristics of individuals with respect to birthdate.
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honor of passing the exam as well as a mon-
etary award, the true treatment is a pack-
age of the two components, and one cannot 
attribute any effect to only one of the two. 
Similarly, when considering an age-activated 
treatment, one must consider the possibility 
that the age of interest is causing eligibility 
for potentially many other programs, which 
could affect the outcome.

There are at least two new issues that 
are irrelevant for the standard RD but are 
important for the analysis of age discontinui-
ties. First, even if there is truly an effect on 
the outcome, if the effect is not immediate, 
it generally will not generate a discontinu-
ity in the outcome. For example, suppose 
the receipt of Social Security benefits has 
no immediate impact but does have a long-
run impact on labor force participation. 
Examining the labor force behavior as a 
function of age will not yield a discontinuity 
at age 67 (the full retirement age for those 
born after 1960), even though there may be 
a long-run effect. It is infeasible to estimate 
long-run effects because by the time we 
examine outcomes five years after receiving 
the treatment, for example, those individuals 
who were initially just below and just above 
age 67 will be exposed to essentially the same 
length of time of treatment (e.g., five years).49

The second important issue is that, be -
cause treatment is inevitable with the pas-
sage of time, individuals may fully anticipate 
the change in the regime and, therefore, may 
behave in certain ways prior to the time when 
treatment is turned on. Optimizing behavior 
in anticipation of a sharp regime change may 
either accentuate or mute observed effects. 
For example, simple life-cycle theories, 
assuming no liquidity constraints, suggest 
that the path of consumption will exhibit 

49  By contrast, there is no such limitation with the 
standard RD design. One can examine outcomes defined 
at an arbitrarily long time period after the assignment to 
treatment.

no discontinuity at age 67, when Social 
Security benefits commence payment. On 
the other hand, some medical procedures 
are too expensive for an under-65-year-old 
but would be covered under Medicare upon 
turning 65. In this case, individuals’ greater 
awareness of such a predicament will tend to 
increase the size of the discontinuity in uti-
lization of medical procedures with respect 
to age (e.g., see Card, Dobkin, and Maestas 
2008).

At this time we are unable to provide any 
more specific guidelines for analyzing these 
age/time discontinuities since it seems that 
how one models expectations, information, 
and behavior in anticipation of sharp changes 
in regimes will be highly context-dependent. 
But it does seem important to recognize 
these designs as being distinct from the stan-
dard RD design.

We conclude by emphasizing that when 
distinguishing between age-triggered treat-
ments and a standard RD design, the involve-
ment of age as an assignment variable is not 
as important as whether the receipt of treat-
ment—or analogously, entering the control 
state—is inevitable. For example, on the sur-
face, the analysis of the Medicaid  expansions 
in Card and Lara D. Shore-Sheppard (2004) 
appears to be an age-based discontinuity 
since, effective July 1991, U.S. law requires 
states to cover children born after September 
30, 1983, implying a discontinuous relation-
ship between coverage and age, where the 
discontinuity in July 1991 was around 8 years 
of age. This design, however, actually fits 
quite easily into the standard RD framework 
we have discussed throughout this paper.

First, note that treatment receipt is not 
inevitable for those individuals born near the 
September 30, 1983, threshold. Those born 
strictly after that date were covered from 
July 1991 until their 18th birthday, while 
those born on or before the date received no 
such coverage. Second, the data generating 
process does follow the structure discussed 
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above. Parents do have some influence 
regarding when their children are born, but 
with only imprecise control over the exact 
date (and at any rate, it seems implausible 
that parents would have anticipated that such 
a Medicaid expansion would have occurred 
eight years in the future, with the particular 
birthdate cutoff chosen). Thus the treatment 
is assigned based on the assignment variable, 
which is the birthdate in this context.

Examples of other age-based discontinui-
ties where neither the treatment nor control 
state is guaranteed with the passage of time 
that can also be viewed within the standard 
RD framework include studies by Cascio and 
Lewis (2006), McCrary and Royer (2003), 
Dobkin and Ferreira (2009), and Phillip 
Oreopoulos (2006).

6.3.2 Discontinuities in Geography

Another “nonrandomized” RD design 
is one involving the location of residences, 
where the discontinuity threshold is a bound-
ary that demarcates regions. Black (1999) 
and Patrick Bayer, Ferreira, and Robert 
McMillan (2007) examine housing prices on 
either side of school attendance boundaries 
to estimate the implicit valuation of  different 
schools. Lavy (2006) examines adjacent 
neighborhoods in different cities, and there-
fore subject to different rules regarding 
student busing. Rafael Lalive (2008) com-
pares unemployment duration in regions in 
Austria receiving extended benefits to adja-
cent control regions. Karen M. Pence (2006) 
examines census tracts along state borders 
to examine the impact of more borrower-
friendly laws on mortgage loan sizes.

In each of these cases, it is awkward to 
view either houses or families as locally ran-
domly assigned. Indeed this is a case where 
economic agents have quite precise control 
over where to place a house or where to live. 
The location of houses will be planned in 
response to geographic features (rivers, lakes, 
hills) and in conjunction with the planning of 

streets, parks, commercial development, etc. 
In order for this to resemble a more standard 
RD design, one would have to imagine the 
relevant boundaries being set in a “random” 
way, so that it would be simply luck deter-
mining whether a house ended up on either 
side of the boundary. The concern over the 
endogeneity of boundaries is clearly recog-
nized by Black (1999), who “. . . [b]ecause 
of concerns about neighborhood differences 
on opposite sides of an attendance district 
boundary, . . . was careful to omit boundar-
ies from [her] sample if the two attendance 
districts were divided in ways that seemed 
to clearly divide neighborhoods; attendance 
districts divided by large rivers, parks, golf 
courses, or any large stretch of land were 
excluded.” As one could imagine, the selec-
tion of which boundaries to include could 
quickly turn into more of an art than a science.

We have no uniform advice on how to ana-
lyze geographic discontinuities because it 
seems that the best approach would be par-
ticularly context-specific. It does, however, 
seem prudent for the analyst, in assessing 
the internal validity of the research design, 
to carefully consider three sets of  questions. 
First, what is the process that led to the loca-
tion of the boundaries? Which came first: 
the houses or the boundaries? Were the 
boundaries a response to some preexisting 
geographical or political constraint? Second, 
how might sorting of families or the endog-
enous location of houses affect the analysis? 
And third, what are all the things differing 
between the two regions other than the treat-
ment of interest? An exemplary analysis and 
discussion of these latter two issues in the 
context of school attendance zones is found 
in Bayer, Ferreira, and McMillan (2007).

7. Concluding Remarks on RD Designs in 
Economics: Progress and Prospects

Our reading of the existing and active lit-
erature is that—after being largely ignored 
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by economists for almost forty years—there 
have been significant inroads made in under-
standing the properties, limitations, inter-
pretability, and perhaps most importantly, 
in the useful application of RD designs to a 
wide variety of empirical questions in eco-
nomics. These developments have, for the 
most part, occurred within a short period of 
time, beginning in the late 1990s.

Here we highlight what we believe are the 
most significant recent contributions of the 
economics literature to the understanding 
and application of RD designs. We believe 
these are helpful developments in guiding 
applied researchers who seek to implement 
RD designs, and we also illustrate them with 
a few examples from the literature.

 •  Sorting and Manipulation of the 
Assignment Variable:	Economists con-
sider how self-interested individuals or 
optimizing organizations may behave in 
response to rules that allocate resources. 
It is therefore unsurprising that the 
discussion of how endogenous sort-
ing around the discontinuity threshold 
can invalidate the RD design has been 
found (to our knowledge, exclusively) in 
the economics literature. By contrast, 
textbook treatments outside econom-
ics on RD do not discuss this sorting or 
manipulation, and give the impression 
that the knowledge of the assignment 
rule is sufficient for the validity of the 
RD.50

50  For example, Trochim (1984) characterizes the three 
central assumptions of the RD design as: (1) perfect adher-
ence to the cutoff rule, (2) having the correct functional 
form, and (3) no other factors (other than the program of 
interest) cause the discontinuity. More recently, William 
R. Shadish, Cook, and Campbell (2002) claim on page 243 
that the proof of the unbiasedness of RD primarily follows 
from the fact that treatment is known perfectly once the 
assignment variable is known. They go on to argue that this 
deterministic rule implies omitted variables will not pose 
a problem. But Hahn, Todd, and van der Klaauw (2001)

	 	 We	 believe a “state-of-the-art” RD 
analysis today will consider carefully 
the possibility of endogenous sorting. A 
recent analysis that illustrates this stan-
dard is that of Urquiola and Verhoogen 
(2009), who examine the class size cap 
RD design pioneered by Angrist and 
Lavy (1999) in the context of Chile’s 
highly liberalized market for primary 
schools. In a certain segment of the pri-
vate market, schools receive a fixed pay-
ment per student from the government. 
However, each school faces a very high 
marginal cost (hiring one extra teacher) 
for crossing a multiple of the class size 
cap. Perhaps unsurprisingly, they find 
striking discontinuities in the histogram 
of the assignment variable (total enroll-
ment in the grade), with an undeniable 
“stacking” of schools at the relevant class 
size cap cutoffs. They also provide evi-
dence that those families in schools just 
to the left and right of the  thresholds 
are systematically different in family 
income, suggesting some degree of sort-
ing. For this reason, they conclude that 
an RD analysis in this particular con-
text is most likely inappropriate.51	This 
study, as well as the analysis of Bayer, 
Ferreira, and McMillan (2007) reflects a 
heightened awareness of a sorting issue 
recognized since the beginning of the 
recent wave of RD applications in eco-
nomics.52	From a practitioner’s perspec-
tive, an important recent development

make it clear that the existence of a deterministic rule for 
the assignment of treatment is not sufficient for unbiased-
ness, and it is necessary to assume the influence of all other 
factors (omitted variables) are the same on either side of the 
discontinuity threshold (i.e., their continuity assumption).

51  Urquiola and Verhoogen (2009) emphasize the sort-
ing issues may well be specific to the liberalized nature of 
the Chilean primary school market, and that they may or 
may not be present in other countries.

52  See, for example, footnote 23 in van der Klaauw 
(1997) and page 549 in Angrist and Lavy (1999).
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  is the notion that we can empirically 
examine the degree of sorting, and one 
way of doing so is suggested in McCrary 
(2008).

 •  RD Designs as Locally Randomized 
Experiments:	 Economists are hesitant 
to apply methods that have not been 
rigorously formalized within an econo-
metric framework, and where crucial 
identifying assumptions have not been 
clearly specified. This is perhaps one of 
the reasons why RD designs were under-
utilized by economists for so long, since it 
is only relatively recently that the under-
lying assumptions needed for the RD 
were formalized.53 In the recent litera-
ture, RD designs were initially  viewed 
as a special case of matching (Heckman, 
Lalonde, and Smith 1999), or alterna-
tively as a special case of IV (Angrist and 
Krueger 1999), and these perspectives 
may have provided empirical researchers 
a familiar econometric framework within 
which identifying assumptions could be 
more carefully discussed.

  Today, RD is increasingly recognized 
in applied research as a distinct design 
that is a close relative to a randomized 
experiment. Formally shown in Lee 
(2008), even when individuals have 

53  An example of how economists’/econometricians’ 
notion of a proof differs from that in other disciplines is 
found in Cook (2008), who views the discussion in Arthur 
S. Goldberger (1972a) and Goldberger (1972b) as the first 
“proof of the basic design,” quoting the following passage 
in Goldberger (1972a) (brackets from Cook 2008): “The 
explanation for this serendipitous result [no bias when 
selection is on an observed pretest score] is not hard to 
locate. Recall that z [a binary variable representing the 
treatment contrast at the cutoff] is completely determined 
by pretest score x [an obtained ability score]. It cannot 
contain any information about x* [true ability] that is not 
contained within x. Consequently, when we control on x 
as in the multiple regression, z has no explanatory power 
with respect to y [the outcome measured with error]. More 
formally, the partial correlation of y and z controlling on 
x vanishes although the simple correlation of y and z is

some control over the assignment vari-
able, as long as this control is impre-
cise—that is, the ex ante density of the 
assignment variable is continuous—the 
consequence will be local randomiza-
tion of the treatment. So in a number 
of nonexperimental contexts where 
resources are allocated based on a sharp 
cutoff rule, there may indeed be a hid-
den randomized experiment to utilize. 
And furthermore, as in a randomized 
experiment, this implies that all observ-
able baseline covariates will locally have 
the same distribution on either side of 
the discontinuity threshold—an empiri-
cally testable proposition.

  We view the testing of the continuity 
of the baseline covariates as an impor-
tant part of assessing the validity of any 
RD design—particularly in light of the 
incentives that can potentially generate 
sorting—and as something that truly 
sets RD apart from other evaluation 
strategies. Examples of this kind of test-
ing of the RD design include Jordan D. 
Matsudaira (2008), Card, Raj Chetty 
and Andrea Weber (2007), DiNardo 
and Lee (2004), Lee, Moretti and Butler 
(2004), McCrary and Royer (2003), 
Greenstone and Gallagher (2008), and 
Urquiola and Verhoogen (2009).

nonzero”(p. 647). After reading the article, an econometri-
cian will recognize the discussion above not as a proof of 
the validity of the RD, but rather as a restatement of the 
consequence of z being an indicator variable determined 
by an observed variable x, in a specific parameterized 
example. Today we know the existence of such a rule is 
not sufficient for a valid RD design, and a crucial neces-
sary assumption is the continuity of the influence of all 
other factors, as shown in Hahn, Todd, and van der Klaauw 
(2001). In Goldberger (1972a), the role of the continuity of 
omitted factors was not mentioned (although it is implicitly 
assumed in the stylized model of test scores involving nor-
mally distributed and independent errors). Indeed, appar-
ently Goldberger himself later clarified that he did not set 
out to propose the RD design, and was instead interested 
in the issues related to selection on observables and unob-
servables (Cook 2008).
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 •  Graphical Analysis and Presentation:	
The graphical presentation of an 
RD analysis is not a contribution of 
economists,54 but it is safe to say that the 
body of work produced by economists 
has led to a kind of “industry standard” 
that the transparent identification strat-
egy of the RD be accompanied by an 
equally transparent graph showing the 
empirical relation between the outcome 
and the assignment variable. Graphical 
presentations of RD are so prevalent in 
applied research, it is tempting to guess 
that studies not including the graphical 
evidence are ones where the graphs are 
not compelling or well-behaved.

  In an RD analysis, the graph is indis-
pensable because it can summarize a 
great deal of information in one picture. 
It can give a rough sense of the range 
of the both the assignment variable and 
the outcome variable as well as the over-
all shape of the relationship between 
the two, thus indicating what functional 
forms are likely to make sense. It can also 
alert the researcher to potential outliers 
in both the assignment and outcome 
variables. A graph of the raw means—in 
nonoverlapping intervals, as discussed 
in section 4.1—also gives a rough sense 
of the likely sampling variability of the 
RD gap estimate itself, since one can 
compare the size of the jump at the 
discontinuity to natural “bumpiness” in 
the graph away from the discontinuity. 
Our reading of the literature is that the 
most informative graphs are ones that 
simultaneously allow the raw data “to 
speak for themselves” in revealing a 
discontinuity if there is one, yet at the 
same time treat data near the thresh-
old the same as data away from the  

54  Indeed the original article of Thistlethwaite and 
Campbell (1960) included a graphical analysis of the data.

threshold.55 There are many exam-
ples that follow this general principle; 
recent ones include Matsudaira (2008), 
Card, Chetty and Weber (2007), Card, 
Dobkin, and Maestas (2009), McCrary 
and Royer (2003), Lee (2008), and 
Ferreira and Gyourko (2009).

 •  Applicability: Soon after the introduc-
tion of RD, in a chapter in a book on 
research methods, Campbell and Julian 
C. Stanley (1963) wrote that the RD 
design was “very limited in range of 
possible applications.” The emerging 
body of research produced by econo-
mists in recent years has proven quite 
the opposite. Our survey of the litera-
ture suggests that there are many kinds 
of discontinuous rules that can help 
answer important questions in econom-
ics and related areas. Indeed, one may 
go so far as to guess that whenever a 
scarce resource is rationed for individual 
entities, if the political climate demands 
a transparent way of distributing that 
resource, it is a good bet there is an 
RD design lurking in the background. 
In addition, it seems that the approach 
of using changes in laws that disqualify 
older birth cohorts based on their date 
of birth (as in Card and Shore-Sheppard 
(2004) or Oreopoulos (2006)) may well 
have much wider applicability.

  One way to understand both the 
applicability and limitations of the RD 
design is to recognize its relation to a 
standard econometric policy evaluation 
framework, where the main variable 
of interest is a potentially endogenous 
binary treatment variable (as consid-
ered in Heckman 1978 or more recently 
discussed in Heckman and Vytlacil 

55  For example, graphing a smooth conditional expec-
tation function everywhere except at the discontinuity 
threshold violates this principle.



351Lee and Lemieux: Regression Discontinuity Designs in Economics

2005). This selection model applies to a 
great deal of economic problems. As we 
pointed out in section 3, the RD design 
describes a situation where you are able 
to observe the latent variable that deter-
mines treatment. As long as the density 
of that variable is continuous for each 
individual, the benefit of observing the 
latent index is that one neither needs to 
make exclusion restrictions nor assume 
any variable (i.e., an instrument) is 
independent of errors in the outcome 
equation.

  From this perspective, for the class of 
problems that fit into the standard treat-
ment evaluation problem, RD designs 
can be seen as a subset since there is an 
institutional, index-based rule playing a 
role in determining treatment. Among 
this subset, the binding constraint of 
RD lies in obtaining the necessary data: 
readily available public-use household 
survey data, for example, will often only 
contain variables that are correlated 
with the true assignment variable (e.g., 
reported income in a survey, as opposed 
to the income used for allocation of ben-
efits), or are measured too coarsely (e.g., 
years rather than months or weeks) to 
detect a discontinuity in the presence 
of a regression function with significant 
curvature. This is where there can be a 
significant payoff to investing in secur-
ing high quality data, which is evident in 
most of the studies listed in table 5.

7.1 Extensions

We conclude by discussing two natural 
directions in which the RD approach can 
be extended. First, we have discussed the 
“fuzzy” RD design as an important departure 
from the “classic” RD design where treat-
ment is a deterministic function of the assign-
ment variable, but there are other departures 
that could be practically relevant but not as 
well understood. For example, even if there 

is perfect compliance of the discontinuous 
rule, it may be that the researcher does not 
directly observe the assignment variable, but 
instead possesses a slightly noisy measure of 
the variable. Understanding the effects of 
this kind of measurement error could further 
expand the applicability of RD. In addition, 
there may be situations where the researcher 
both suspects and statistically detects some 
degree of precise sorting around the thresh-
old, but that the sorting may appear to be 
relatively minor, even if statistically signifi-
cant (based on observing discontinuities in 
baseline characteristics). The challenge, 
then, is to specify under what conditions one 
can correct for small amounts of this kind of 
contamination.

Second, so far we have discussed the 
sorting or manipulation issue as a potential 
problem or nuisance to the general program 
evaluation problem. But there is another way 
of viewing this sorting issue. The observed 
sorting may well be evidence of economic 
agents responding to incentives, and may 
help identify economically interesting phe-
nomena. That is, economic behavior may 
be what is driving discontinuities in the fre-
quency distribution of grade enrollment (as 
in Urquiola and Verhoogen 2009), or in the 
distribution of roll call votes (as in McCrary 
2008), or in the distribution of age at offense 
(as in Lee and McCrary 2005), and those 
behavioral responses may be of interest.

These cases, as well as the age/time and 
boundary discontinuities discussed above, 
do not fit into the “standard” RD framework, 
but nevertheless can tell us something impor-
tant about behavior, and further expand the 
kinds of questions that can be addressed by 
exploiting discontinuous rules to identify 
meaningful economic parameters of interest.
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