
 

Chapter 3 
TIME SERIES VERSUS INDEX NUMBER METHODS 

FOR SEASONAL ADJUSTMENT 
W. Erwin Diewert, William F. Alterman and Robert C. Feenstra1 

 

1. Introduction 
 

 This chapter argues that time series methods for the seasonal adjustment of economic 
price or quantity series cannot in general lead to measures of short term month-to-month 
measures of price or quantity change that are free of seasonal influences. This impossibility 
result can be seen most clearly if each seasonal commodity in an aggregate is present for only 
one season of each year. However, time series methods of seasonal adjustment can lead to 
measures of the underlying trend in an economic series and to forecasts of the underlying trend. 
In this context, it is important to have a well defined definition of the trend and the chapter 
suggests that index number techniques based on the moving or rolling year concept can provide a 
good target measure of the trend. The almost forgotten work of Oskar Anderson (1927) on the 
difficulties involved in using time series methods to identify the trend and seasonal component in 
a series is reviewed. 

 Economists and statisticians have struggled for a long time with the time series approach 
to seasonal adjustment. In fact, the entire topic is somewhat controversial as the following 
quotation indicates: 

“We favor modeling series in terms of the original data, accounting for seasonality in the model, 
rather than using adjusted data. … In the light of these remarks and the previous discussion, it is 
relevant to ask whether seasonal adjustment can be justified, and if so, how? It is important to 
remember that the primary consumers of seasonally adjusted data are not necessarily statisticians 
and economists, who could most likely use the unadjusted data, but people such as government 
officials, business managers, and journalists, who often have little or no statistical training. … In 
general, there will be some information loss from seasonal adjustment, even when an adjustment 
method appropriate for the data being adjusted can be found. The situation will be worse when the 
seasonal adjustment is based on incorrect assumptions. If people will often be misled by using 
seasonally adjusted data, then their use cannot be justified.”  

William R. Bell and Steven C. Hillmer (1984; 291). 

 
Citation for this chapter: 
W. Erwin Diewert, William F. Alterman and Robert C. Feenstra (2011),  
“Time Series versus Index Number Methods of Seasonal Adjustment,” chapter 3, pp. 29-52 in 
W.E. Diewert, B.M. Balk, D. Fixler, K.J. Fox and A.O. Nakamura,  
PRICE AND PRODUCTIVITY MEASUREMENT: Volume 2 -- Seasonality, Trafford Press. 
 

                                                 
1 Diewert is with the Department of Economics at the University of British Columbia, and can be reached at 
diewert@econ.ubc.ca. Alterman is with the U.S. Bureau of Labor Statistics (BLS), and can be reached at 
alterman_w@bls.gov. Feenstra is with the Department of Economics at the University of California at Davis, and 
can be reached at rcfeenstra@ucdavis.edu. The first author is indebted to the Social Sciences and Humanities 
Research Council of Canada for financial support. This chapter draws heavily on Chapter 5 of Alterman, Diewert 
and Feenstra (1999). 

 
© Alice Nakamura, 2011. Permission to link to, or copy or reprint, these materials is granted without restriction, 
including for use in commercial textbooks, with due credit to the authors and editors. 



W. Erwin Diewert, William F. Alterman and Robert C. Feenstra  

 If the seasonal component in a price series is removed, then it could be argued that the 
resulting seasonally adjusted price series could be used as a valid indicator of short term month-
to-month price change. 2  However, in this chapter, we will argue that there are some 
methodological difficulties with traditional time series methods for seasonally adjusting prices, 
particularly when some seasonal commodities are not present in the marketplace in all seasons. 
Under these circumstances, seasonally adjusted data can only represent trends in the movement 
of prices rather than an accurate measure of the change in prices going from one season to the 
next.  Before we can adjust a price for seasonal movements, it is first necessary to measure the 
seasonal component. Thus as the following quotations indicate, it is first necessary to have a 
proper definition of the seasonal component before it can be eliminated: 

“The problem of measuring—rather than eliminating—seasonal fluctuations has not been 
discussed. However, the problem of measurement must not be assumed necessarily divorced from 
that of elimination.”  

Frederick R. Macaulay (1931; 121). 

“This discussion points out the arbitrariness inherent in seasonal adjustment. Different methods 
produce different adjustments because they make different assumptions about the components and 
hence estimate different things. This arbitrariness applies equally to methods (such as X-11) that 
do not make their assumptions explicit, since they must implicitly make the same sort of 
assumptions as we have discussed here. ... Unfortunately, there is not enough information in the 
data to define the components, so these types of arbitrary choices must be made. We have tried to 
justify our assumptions but do not expect everyone to agree with them. If, however, anyone wants 
to do seasonal adjustment but does not want to make these assumptions, we urge them to make 
clear what assumptions they wish to make. Then the appropriateness of the various assumptions 
can be debated. 

This debate would be more productive than the current one regarding the choice of seasonal 
adjustment procedures, in which no one bothers to specify what is being estimated. Thus if debate 
can be centered on what it is we want to estimate in doing seasonal adjustment, then there may be 
no dispute about how to estimate it.”  

William R. Bell and Steven C. Hillmer (1984; 305). 

 As the above quotations indicate, it is necessary to specify very precisely what the 
definition of the seasonal is. The second quotation also indicates that there is no commonly 
accepted definition for the seasonal. In the subsequent sections of this chapter, we will spell out 
some of the alternative definitions of the seasonal that have appeared in the literature. Thus in 
sections 2 and 3 below, we spell out the very simple additive and multiplicative models of the 
seasonal for calendar years. In section 4, we show that these calendar year models of the seasonal 
are not helpful in solving the problem of determining measures of month-to-month price change 
free of seasonal influences. Thus in section 5, we consider moving year or rolling year models of 
the seasonal that are counterparts to the simple calendar year models of sections 2 and 3. These 
rolling year models of the seasonal are more helpful in determining month-to-month movements 
in prices that are free from seasonal movements. However, we argue that these seasonally 
adjusted measures of monthly price change are movements in an annual trend rather than true 
short term month-to-month movements. 

                                                 
2 For example, consider the following quotation: “In the second place, if comparisons are required between seasons 
rather than between years then the estimation of the normal seasonal variation of prices appropriate to the base year 
forms an integral part of the calculations.” Richard Stone (1956; 77). 
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 In section 6, we consider a few of the early time series models of the seasonal. In section 
7, we consider more general time series models of the seasonal and present Anderson’s (1927) 
critique of these unobserved components models. The time series models discussed in sections 6 
and 7 differ from the earlier sections in that they add random errors, erratic components, 
irregular components or white noise into the earlier decomposition of a price series into trend 
and seasonal components. Unfortunately, this addition of error components to the earlier simpler 
models of the seasonal greatly complicates the study of seasonal adjustment procedures since it 
is now necessary to consider the tradeoff between fit and smoothness. There are also 
complications due to the nature of the irregular or random components. In particular, if we are 
dealing with micro data from a particular establishment, the irregular component of the series 
provided to the statistical agency can be very large due to the sporadic nature of production, 
orders or sales. A business economist with the Johns-Manville Corporation made the following 
comments on the nature of irregular fluctuations in micro data: 

“Irregular fluctuations are of two general types: random and non-random. Random irregulars 
include all the variation in a series that cannot be otherwise identified as cyclical or seasonal or as 
a nonrandom irregular. Random irregulars are of short duration and of relatively small amplitude. 
Usually if a random irregular movement is upward one month, it will be downward the next 
month. This type of irregular can logically be eliminated by such a smoothing process as a fairly 
short term rolling average. Non-random irregulars cannot logically be identified as either cyclical 
of seasonal but are associated with a known cause. They are particularly apt to occur in dealing 
with company data. An exceptionally large order will be received in one month. A large contract 
may be awarded in one month but the work on it may take several months to complete. Sales in a 
particular month may be very large as a result of an intensive campaign or an advance 
announcement of a forthcoming price increase, and be followed by a month or two of unusually 
low sales. It takes a much longer rolling average to smooth out irregularities of this sort than 
random fluctuations. Even after fluctuations are smoothed out, a peak or trough may result which 
is not truly cyclical, or it may occur at the wrong time. Existing programs for seasonal adjustment 
do not, I believe, give sufficient attention to eliminating the effects of non-random irregulars.”  

Harrison W. Cole (1963; 135). 

 Finally, in section 8, we return to the main question asked in this chapter: can price data 
that are seasonally adjusted by time series methods provide accurate information on the short 
term month-to-month movement in prices? Our answer to this question is: basically, no! 
Seasonally adjusted prices can only provide information on the longer term trend in prices. In 
view of the general lack of objectivity, reproducibility and comprehensibility of time series 
methods of seasonal adjustment, we suggest that a better alternative to the use of traditionally 
seasonally adjusted data to represent trends in prices would be the use of the centered rolling 
year annual indexes explained in Diewert (1983) (1996) (1999). 

 

2. Calendar Year Seasonal Concepts: Additive Models 
 

 In this chapter, we will restrict ourselves to considering the problems involved in 
seasonally adjusting a single price (and or quantity) series. Let  and  denote the 
observed price and quantity for a commodity in year y and “month” m where there are M 
“months” in the year. As usual, it will sometimes be convenient to switch to consecutive periods 
or seasons t where 

m,yp m,yq
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(1)  ,   mM)1y(t +−= Y,,2,1y K=  and M,,2,1m K= . 

Thus when it is convenient, we will sometimes relabel the price for year y and month m, , 

as  where t is defined by (1). 
m,yp

tp

 We first consider the problem of defining seasonal factors for the quantity series, . m,yq

 Our reason for considering the quantity case before the price case is that a natural annual 
measure of quantity is simply the annual amount produced or the annual amount demanded, 

. Then it is natural to compare the quantity pertaining to any month, , with the 

annual calendar year average quantity,  , defined as: 
m,y

M
1m q=∑ m,yq

,Qy

(2)  ,  m,y
M

1my q)M/1(Q =∑≡ Y,,2,1y K= . 

 Note that ,Q  is the arithmetic average of the “monthly” quantities  in year y. The 

additive seasonal factor  for month m of year y can now be defined as the difference 

between the actual quantity for month m of year y, , and the calendar year annual average 

quantity : 

y m,yq

m,yS

m,yq

,Qy

(3)  ,   ym,ym,y QqS −≡ Y,,2,1y K=  and M,,2,1m K= . 

 Using definitions (2) and (3), it can be verified the additive seasonal factors, S , sum 
to zero over the seasons in any given year; i.e., we have the following restrictions on the 
seasonals: 

m,y

0S m,y
M

1m =∑ = Y,,2, K(4)     for 1y = . 

 Note that the seasonal factors defined by (3) cannot be defined until the end of the 
calendar year y when information on the quantity for the last season in the year becomes 
available. The above algebra explains how additive seasonal factors can be defined. The next 
step is to explain how the seasonal factors may be used in a seasonal adjustment procedure. The 
basic hypothesis in a seasonal adjustment procedure is that seasonal factors estimated using past 
data will persist into the future. Thus let  be an estimator for the month m seasonal factor in 

year y that is based on past seasonal factors, S  for month m for years prior to 
year y. Now rewrite equation (3) as follows: 

*
m,yS

...,S, m,2ym,1y −−

m,ym,y S−

*
m,ym,y

*
y SqQ −≡

(5)  . y qQ =

 If we now replace the actual seasonal factor  in (5) by the estimated or forecasted 

seasonal factor , then the right hand side of (5) becomes a forecast for the average annual 
quantity for year y; i.e., we have 

m,yS
*

m,yS

(6)  . 
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 Once an estimate for average annual output  or input is known, then annual output 

or input can be forecasted as M times . This illustrates one possible use for a seasonal 
adjustment procedure. 

*
m,yQ

*
m,yQ

 The above algebra can be repeated for prices in place of quantities. Thus define the 
average level of prices for calendar year y as: 

(7)  ,  m,y
M

1my p)M/1(P =∑≡ Y,,2,1y K=  and M,,2,1m K= . 

Define the additive seasonal price factor  for month m of year y as the difference between 

the observed month m, year y price  and the corresponding calendar year y annual average 

level of prices :

m,yS

m,yp

yP 3 

(8)  ,   ym,ym,y PpS −≡ Y,,2,1y K M,,2,1m K=  and = . 

Again, it can be verified using definitions (7) and (8) that the seasonal price factors,  

defined by (8), satisfy the restrictions (4), , for each calendar year y. 

m,yS

0=

*
m,yS

S m,y1m∑ =

m,yP

*
m,ym,y

*
y SpP −≡

m,y y

                                                

M

 As in the quantity case, if we have an estimator  for the month m seasonal factor for 
year y that is based on prior year seasonals of the form defined by (8), then we can forecast the 
average level of prices in year y, , by using the following counterpart to (6): *

(9)  . 

 The only difference between the price and quantity cases is that usually, we are interested 
in forecasts of annual total output (or input) in the quantity case, while in the price case, we are 
generally interested in the average annual level of prices.  We will now focus our attention on 
the price case for the remainder of this chapter. In this case, it is no longer so clear that we will 
always want to define the average annual level of prices for year y, , by the arithmetic mean, 
(7); why should we not use a geometric mean or some other form of symmetric mean? 
Furthermore, why should the seasonal S  be additive to the annual average level of prices P  
as in (8)? Perhaps a multiplicative seasonal factors model would lead to more “stable” estimates 
of the seasonal factors. Thus in the following section, we consider these alternative models for 
the seasonal. 

yP

 

 
3 To economise on notation, we have used the same symbol for the seasonal factors in both the price and quantity 
contexts. However, in the remainder of this chapter, we will concentrate on the price case. 
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3. Calendar Year Seasonal Concepts: Multiplicative Models 

 

 We now define the calendar year y average price level  as the geometric mean of the 
“monthly” prices in that year:

yp
4 

(10)  ,  M/1
m,y

M
1my ]p[p =∏≡ Y,,2,1y K= . 

Define the multiplicative seasonal price factors s  for month m of year y as the ratio m,y

m,ypof the observed month m, year y price  to the corresponding annual average  yp

defined by (10): 

Y,,2,1y K M,,2,1m K= = . (11)  ,    and ym,ym,y pps ≡

Using definitions (10) and (11), it can be verified that the multiplicative seasonal factors satisfy 
the following restrictions: 

(12)  ,  1]s[ M/1M =∏ Y,,2,1ym,y1m= K= . 

 If we raise both sides of (12) to the power M, then the multiplicative seasonal factors 
 also satisfy the following equivalent restrictions: m,ys

1m,y =∏ Y,,2,1y K(13)  ,   sM
1m− . =

 As in the previous section, if the multiplicative seasonal factors defined by (11) are 
“stable” over years, then an estimator for the year y, month m seasonal factor based on prior year 
seasonal factors, s , can be obtained and a prediction or forecast for the annual average level 
of prices in year y can be obtained as follows: 

*
m,y

(14)  *
m,ym,y

* sp≡ Y,y Kyp ,   ,2,1  and M,,2,1m K= . =

 The multiplicative model presented in this section made two changes from the additive 
model considered in the previous section: 

• The annual average level of prices was changed from the arithmetic mean of the monthly 
prices, yP  defined by (7), to the geometric mean yp  defined by (10). 

• The additive model of the seasonal defined by (8) was replaced by the multiplicative 
model (11). 

 Obviously, we do not have to make both of these changes at the same time. Thus we 
could combine the arithmetic mean definition for the average level of prices, P , with a y

                                                 
4 Obviously, this model breaks down unless all prices in the year are positive. We make this assumption whenever 
we consider multiplicative seasonal models. 

 34



W. Erwin Diewert, William F. Alterman and Robert C. Feenstra  

multiplicative model for the seasonal factors. In this alternative model, the seasonal factors 
would be defined as follows: 

(15)  ym,ym,y pp≡σ ,   Y,,2,1y K=  and M,,2,1m K= . 

The “mixed” seasonal factors  defined by (15) and (7) satisfy the following restrictions: m,yσ

(16)  ,   1)/1( ,1 =∑ = mymM σ Y,,2,1y KM = . 

 There is another model that would combine the geometric mean of the monthly prices 
pertaining to a year ,  defined by (10), as the “right” measure of the average level of prices for 
a year with the following “additive” model of the seasonal factors: 

yp

m,ym,y p≡α Y,,2,1y K(17)  ,    and M,,2,1m K= . yp− =

 The seasonal factors  defined by (17) and (10) satisfy the following somewhat 
messy restrictions: 

m,yα

(18)  1}1)p{( ym,y
M

1m =+α∏ = Y,,2,1y K,  = . 

 Which of the above four models of the seasonal is the “right” one? The answer to this 
question depends on the purpose one has in mind. If the purpose is to forecast or predict an 
annual level of prices based on observing a price for one season of the year, then the 
determination of the “right” seasonal model becomes an empirical matter; i.e., the alternative 
models would have to be evaluated empirically based on how well they predicted on a case by 
case basis. Thus with the forecasting purpose in mind, there can be no unambiguously correct 
model for the seasonal factors. Of course, the actual model evaluation problem, if our focus is 
prediction, is vastly more complicated than we have indicated for at least two reasons: 

• The arithmetic and geometric mean definitions for the annual average level of prices 
could be replaced by more general definitions of an average such as a mean of order r,5 

r/1r
m,y1

M
m ])p()M/1([∑ =

,...,p,p( 2,y1,yμ

, or by a homogeneous symmetric mean 6  of the prices 

pertaining to year y, say )p M,y .  

• Once the “right” mean is found, then the most “stable” seasonal factors need not be of the 
simple additive or multiplicative type that we have considered thus far. Hence if 

)p,...,p,p( M,y2,y1,yy μ≡μ  is the “right” annual mean for year y, the most stable 
seasonals might be defined as the following sequence of factors: 

), yM,yp(f),...,,p(f),,p(f y2,yy1,y μμμ , where f is a suitable function of two variables. 

Thus corresponding to different choices for the functions μ  and f, there are countless infinities of 
possible seasonal models that could be evaluated on the basis of their predictive powers for 
seasonally adjusting a specific series.  However, suppose that our purpose in considering 

                                                 
5 See Hardy, Littlewood and Polyá (1934) for material on means of order r. 
6 See Diewert (1993; 361-364) for material on homogeneous symmetric means. 
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seasonal adjustment procedures is to determine whether seasonally adjusted price series can 
provide useful information on the month-to-month movement of prices, free from seasonal 
influences. In the following section, we show that concepts of the seasonal that are based on 
calendar year concepts are useless for this purpose. 

 

4. Calendar Year Seasonal Adjustment and Month-to-month Price Change 

 

 Suppose we use the additive calendar year method for defining seasonal factors; i.e., we 
use (7) and (8) in section 2 above to define the seasonal factors  for month m of year y. 

Obviously, at the end of year y, we can use the additive seasonal factors  defined by (8) to 

form the seasonally adjusted data for year y,  

m,yS

m,yS
a

m,yp :

a
m,yp

]Pp[ ym,ym

(19)   m,ym,y Sp −≡

           p ,y −−

yP Y,,2,1y K

=   using definition (8) for  m,yS

           =     M,,2,1m K=  and = . 

 Similarly, if we use the multiplicative model of the seasonal defined by (10) and (11) in 
section 3 above, at the end of the year, we can use the multiplicative seasonal factors s  
defined by (11) to form the seasonally adjusted data for year y: 

m,y

(20)  m,ym
a

m,y sp

]p/p/[p ym,ym,y

,yp≡  

           =  

               yp= Y,,2,1y K= M,,2,1m K= and . 

 Thus for both the additive model and the multiplicative model, if we compare the level of 
the seasonally adjusted prices in months i and j in the same year y, using (19) or (20), we find 
that: 

1pp a
j,y

a
i,y = Y,,2,1y K(21)  ,   =  and M,,2,1m K= . 

 Thus seasonally adjusted data based on calendar year models can provide absolutely no 
information about the month-to-month change in seasonally adjusted prices for months in the 
same year. 

 Faced with the above negative result for methods of seasonal adjustment based on 
calendar years, we turn to noncalendar year methods of seasonal adjustment. 
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5. Rolling Year Concepts for the Seasonal 

 

 The calendar year is an artificial construct that is determined by tradition. Hence instead 
of comparing the price of a commodity in a given season of a calendar year to an average of the 
calendar year prices, why not compare this price to an average of the prices in the rolling year 
centered around the given season? 

 Thus if the number of seasons M in the year is odd,7 then the centered rolling average of 
the prices in the rolling year centered around a given period mM)1y(t +−≡  is defined as 

(22) . ]}pp]p){[M/1(P mt1mtmt1mt +=−= ∑++∑≡

}p)2/1(]p[p]p[p)2/1){(M/1(P 2/Mtmt
1)2/M(

1mtmt
1)2/M(

1m2/Mtt ++
−

=−
−

=− +∑++∑+≡

t

tt pS −≡

t

t

2/)1M(2/)1M( −−

 If M is even,8 then the centered rolling average of the prices in the “year” surrounding 
period t is conventionally defined as9 

(23) . 

 Note that when M is even, the centered rolling average extends over M+1 seasons with 
the two seasons furthest away from the center period t receiving only one half of the weight that 
the other prices receive. In words, the  defined by (22) or (23) are (arithmetic) average levels 
of prices for a year centered around the given period t.  Given the centered annual average levels 
of prices defined by (22) or (23), we can now define the corresponding period t additive rolling 
year seasonal factors S : 

tP

(24)  . tP

 We can also use P  in order to define the period t multiplicative rolling year seasonal 
factor s : 

(25)  ttt Pps ≡

                                                

. 

 The multiplicative model defined by (22) or (23) and (25) is known as a ratio to moving 
average model10 of the seasonal and it dates back to Macaulay11 at least: 

“A few years ago the writer was approached by the statistical department of a 
government bureau and asked to propose a good but simple method of discovering any 
seasonal fluctuations which might exist in economic time series of moderate length. He 
replied that, as he did not know of any simple and yet really ideal method, he would 
suggest graduating [smoothing] the data roughly by means of a 2 months rolling average 

 
7 This will be the case for days and semesters. 
8 This will be the case for weeks, months and quarters. 
9 Macaulay (1931; 122) was an early pioneer in the use of this convention. 
10 Joy and Thomas (1928; 241) use this terminology. Joy and Thomas (1928; 242) attributed the method to Dr. Fred 
R. Macaulay of the National Bureau of Economic Research. 
11 The Federal Reserve Board (1922; 1416) used this method as a building block into its method of seasonal 
adjustment but the method was attributed to Mr. F. R. Macaulay of the National Bureau of Economic Research. The 
Board continued to use Macaulay’s method as a building block for many years; see Barton (1941; 519-520). 
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of a 12 months rolling average, taking the deviations of the data from this rolling average 
(centered), and arriving at seasonal fluctuations from these deviations. Rough as is the 
method, it has been widely used and favorably noticed year after year. Moreover, though 
the method is extremely simple, in most cases the results are quite good.”  

Frederick R. Macaulay (1931; 121-122). 

Macaulay’s method is known as the ratio to moving average method. 

 Obviously, we could replace the centered arithmetic average of prices defined by (22) (if 
the number of seasons M is odd) or by (23) (if the number of seasons in the year is even) by 
corresponding geometric averages (provided that all prices are positive)12.  This substitution 
would generate additional models for the seasonal factors.  However, note that the new seasonal 
factors generated by these rolling year models will no longer necessarily satisfy counterparts to 
our calendar year consistency constraints (4), (13), (16) or (18). 

 As was done for our calendar year models for the seasonal factors, after half a year has 
passed, we can generate seasonally adjusted data for each period t. Thus after M/2 seasons have 
passed (in the case where M is even), the measure of the average level of prices centered around 
period t,  defined by (23), can be calculated and using the additive seasonal model (24), the 

seasonally adjusted level of price  for period t can be defined as: 
tP

apt

tp

[ ]tt Pp −−

tP

(26)   a
tt Sp −≡

           using (24) tp=

        = . 

In the case of the rolling year multiplicative seasonal model (25), the seasonally adjusted level of 
price pt

a can be defined as: 

(27)  t
a
t sp tp≡  

        [ ]ttt Ppp=    using definition (25) 

        . tP=

 For both the additive and multiplicative models of the seasonal, it now makes sense to 
compare the seasonally adjusted level of prices in period t to the seasonally adjusted level of 
prices in period r, even if both periods are in the same year. Thus using (26) or (27), we have: 

rt
a
r

a
t PPpp =(28)     for all periods t and r. 

However, using (28), the structure of the comparison of the seasonally adjusted prices for period 
t relative to period r, a

r
a
t p

                                                

p , becomes clear: we are comparing two measures of the average 

 
12 Suppose there are missing prices in our data set. If we set these missing prices equal to zero, then the centered 
moving (arithmetic) averages of prices can still be defined and the ratio to moving average seasonal factors can still 
be defined. However, if any price in the rolling year is zero, then the centered moving geometric average of the 
prices in the rolling year is zero, which is not informative! 
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annual level of prices centered around the two comparison periods, rt PP . Thus using seasonally 
adjusted data for making price comparisons between two periods leads to comparisons of two 
annual measures of average prices centered around the two periods being compared. Note that it 
is immaterial whether we use the additive or multiplicative model of the seasonal; both models 
lead to the same seasonally adjusted comparison given by (28). However, note that the form of 
the centered annual average still matters; if we replace the arithmetic means in (22) or (23) by 
say geometric means, then we would in general obtain different numbers on the right hand side 
of (28). Thus the theory of seasonal adjustment based on the rolling year concept (instead of the 
calendar year concept) is still not completely unambiguous. We still have to decide on what is 
the most appropriate functional form for the mean function,  

, that aggregates the M prices (if M is odd) that are centered around 
period t into an annual average. 

,p,,p( 1t2/)1m(t −−−μ K

)p,,p,p 2/)1m(t1tt +++ K

tt Pp

 However, for our purposes, the important lesson that has been learned in this section thus 
far is that seasonally adjusted data based on the calendar year or rolling year models that we 
have considered thus far cannot provide any information whatsoever on the short run movement 
of prices going from one season to the next. In the case of rolling year models of seasonal 
adjustment, the seasonally adjusted number for a given period is actually an estimate of an 
annual average level of prices centered around the period in question; i.e., it is a measure of 
longer run trend rather than a true short run period to period measure of price.13 

 In the following section, we ask whether more general time series models of the seasonal 
can generate valid estimates of the underlying short run period to period movement in prices. 

 

6. Early Time Series Models for the Seasonal 
 

 The rolling year model of the seasonal that was defined by (24) in the previous section 
can be rewritten as the following additive model of the seasonal: 

,    t T,,2,1 K=  (29)  tS+=

where  is the observed price in period t, P  is a seasonal free measure of the price in period t 
and  is the period t additive seasonal factor.  Similarly, the rolling year model of the seasonal 
defined by (25) can be rewritten as the following multiplicative model of the seasonal: 

tp

tS
t

ttt sPp = T,,2,1 K(30)  ,    t =  

where  and  are still the actual and seasonally adjusted price for period t and s  is a 
multiplicative seasonal factor.

tp tP t

                                                

14 Time series models (or statistical models) of the seasonal can be 
obtained by appending random errors or irregular components to the right hand sides of (29) or 

 
13 However, for inflation targeting purposes, central banks are very much interested in up to date measures of the 
trend in prices such as a rolling year average of prices. 
14  Note that by taking logarithms, the multiplicative model (30) can essentially be transformed into the additive 
model (29). 
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(30). Thus let us append an unobserved additive error term to the right hand side of (29) in order 
to obtain the following time series model for additive seasonal factors: 

(31)  tttt ESPp ++= ,   T,,2,1t K= . 

 Obviously, the unobserved components on the right hand side of (31) cannot be estimated 
without further identifying restrictions. In the remainder of this section, we shall consider a few 
of the early approaches to identification that have appeared in the literature. 

 Early approaches to identifying the components on the right hand side of (31) were made 
by Hart (1922) and Stone (1956; 81). Stone assumed that the trend Pt was linear and the seasonal 
effects St were constant over years; i.e., Stone assumed that the following linear regression 
model parameterised (31): 

(32)  tm E]1t[tp +γ+−β+α T,1y(t K= ,2,1mM) =+= −,   

where the trend  is defined to be the linear in time function tP ]1t[ −β+α  and the seasonal factor 
for season m is the fixed parameter mγ  for M,,2,1m K= . The fixed additive seasonal effects 

mγ

0

 were assumed to satisfy the following linear restriction: 

M
1(33)  m m =γ∑ = . 

 In Hart’s (1922) approach to the seasonal, he first fitted a linear trend to the pt 
observations. He then took the arithmetic means of the deviations from the trend to represent the 
seasonal factors mγ . Stone (1956; 81) showed that his formal regression model was equivalent 
to Hart’s two stage procedure.15 

 Another early approach to identifying the unobserved components on the right hand side 
of (31) is due to Leser (1963; 1034) who added seasonal dummies to the Whittaker (1923) 
Henderson (1924) penalised least squares method of smoothing.16  In this method, the trend 
parameters  and the M fixed seasonal parameters tP mγ  are determined by minimising the 
following objective function with respect to  and : T M1, γγ

2
t

21T
2t

2
mt )P()P Δ∑λ+γ−− −

=

y(t

21 P,...,P,P 2,...,γ

(34)  , t
T

1t p(∑ =

+−=where  as usual and the M seasonal fixed effects mM)1 mγ  satisfy the linear constraint 

(33) above.  is the centered second difference of the trend time series ; i.e., t
2Δ tP

[ ] .PPPPPP 11t1tt1tt
2

+++ −=−−−≡Δ

mt

P

(35)   [ ]t PP2 tt −+

 The positive parameter λ , which appears in the objective function (34), is a smoothing 
parameter which trades off how well the estimated P γ+  will fit the actual data p  (the 
smaller λ  is, the better will be the fit) versus how smooth the trend series P  will be (the larger 

t

t

                                                 

tP mγ tP

15 Stone (1956; 77) required that the number of observations be a multiple of the number of seasons in the year. 
16 Macaulay (1931; 89-99 and 151-156) devotes an entire chapter and appendix to this method of smoothing but he 
does not simultaneously estimate the  and the ; instead, just the  are estimated. 
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λ

λ

 is, the closer Pt will be to a linear trend). In the macroeconomic literature, it is conventional to 
a priori choose λ  to equal 160017 but it is possible to devise more “objective” ways of choosing 

. The basic idea for trading off fit and smoothness in order to smooth a series can be traced 
back to the early actuarial literature18 where it was necessary to “graduate” or smooth mortality 
tables: 

“Where, however, we have a series of observations at consecutive ages it is necessary to substitute 
a smooth series for the irregular one representing the ungraduated observations. The substituted 
series must, from the nature of things, be the result of a compromise between the two factors of 
smoothness and closeness to the observed facts. It is theoretically possible to assign a basis for the 
numerical measurement of the irregularity of a series as well as for its departure from the observed 
facts, and by assigning the proportion in which an increase in the one is to be taken as 
counterbalancing a decrease in the other, to arrive by a mathematical process at the series which 
best harmonizes the two factors. On any basis suggested, however, the resulting equations are 
numerous and unwieldy to such an extent as to render the process practically prohibitive.”19  

Robert Henderson and H. N. Sheppard (1919). 

Thus Henderson and Sheppard had a clear conception of the basic idea that smoothing involves a 
tradeoff between goodness of fit and the “smoothness” of the resulting measure of central 
tendency, . We will return to this point later. tP

 A problem with both the Stone (1956; 81) and Leser (1963; 1034) methods for estimating 
the trends  is that their methods seasonally adjust the entire data set of  observations 
on  in one step. This has the disadvantage that when another year’s data become available, the 
entire seasonal adjustment procedure has to be done all over again; i.e., in principle, their 
estimates of the seasonally adjusted data are never “final”.

tP YMT =

tp

20 Thus these procedures are not very 
well adapted to the needs of statistical agencies. Macaulay noted this disadvantage of the 
Whittaker-Henderson method for the determination of the trend: 

“Professor Whittaker stresses the fact that in obtaining the graduation all observations are used. 
The position of each datum point affects the position of every point on the smooth curve. … It 
would be highly undesirable that a change in the position of a datum point should seriously affect 
the position of distant parts of the smooth curve. For example, one of the great disadvantages of 
harmonic analysis is that the configuration of the data in one section may seriously affect the 
shape of the fitted curve in a far distant section.” 

                                                 

t2P

λ

17 See Hodrick and Prescott (1980; 5) or Kydland and Prescott (1990; 9). 
18 The early actuarial literature is responsible for other modern smoothing techniques as well. De Forest (1873; 290-
292) showed how least squares rolling average smoothing functions of varying window length could be derived that 
were exact for cubic functions. De Forest (1873; 322-324) also showed how the weights for his exact rolling average 
estimators could be chosen to resemble kernel smoother weights. The concept of a spline curve (a curve made up of 
polynomial segments which are joined up in a continuously differentiable manner) is due to the actuary Sprague 
(1891; 277). 
19 Both Whittaker (1923) and Henderson (1924) used the sum of squared residuals as their formal measures of fit; 
Whittaker used the sum of squares of third differences in place of the second differences Δ  which appear in (34) 
while Henderson considered using the sum of squares of first, second and third differences as formal measures of 
smoothness. The general solution to the quadratic Whittaker-Henderson smoothing problem, which involves 
minimising (34), requires the inversion of a large matrix, which was not technologically possible in 1919 when 
Henderson and Sheppard wrote their study. However, Henderson (1924) showed how by strategically choosing the 
smoothness parameter  and applying the theory of difference equations, one could obtain solutions. 
20 Balk (1981; 77) noted that his method of seasonal adjustment suffered from this practical disadvantage. 
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 Frederick R. Macaulay (1931; 96-97). 

Thus Macaulay also noted some of the practical problems associated with using strictly periodic 
functions such as sines and cosines to represent trends: the resulting “smooth” curves tend to 
have too many wiggles that show up in the “wrong” places.21 Finally, Macaulay noted that all 
smoothing methods have difficulties in approximating the trend near the beginning and the end 
of the sample period: 

“A Whittaker-Henderson graduation needs no extrapolation; it covers the entire range of the data. 
This is a distinct element of mathematical elegance and sometimes an important practical 
consideration.  However, graduation of the ends of almost any series is necessarily extremely 
hypothetical unless facts outside the range covered by the graduation are used in obtaining the 
graduation. This is as true of the Whittaker-Henderson graduation as of any other type.”  

Frederick R. Macaulay (1931; 94-95). 

In view of the above difficulties with the Stone and Leser methods, we turn to a third class of 
methods that might be used to identify the components on the right hand side of (31), namely 
moving average models. These models have their origins in the ancient actuarial literature where 
the process of smoothing a mortality table was known as graduating the data.22 However, the 
most comprehensive study of moving average models in the context of seasonal adjustment is the 
monograph written by Macaulay (1931) and we now turn to his work.23 Macaulay noted the 
following problem with representing the trend of an economic time series by a simple centered 
rolling average of the type defined by (22) or (23) in section 5 above: 

“It has, however, serious drawbacks. The resulting curve is seldom very smooth and it will not 
give a perfect fit to data except in ranges which can be adequately described by a straight line. For 
example, a simple moving average, if applied to data whose underlying trend is of a second-degree 
parabolic type, falls always within instead of on the parabola. If applied to data whose underlying 
trend is of a sinusoidal type, it falls too low at maximum points and too high at minimum points.”  

Frederick R. Macaulay (1931; 23). 

Thus a simple, equally weighted moving average, when applied to a quadratic curve, will not 
exactly reproduce it; it will reproduce exactly only linear trends.  Macaulay identified another 
potential problem with the use of an annual centered moving average to represent the trend: 

“In general, if a type of smoothing be desired which shall, when applied to monthly data, eliminate 
seasonal and erratic fluctuations and at the same time give a smooth curve adequately describing 
the remaining cyclical and trend factors, something much more than a simple 12 months moving 
average must be used.”  

Frederick R. Macaulay (1931; 23-24). 

Thus Macaulay identified two problems with the use of an annual centered moving average with 
equal weights to represent the trend: 

                                                 
21 Higher order polynomial approximations to the trend also suffer from this defect. Cole (1963; 135) observed that 
the Census II program also had a tendency to put too many wiggles in the smoothed data. The Census II seasonal 
adjustment procedure is described in Shiskin and Eisenpress (1957). The X-11 procedure was a further refinement of 
Census II; see Shiskin, Young and Musgrave (1967). 
22 One of the earliest moving average models was due to the actuary Woolhouse (1870). This moving average 
actuarial literature was reviewed by Henderson and Sheppard (1919; 23-42) except that the early work of De Forest 
(1873) was not discussed. Wolfenden (1925) reviewed the work of De Forest. 
23 Macaulay’s work was used as a basic building block for the seasonal adjustment methods that were pioneered by 
the U.S. Bureau of the Census; e.g., see Shiskin and Eisenpress (1957) and Shiskin, Young and Musgrave (1967). 
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• If the erratic or random fluctuations tE  in the additive model (31) are very large, then the 
annual centered moving averages of the form defined by (22) or (23) may also have large 
fluctuations and hence may not be very smooth.  

• The equally weighted centered rolling averages of the type defined by (22) or (23) above 
are exact only for linear trends; i.e., these simple moving averages will not reproduce 
nonlinear “smooth” trends. 

Let us address the second problem first. It is possible to set up a simple linear regression model 
of the following type for n consecutive data points: 

(36)  ,  t
2

t Ettp +λ+β+α= n,,2,1t K= . 

Now assume n is odd and derive a formula for the predicted value for the in the middle of the 
sample period. If , De Forest (1873; 327) showed that the resulting least squares estimator 
of the trend for , the middle season in the run of 5 seasons, is: 

tp
5n =

3P

(37)  ]p3p12p17p12p3)[35/1(P 543213 −+++−= . 

Obviously, a moving average formula of the type will exactly reproduce both linear and 
quadratic trends. De Forest (1873; 327) also listed the corresponding least squares moving 
average formulae that are exact for quadratic trends for 7n =  and 9 observations as well while 
Macaulay (1931; 46) listed the corresponding least squares based moving average formulae for 

 observations that is exact for linear and quadratic trends. Macaulay (1931; 49) called this 
method of generating moving average estimators for the trend, the method of moving parabolas. 
Obviously, this idea can be extended to models where the trend is a polynomial of higher 
order.

13n =

24 Recall Macaulay’s first objection to the use of an annual centered rolling average as an 
estimator of the trend; i.e., that this estimator will not be sufficiently smooth if the random 
component tE  on the right hand side of (31) is large relative to the size of the trend. In theory, 
this problem can be resolved by increasing the window length n; i.e., by increasing the length of 
the rolling average that is exact for a least squares polynomial regression model with n 
observations. This will result in a smoother trend but this improvement in smoothness is 
achieved at a cost in terms of how closely the estimated tt SP +  will fit the actual tp .25 This is 
the classic conflict between fit and smoothness that we have already alluded to. As usual, 
Macaulay had a pretty clear understanding of the problem: 

                                                

“Unless the erratic fluctuations of the data are very small as compared with the amplitude of the 
cyclical movements, a large number of terms will have to be used in the parabolic set of weights 
or the data will not be adequately ‘smoothed’. However, unless the cycles of the original data have 
very long periods, it will not be possible to use a large number of terms without departing too far 
from the underlying fundamental curve.”  

Frederick R. Macaulay (1931; 49-50). 

 

t t

tt P−

tP

24 See Sheppard (1914; 175) and Whittaker and Robinson (1926; 291-297) for models of this type. 
25 Once the appropriate estimate of the trend P  has been obtained, the seasonal factors S  can be estimated by 
averaging the detrended data p  over periods t that correspond to the same season of the year. However, for our 
purposes the exact method for the determination of the seasonal effects does not matter very much since our focus is 
on obtaining estimates for the trend . 
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There is no completely unambiguous “best” way to resolve this conflict between smoothness and 
fit although various model selection techniques like cross validation have been developed to help 
solve this problem.26 It is interesting to note that De Forest also had a pretty clear idea of some 
of the difficulties involved in estimating an unknown trend function in the face of noisy data: 

0y

“Not only is absolute accuracy unattainable, but we cannot even decide, by the method of least 
squares, that a certain result is the most probable of any; for the true form of the function being 
unknown, any particular residual error, or difference between the observed and computed values 
of a term, will in general be the aggregate of two errors, one of them due to the difference of form 
between the assumed function and the true one, and the other due to the error of observation or 
difference between the observed value and the true value.”  

Erastus L. De Forest (1873; 301). 

Macaulay had another very important objection to the use of least squares based moving average 
estimates for the trend when there is seasonality in the data: 

“A first reason is that such a graduation [smoothing by a centered least squares moving average 
formula] will entirely eliminate seasonal fluctuations by only the most improbable accident. If, 
neglecting for the moment erratic fluctuations, the original monthly data be thought of as made up 
of two parts, (1) a smooth curve and (2) a seasonal fluctuation superposed on the smooth curve, 
the results of fitting a parabola to the smooth curve and another parabola to the seasonal 
fluctuations and added together, each month, the pairs of resulting ordinates. Now, if the seasonal 
fluctuations were constant from year to year, the smooth curve fitted to them should by the 
definition of seasonal fluctuations, be simply = . In general, a curve fitted to seasonals will give 
continuous zero values only if its weight diagram is such that equal weights to each nominal 
month. A simple 12 months moving average gives such equal weights to each nominal month.”  

Frederick R. Macaulay (1931; 47-48). 

 What Macaulay seems to be saying is this: suppose that we have an additive model of the 
form (31) where both the trend terms  and error terms  are known to be zero. Further 
suppose that the seasonal terms St are constant in each season; i.e., 

tP tE

mmM)1y(t SS γ== +−  and 

the mγ  satisfy (33). Now fit a polynomial trend using least squares to the  for some 
window length n. In general, the resulting estimate of the trend will not be zero as it should be.

tt

                                                

Sp =
27 

However, part of the problem is that Macaulay is following in the traditions of the literature of 
his day when the trend was measured first and then the detrended data were used in order to 
estimate seasonal factors. Macaulay’s observation shows that that this two stage procedure runs 
into identification problems: some of the seasonal will generally be imputed to the trend!  The 
same problem can occur even if the trend and seasonal parameters are estimated simultaneously 
in a single stage procedure. In more general models of the seasonal where the seasonal factors 
are allowed to change over time, it becomes impossible to disentangle the effects of changing 
seasonal factors from the trend. 28  For additional material on the early history of seasonal 

 

3

26 See for example Craven and Wahba (1979) and Akaike (1980). 
27 Macaulay seemed to think that the method would work provided only that we fit a linear trend but this is not 
always the case. Think of a trimester model where we have data for 3 periods and the seasonal is –1 in period 1, 0 in 
period 2 and +1 in period 3. If we fit a linear trend using only n=  observations, the linear trend will completely 
absorb the seasonal and hence the correct seasonal for trimesters 1 and 3 will not be recovered. The problem 
diminishes as n increases but it never completely disappears. 
28 Wisniewski (1934; 180) emphasised this point. 
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adjustment methods plus a comprehensive review of more recent methods for seasonal 
adjustment, see Bell and Hilmer (1984; 293-299). 

 The discussion in this section should alert the reader to the fact that seasonal adjustment 
is not as simple as it appears at first glance. Several problems have been encountered: 

• In the face of noisy data, it is impossible to know what the true functional form for the 
“smooth” part of the price series is.29  

• Once the “noise” term tE  has been introduced to the right hand side of the basic equation 

tt , we encounter the problem of trading off fit against “smoothness” and 
there is no unique answer to this tradeoff.

tt ESPp ++=
30  

• Once the seasonal factors tS  are allowed to change over time, it becomes very difficult to 
disentangle the trend tP  from these changing seasonals.   

In the following section, we will consider the problems associated with time series methods for 
seasonal adjustment more generally. 

 

7. Anderson’s Critique of Time Series Models 
 

 The basic problem with all of the above time series methods for seasonal adjustment is 
that each method is more or less arbitrary. For example, let us start with Person’s (1919; 8) 
decomposition of a time series into unobserved components. Using his classification, our 
representative price series  is assumed to have the following decomposition: t

ttttt ESCTp +++= T,

p

(38)  ,  ,2, K1t = , 

where  is the long term trend portion of pt at period t,  is the business cycle component of 
the series at time t, St is the seasonal component and  is an “error” or “erratic” component for 
period t. Thus comparing (38) with our earlier additive decomposition (31), it can be seen that 
our earlier trend term P  is now decomposed into a longer term trend T  plus a shorter term 
trend Ct that represents trends over the course of a normal business cycle.

tT tC

tE

t t

                                                

31 Recall our earlier 
discussion in section 3 above where we noted that there were other alternatives to the additive 
model of the seasonal. The same discussion is relevant to our present more complex additive 
model of the seasonal defined by (38) above.  Thus, after further refection on the adequacy of the 

 

t tC

t

29 Note that it is also not a trivial matter to define exactly what “smooth” means. 
30 In every nonparametric method for smoothing, a smoothing parameter determines the tradeoff between fit and 
smoothness. See Buja, Hastie and Tibshirani (1989) for a catalogue of these smoothing parameters. 
31 This type of decomposition can be traced back to Cournot. Cournot (1838; 25) initially distinguished “secular 
variations” and “periodic variations” (which correspond to the T  and  parts of Person’s decomposition) and 

later, Cournot (1863; 149) added “transitory” or “accidental” perturbations (which correspond to the E  part of 
Person’s decomposition). 
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additive model, we may decide that the following multiplicative model of the seasonal is more 
plausible: 

(39)  ,   ttttt ESCTp = T,,2,1t K= . 

Upon even more reflection, we might decide that both the additive and the multiplicative models 
of the seasonal, (38) and (39) respectively, are too restrictive and so we postulate the existence of 
a function F such that 

(40)  ,   )E,S,C,T(Fp ttttt = T,,2,1t K= . 

It is very obvious that it will be necessary to: 

• Make some arbitrary assumptions in order to determine the functional form for F. 

• Even if F is determined as in (38) or (39), it will be necessary to make further arbitrary 
assumptions in order to identify the components, tT , tC , tS  and tE .  

The above fundamental functional form determination and unobserved component identification 
problem has been noticed in the literature but the most complete statement of it by Anderson has 
been largely forgotten: 

“We must either obtain the missing ( NmN− ) equations from other sources, which can happen 
only in very exceptional cases, or introduce some preliminary assumptions, some hypotheses 
concerning the construction of the aggregates V, which would replace the missing equations. 
Thus, in most cases with which the social investigator has to deal in practice, in the decomposition 
of series into components, neither the definition of the function F nor the finding of the numerical 
meanings of the effects caused by the aggregates of cases V′ , ′′ , ′′′ , V V V ′′′′  [ , , S , ] is 
possible without the introduction of different hypotheses which are more or less arbitrary.”  

tT tC t tE

T

tC

tE

Oskar Anderson (1927; 552-553). 

Assuming that we have solved the functional form problem and say have chosen the additive 
model (38), Anderson went on to explain how the various components on the right hand side of 
(38) might be identified: 

“Further, the investigator again limits arbitrarily the circle of his possibilities. For example: 

(a) assuming that the secular component [ ] represents a polynomial function of the argument t 
(time or ordinal number) … 

t

(b) assuming that the cyclical component [ ] can be represented as a more or less complex 
trigonometrical function; 

(c) assuming that the residual component e [ ] is a random series.”  
Oskar Anderson (1927; 554). 

From the above quotations, it can be seen that Anderson had a very clear conception of the 
difficulties involved in finding the “right” functional form for a time series seasonal model and 
in determining the unobserved components in such a model. Similar criticisms of time series 
models of the seasonal have been expressed in more recent times: 

“It is necessary, in these situations, to restrict the class (20) of models so that the seasonal 
component of a series can be determined, theoretically and empirically. Often, restrictions are 
provided by the nature of the problem or by specific information … The problem here, as 
elsewhere, is that a consensus on this theory is lacking. One person prefers to define trend or 
cyclic effects in one way, another differently. In multivariate approaches, there are probably as 
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many varieties of plausible specifications of relationships among and between their components, 
all essentially compatible with the data, as there are social scientists (economists, statisticians, 
etc.) to specify these variables and relationships. This situation is evidently a general one in 
econometric modelling, where a variety of specifications, including a purely autoregressive 
equation, are all compatible with the data and all have comparable predictive power.”  

David A. Pierce (1978; 245-246). 

 The above Anderson critique of time series models indicates that these models generate a 
huge range of plausible seasonal adjustment factors. How could this range be reduced? One 
possible solution would be to take an axiomatic or test approach to the determination of the 
unknown function F and the unobserved components in (40). 

 In this approach, alternative seasonal adjustment procedures would be judged by their 
axiomatic properties. This test approach to seasonal adjustment procedures has in fact been 
formally and informally pursued by Hart (1922; 342-347), Macaulay (1931; 100-104), Lovell 
(1963) (1966), Grether and Nerlove (1970), Fase, Koning and Volgenant (1973) and Pierce 
(1978; 246-247) among others32 but no consensus has been reached on what the appropriate set 
of axioms should be. Perhaps part of the problem has been that it is too difficult to work with the 
very general seasonal model defined by (40). Perhaps, it would be better to start with the very 
simple seasonal model defined by 

(41)   )S,P(fp ttt =

t

)p,,p,p,p,,p(gP nt1tt1tntt ++−−= KK )p,,p,p,p,,p(h nt1tt1tntt ++−−

where  is the series to be seasonally adjusted,  is the trend and  is the seasonal 
component; i.e., we have combined the trend and cycle terms  and  in (41) into a single 
trend term  and we have dropped the irregular term  in the simplified model defined by 
(41). P  and S  would be functions of the price data surrounding p  for some window length n; 
i.e., we would also have: 

tp tP tS

tT tC

tP tE

t t

(42)  ; S = KK

                                                

 

for some functions g and h and for some window length n. Thus the functions f, g and h would 
have to be determined (perhaps along with the window length n)33 by this simplified axiomatic 
approach. The axiomatic framework generated by (41) and (42) would appear to be a closer 
counterpart to the test or axiomatic approach to index number theory, which also abstracts from 
stochastic elements. If a consensus set of axioms for the model (41)-(42) were to lead to a 
definite seasonal adjustment procedure, then perhaps, stochastic considerations could be 
introduced at a later stage, as is the case with index number theory based on the test approach. 
However, until economists and statisticians can agree on a “reasonable” axiomatic framework 
for the test approach to seasonal adjustment procedures, this approach will not be of much help 
to statistical agencies. 

 

 
32 Cole (1963; 136) informally introduced a “test” in the following quotation: “Theoretically, a twelve month rolling 
average of a seasonally adjusted series should be the same as the twelve month rolling average of the original series. 
In the exhibit I have given you, you can see that in certain cases differences were almost as much as 10%. When 
differences as great as these occur, we have reason to wonder if the other results obtained are reliable.” 
33 As we have seen earlier, choosing the “right” window length is not a trivial problem. 
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8. The Interpretation of Seasonally Adjusted Data 

 

 What are we to make of the above catalogue of problems associated with time series 
methods for seasonally adjusting a price series? A number of tentative conclusions can be drawn 
from the above discussion: 

• For each of the methods of time series seasonal adjustment that we have considered 
above, in every case, the seasonally adjusted period t price tP  has the interpretation as a 
measure of longer term trend in the unadjusted series tp . Thus month-to-month 
comparisons of the seasonally adjusted prices are best interpreted as month-to-month 
comparisons in the trend of the price series rather than a true short run month-to-month 
comparison of prices.   

• In all of the time series methods for seasonal adjustment that we have considered, either: 
(a) a final estimate for the trend tP  for a given period t is not available until at least an 
additional half year of data on pt have been collected34  or (b) as new data become 
available, new estimates for the trend factors tP  have to be recomputed, and thus in 
principle, estimates are never final. Moving average methods of seasonal adjustment like 
the Census II method35 or the X-11 method36 fall into category (a) while the Stone and 
Leser methods fall into category (b). This point indicates that seasonally adjusted price 
series that use time series methods cannot provide timely and accurate information on the 
short term movement of prices. 

 Information provided by a statistical agency should be objective and reproducible. 
Objective means that the methods used to generate data should be based on definite criteria that 
can be explained to the informed public. Moreover, there should be some consensus among 

                                                 
34 Again recall Macaulay’s (1931; 26) point that smoothing methods are inherently inaccurate at the endpoints of the 
data set in their domain of definition: “The tail end of any curve has necessarily a large probable error, and 
thoroughly inadequate results which would be likely to check with later data, when received are generally quite 
improbable. This is just as true of graduations such as the Whittaker-Henderson, which need no extrapolation, as of 
graduations which require extrapolation. Moreover, mathematical extrapolation does not solve this difficulty.” 
35 The length of time it takes to determine final estimates depends on the length of the rolling average formula 
selected to represent the trend. Shiskin and Eisenpress (1957; 419-420), while discussing the Census II method, 
made the following observations on how the length of the moving average should be determined: “Graduation 
formulas are available which provide smooth and flexible curves and also eliminate seasonal fluctuations; for 
example, Macaulay’s 43 term formula. But such formulas involve the loss of a relatively large number of points at 
the beginnings and ends of series. Graduation formulas which provide similarly smooth and flexible curves and 
involve the loss of relatively few points do not also eliminate seasonal variations. The computation for a preliminary 
seasonally adjusted series is now easy mechanically; on the other hand, the replacement of missing points is difficult 
conceptually. We, therefore, choose one of the formulas that requires a preliminary seasonally adjusted series, but 
also minimizes the loss of points, the Spencer fifteen-month weighted rolling average.” Thus using the Census II 
method for seasonal adjustment, it would be necessary to wait seven months after the collection of the unadjusted pt 
in order to obtain a final estimate for the corresponding seasonally adjusted Pt . Spencer’s (1904) 15 term formula is 
described in Macaulay (1931; 55). 
36  Bell and Hillmer (1984; 308) make the following observation: “For X-11 with standard options, the final 
adjustment is effectively obtained three years after the initial adjustment…” Bell and Hilmer (1984; 296) also note 
that: “Eventually (typically after three years) the X-11 ARIMA adjustments converge to the X-11 adjustments…” 
Thus for these methods, one has to wait approximately three years to obtain final estimates. 
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experts that the criteria used are the “best” that are currently available. Reproducible means that 
if a competent statistician or economist were brought into the statistical agency and given the 
relevant criteria and methodology and told that he or she should produce a series, then these 
different statisticians and economists when given these instructions and the same data set would 
in fact produce roughly the same series. Given Anderson’s (1927) fundamental critique of the 
general impossibility of unambiguous identification of the components in a time series model of 
the seasonal, it seems doubtful that seasonally adjusted data can be completely objective since 
different analysts will generally make different functional form assumptions and place different 
identifying restrictions on the model in order to identify the unobserved components. It also 
seems doubtful that seasonal adjustment procedures like X-11 and its successors are reproducible 
since different operators of these adjustment procedures will generally make different choices as 
they go through the menu of options that are available. 

One could also argue that current times series methods for seasonal adjustment are not 
comprehensible; i.e., they are so complex that they cannot be readily explained to the informed 
public: 

“Even though the public appears for the most part to be comfortable with seasonally adjusted data, 
we doubt that many users understand the methods by which the data are produced. It may be too 
much to expect the statistically unsophisticated person to understand the procedures underlying 
seasonal adjustment, but even statistical experts are often mystified by these procedures, including 
the most widely used method, Census X-11. This method uses a set of moving averages to 
produce seasonally adjusted data; and although the basic idea of moving averages is simple 
enough, the method in which they are applied in the X-11 program is extremely complex. 
Moreover, the theoretical statistical underpinnings of X-11 and many other seasonal adjustment 
methods are not understood by many users. Thus many users of adjusted data merely trust that the 
adjustment procedure is providing useful data, and critics have advocated the abolishment of 
seasonal adjustment.”  

William R. Bell and Steven C. Hillmer (1984; 291) 

 Finally, we have not stressed the difficult problems involved in seasonally adjusting 
sporadic or intermittently available data; i.e., for many micro international price series, the 
corresponding commodity is simply not available for one or more seasons of the year. This 
problem has received very little attention in the time series seasonal adjustment literature (and in 
the index number literature as well, although Zarnowitz37 (1961; 243-246), Turvey (1979) and 
Balk (1980) (1981) are notable exceptions), even though, in many data sets, the problem is 
pervasive. If we attempt to seasonally adjust price series of this type (which can be done using 
additive models for the seasonal), then it is clear that comparisons of the resulting seasonally 
adjusted prices from one season to the next cannot give any information about the actual short 
run changes in price for comparison periods when the commodity is not available. This point 
just reinforces our earlier conclusion that seasonally adjusted data cannot adequately represent 
the short term season to season change in prices; they can only represent movements in the 
longer term trend in prices.  In principle, seasonally adjusted data could provide valuable 
information on the longer run trend in prices. However, major problem with existing time series 
methods for seasonal adjustment is that these methods decompose a price or quantity series into 
trend, seasonal and irregular components but the method of decomposition is far from being 

                                                 

i jp37 “There is simply no escape from the truism that any comparison of two magnitudes such as p  and  requires 
that both of them be actually given.” Zarnowitz (1961; 244). 
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unique, as Anderson’s critique shows. Thus it may be helpful to use some ideas from the index 
number literature to unambiguously determine the trend. 

 This can be done using the rolling or rolling year indexes suggested by Diewert (1983) 
(1996) (1999). Once the trend component has been determined in a unique fashion using index 
numbers, econometric methods could be utilized in order to use current information to forecast 
this unambiguous trend component.38 The major advantage of the rolling year index number 
method for finding the trend in a price or quantity series is that it is perfectly reproducible once a 
consensus has been reached on the choice of the index number formula to be used. On the other 
hand, when using econometric methods for finding the trend that are based on moving average 
methods, one has to decide on the structure of the seasonal (Anderson’s identification problem), 
the length of the moving average window and the tradeoff between fit and smoothness. The 
rolling year index number method is much more “objective”.39 

 However, it should be noted that the rolling year index for say February of this year is a 
measure of annual price change that is centered around a rolling year that lags the current rolling 
year ending in February by six months. Thus to obtain the rolling year measure of the seasonally 
adjusted trend in prices that is centered around this February, we would have to wait seven 
months. Hence although the production of rolling year indexes might lead to unemployment for 
the seasonal adjusters in a statistical agency, they could readily find new employment in the 
forecasting branch of the agency, since there would still be a demand on the part of users for 
forecasts of the annual rolling year estimate of price change that is centered around the current 
month. 
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