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Weak Identification in Fuzzy Regression
Discontinuity Designs

Donna FEIR
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Thomas LEMIEUX and Vadim MARMER
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(thomas.lemieux@ubc.ca; vadim.marmer@ubc.ca)

In fuzzy regression discontinuity (FRD) designs, the treatment effect is identified through a discontinuity in
the conditional probability of treatment assignment. We show that when identification is weak (i.e., when
the discontinuity is of a small magnitude), the usual t-test based on the FRD estimator and its standard
error suffers from asymptotic size distortions as in a standard instrumental variables setting. This problem
can be especially severe in the FRD setting since only observations close to the discontinuity are useful
for estimating the treatment effect. To eliminate those size distortions, we propose a modified t-statistic
that uses a null-restricted version of the standard error of the FRD estimator. Simple and asymptotically
valid confidence sets for the treatment effect can be also constructed using this null-restricted standard
error. An extension to testing for constancy of the regression discontinuity effect across covariates is also
discussed. Supplementary materials for this article are available online.

KEY WORDS: Nonparametric inference; Regression discontinuity design; Treatment effect; Uniform
asymptotic size; Weak identification.

1. INTRODUCTION

Since the late 1990s regression discontinuity (RD) and fuzzy
regression discontinuity (FRD) designs have been of growing
importance in applied economics. There is extensive theoret-
ical work on RD and FRD designs. A few examples include
Hahn, Todd, and Van der Klaauw (1999, 2001); Porter (2003);
Buddelmeyer and Skoufias (2004); McCrary (2008); Frölich
(2007); Frölich and Melly (2008); Otsu, Xu, and Matsushita
(2015); Imbens and Kalyanaraman (2012); Calonico, Cattaneo,
and Titiunik (2014); Arai and Ichimura (2013); Papay, Willett,
and Murnane (2011); Imbens and Zajonc (2011); Dong and
Lewbel (2010); and Fe (2012). See Van der Klaauw (2008) and
Lee and Lemieux (2010) for a review of much of this literature.
Hundreds of recent applied articles have used RD, and in many
cases FRD designs. (For example, as of July 18, 2013, Imbens
and Lemieux (2008) review of RD and FRD best practices was
cited in 990 articles according to Google Scholar, with 372 of
these articles explicitly considering FRD.) Around the same
time, the seminal works of Bound, Jaeger, and Baker (1995)
and Staiger and Stock (1997) made weak identification in an
instrumental variables (IV) context an important consideration
in applied work (see Stock, Wright, and Yogo 2002; Andrews
and Stock 2007 for surveys of the literature). However, despite
the close parallel between an IV setting and the FRD design
(see Hahn, Todd, and Van der Klaauw 2001) there has been no
theoretical or practical attempt to deal with weak identification
in the FRD design more broadly.

To get a sense of the practical importance of weak iden-
tification in the FRD design, we have examined a sample of
influential applied articles that use the design. We then apply

the F-statistic standards discussed below to see how many of
these articles may suffer from a weak identification problem.
We find that in about half of the articles where enough informa-
tion is reported to compute the F-statistic, weak identification
appears to be a problem in at least one of the empirical spec-
ifications. (For the procedure followed to obtain the sample of
articles, see the online supplement, Section 1.) We take this as
evidence that weak identification is a serious concern in the
applied FRD design literature. Since it is a matter of practical
importance, we examine weak identification in the context of the
FRD design, demonstrate the problems that arise, and propose
uniformly valid testing procedures for treatment (RD) effects.

In this article, we show that the local-to-zero analytical frame-
work common in the weak instruments literature can be adapted
to FRD, and when identification is weak, we show that the usual
t-test based on the FRD estimator and its standard error suffers
from asymptotic size distortions. The usual confidence inter-
vals constructed as estimate ± constant × standard error are
also invalid because their asymptotic coverage probability can
be below the assumed nominal coverage when identification is
weak. We rely on novel techniques recently developed in the
literature on uniform size properties of tests and confidence sets
(Andrews, Cheng, and Guggenberger 2011) to formally justify
our local-to-zero framework. Unlike the framework used in the
weak IV literature, ours depends not only on the sample size but
also on a smoothing parameter (the bandwidth).
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We suggest a simple modification to the t-test that eliminates
the asymptotic size distortions caused by weak identification.
Unlike the usual t-statistic, the modified t-statistic uses a null-
restricted version of the standard error of the FRD estimator.
The modified statistic can be used with standard normal critical
values for two-sided testing. For two-sided testing, the proposed
test is equivalent to the Anderson–Rubin test (Anderson and
Rubin 1949) adopted in the weak IV literature (Staiger and Stock
1997). For one-sided testing, the modified t-statistic has to be
used with nonstandard critical values that must be simulated on
a case-by-case basis following the approach of Moreira (2001,
2003).

We discuss how to evaluate the magnitude of potential size
distortions in practice following the approach of Stock and Yogo
(2005). The strength of identification is measured by the con-
centration parameter, which in the case of FRD depends on the
magnitude of the discontinuity in the treatment variable and on
the density of the assignment variable (the variable that deter-
mines treatment assignment). The magnitude of potential size
distortions can be tested by testing hypotheses about the con-
centration parameter with noncentral χ2

1 critical values using
the F-statistic, which is an analog of the first-stage F-statistic in
IV regression. Surprisingly, we find critical values that are much
higher than would be required in a simple IV setting. When the
F-statistic is only around 10, which is often used as a threshold
value for weak/strong identification in the IV literature, a two-
sided test with nominal size of 5% is in fact a 13.6% test, and
a 5% one-sided test is in fact a 16.9% test. Nearly zero (under
0.5%) size distortions of a 5% two-sided test correspond to the
values of the F-statistic above 93.

Asymptotically valid confidence sets for the treatment ef-
fect can be obtained by inverting tests based on the modi-
fied t-statistic. Since the FRD is an exactly identified model,
these confidence sets are easy to compute, as their construction
only involves solving a quadratic equation. Most of the litera-
ture on weak instruments deals with the case of over identified
models (see, e.g., Andrews and Stock 2007). In exactly iden-
tified models, the approach suggested by Anderson and Rubin
(1949) results in efficient inference if instruments turn out to
be strong and remains valid if instruments are weak. However,
in over-identified models, Anderson and Rubin’s tests are no
longer efficient even when instruments are strong. Several arti-
cles (Kleibergen 2002; Moreira 2003; Andrews, Moreira, and
Stock 2006) proposed modifications to Anderson and Rubin’s
basic procedure to gain back efficiency in over identified mod-
els. Since the FRD design is an exactly identified model, we
can adapt Anderson and Rubin’s approach without any loss of
power. These confidence sets are expected to be as informative
as the standard ones, when identification is strong. However,
unlike the usual confidence intervals, the confidence sets we
propose can be unbounded with positive probability. This prop-
erty is expected from valid confidence sets in the situations
with local identification failure and an unbounded parameter
space (see Dufour 1997). In a recent article, Otsu, Xu, and Mat-
sushita (2015) proposed empirical likelihood-based inference
for the RD effect. Using the profile empirical likelihood func-
tion, they proposed confidence sets for the RD effect, which
are expected to be robust against weak identification. However,

they did not provide a formal analysis of the weak identifi-
cation. While their method does not involve variances estima-
tion and for that reason can enjoy better higher-order proper-
ties than our approach, it requires computation of the empirical
likelihood function numerically and is computationally more
demanding.

We also discuss testing whether the RD effect is homogenous
over differing values of some covariates. The proposed test-
ing approach is designed to remain asymptotically valid when
identification is weak. This is achieved by building a robust con-
fidence set for a common RD effect across covariates. The null
hypothesis of the common RD effect is rejected when that con-
fidence set is empty.

To illustrate how our proposed confidence sets may differ
from the standard ones in practice, we compare the results of
applying the standard confidence sets and the proposed confi-
dence sets in two separate applications that use the FRD design
to estimate the effect of class size on student achievement. Our
main finding is that, as weak identification becomes more likely,
the standard confidence sets and the weak identification robust
confidence sets become increasingly divergent. Interestingly,
in a number of cases the robust confidence sets provide more
informative answers than the standard ones. More generally,
the empirical applications, along with a Monte Carlo study re-
ported in an online supplement, suggest that our simple and
robust procedure for computing confidence sets performs well
when identification is either strong or weak.

The rest of the article proceeds as follows. In Section 2, we
describe the FRD model, derive the uniform asymptotic size
of usual t-tests for FRD, discuss size distortions and testing
for potential size distortions, and describe weak-identification-
robust inference for FRD. Section 3 discusses robust testing
for constancy of the RD effect across covariates. We present
our empirical applications in Section 4. The online supplement
contains additional materials including the proofs and the Monte
Carlo results.

2. THEORETICAL RESULTS

2.1 The Model, Estimation, and Standard Inference
Approach

In RD designs, the observed outcome variable yi is modeled
as yi = y0i + xiβi , where xi is the treatment indicator variable,
y0i is the outcome without treatment, and βi is the random treat-
ment effect for observation i. If xi is binary, it takes on value
one if the treatment is received and zero otherwise. When there
are treatments of different intensity, xi may be nonbinary. The
treatment assignment depends on another observable assign-
ment variable, zi through E(xi |zi = z). The main feature in this
framework is that E (xi |zi = z) is discontinuous at some known
cutoff point z0, while E (y0i |zi) is assumed to be continuous at
z0.

Assumption 1.

a. limz↓z0 E (xi |zi = z) �= limz↑z0 E (xi |zi = z).
b. limz↓z0 E (y0i |zi = z) = limz↑z0 E (y0i |zi = z).
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For binary xi , when
∣∣limz↑z0 E(xi |zi = z) − limz↓z0

E(xi |zi = z)| = 1, we have a sharp RD design, and a fuzzy
design otherwise. When xi is a continuous treatment variable,
the design is sharp if xi is a deterministic function of zi , and
fuzzy otherwise.

The focus of this article is fuzzy designs, and the main object
of interest is the RD effect:

β = (y+ − y−)/(x+ − x−), (1)

where y+ = limz↓z0 E (yi |zi = z), y− = limz↑z0 E (yi |zi = z),
and x+ and x− are defined similarly with yi replaced by xi .
The exact interpretation of β depends on the assumptions that
the econometrician is willing to make in addition to Assump-
tion 1. As discussed by Hahn, Todd, and Van der Klaauw (2001),
if βi and xi are assumed to be independent conditional on zi ,
then β captures the average treatment effect (ATE) at zi = z0:
β = E (βi |zi = z0). When xi is binary and under an alternative
set of conditions, which allow for dependence between xi and
βi , Hahn, Todd, and Van der Klaauw (2001) showed that the RD
effect captures the local ATE (LATE) or ATE for compliers at
z0, where compliers are observations for which xi switches its
value from zero to one when zi changes from z0 − e to z0 + e

for all small e > 0. (See the discussion on page 204 of their
article.)

Regardless of its interpretation, the RD effect is estimated
by replacing the unknown population objects in (1) with their
estimates. Following Hahn, Todd, and Van der Klaauw (2001),
it is now a standard approach to estimate y+, y−, x+, and x−

using local linear kernel regression. Let K(·) and hn denote the
kernel function and bandwidth, respectively. For estimation of
y+, the local linear regression is

(
ân, b̂n

) = arg min
a,b

n∑
i=1

(yi − a − (zi − z0) b)2

×K

(
zi − z0

hn

)
1 {zi ≥ z0} , (2)

and the local linear estimator of y+ is given by ŷ+
n = ân.

The local linear estimator for y− can be constructed analo-
gously by replacing 1{zi ≥ z0} with 1{zi < z0} in (2). Simi-
larly, one can estimate x+ and x− by replacing yi with xi .
Let ŷ−

n , x̂+
n , and x̂−

n denote the local linear estimators of y−,
x+, and x−, respectively. The corresponding estimator of β is
given by

β̂n = (ŷ+
n − ŷ−

n )/(x̂+
n − x̂−

n ).

The asymptotic properties of the local linear estimators and
β̂n are discussed in Hahn, Todd, and Van der Klaauw (1999)
and Imbens and Lemieux (2008). We assume that the following
conditions are satisfied.

Assumption 2.

a. K(·) is continuous, symmetric around zero, nonnegative,
and compactly supported second-order kernel.

b. {(yi, xi, zi)}ni=1 are iid; yi, xi, zi have a joint distribution F
such that

i. fz(·) (the marginal PDF of zi) exists and is bounded
from above, bounded away from zero, and twice con-
tinuously differentiable with bounded derivatives on
Nz0 (a small neighborhood of z0).

ii. E(yi |zi) and E(xi |zi) are bounded on Nz0 and twice
continuously differentiable with bounded deriva-
tives on Nz0\{z0}; lime↓0

dp

dzp E(yi |zi = z0 ± e) and

lime↓0
dp

dzp E(xi |zi = z0 ± e) exist for p = 0, 1, 2.
iii. σ 2

y (zi) = var(yi |zi) and σ 2
x (zi) = var(xi |zi)

are bounded from above and bounded
away from zero on Nz0 ; lime↓0 σ 2

y (z0 ± e),
lime↓0 σ 2

x (z0 ± e), and lime↓0 σxy(z0 ± e) ex-
ist, where σxy(zi) = cov(xi, yi |zi); |ρxy | ≤ ρ̄

for some ρ̄ < 1, where ρxy = σxy/(σxσy),
σxy = lime↓0(σxy(z0 + e) + σxy(z0 − e)), and σ 2

x

and σ 2
y defined similarly with the conditional covari-

ance replaced by the conditional variances of xi and
yi , respectively.

iv. For some δ > 0, E( |yi − E(yi |zi)|2+δ
∣∣ zi) and

E( |xi − E(xi |zi)|2+δ
∣∣ zi) are bounded on Nz0 .

c. As n → ∞,
√

nhnh
2
n → 0 and nh3

n → ∞.

Remark. (1) The smoothness conditions imposed in Assump-
tion 2(b) are standard for kernel estimation except for the
left/right limit conditions in parts (ii) and (iii), which are due
to the discontinuity design and have been used in Hahn, Todd,
and Van der Klaauw (1999). (2) Asymptotic normality of the
local linear estimators is established using Lyapounov’s central
limit theorem (CLT), and part (iv) of Assumption 2(b) can be
used to verify Lyapounov’s condition (see Davidson 1994, The-
orem 23.12, p. 373). (3) With twice differentiable functions, the
bias of the local linear estimators is of order h2

n even near the
boundaries. The condition

√
nhnh

2
n → 0 in Assumption 2(c) is

an under-smoothing condition, which makes the contribution
of the bias term to the asymptotic distribution negligible. The
condition nh3

n → ∞ ensures that the variance of the local lin-
ear estimator tends to zero. Assumption 2(c) is satisfied if the
bandwidth is chosen according to the rule hn = constant × n−r

with 1/5 < r < 1/3.

It is convenient for our purposes to present the asymptotic
properties of the local linear estimators and the FRD estimator
as follows. Define

k =
∫∞

0

(∫∞
0 s2K (s) ds − u

∫∞
0 sK (s) ds

)2
K2 (u) du(∫∞

0 u2K (u) du
∫∞

0 K (u) du − (∫∞
0 uK (u) du

)2
)2 .

The constant k is known as it depends only on the kernel func-
tion. In the case of asymmetric kernels, we will have two differ-
ent constants for the left and right estimators, with the bounds
of integration replaced by (−∞, 0] for the left estimators. For
�y = y+ − y−, �̂yn = ŷ+

n − ŷ−
n , and similarly defined �x and

�̂xn, by Assumption 2 and Lyapounov’s CLT we have

√
nhn

(
�̂yn − �y

�̂xn − �x

)
→d

√
k

fz(z0)

(
σyY
σxX

)
,

where Y and X are two bivariate normal variables with zero
means, unit variances, and correlation coefficient ρxy (the latter
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is defined in Assumption 2(b)iii together with σx and σy). This
in turn implies that under standard asymptotics,

√
nhn(β̂n −

β) →d N
(
0, kσ 2(β)/(fz(z0)(�x)2)

)
, where σ 2(b) = σ 2

y +
b2σ 2

x − 2bσxy . The last result holds due to Assumption 1(a),
that is, only when �x �= 0 and is fixed.

The asymptotic variance σ 2
y can be consistently estimated by

σ̂ 2
y,n = 1

f̂z,n (z0)

1

nhn

n∑
i=1

(
yi − ŷ+

n 1{zi ≥ z0} − ŷ−
n 1{zi < z0}

)2

× K

(
zi − z0

h

)
,

where f̂z,n(z0) is the kernel estimator of fz(z0): f̂z,n(z0) =
(nhn)−1∑n

i=1 K((zi − z0)/hn). Consistent estimators of σ 2
x

and σxy can be constructed similarly by replacing (yi −
ŷ+

n 1{zi ≥ z0} − ŷ−
n 1{zi < z0})2 with (xi − x̂+

n 1{zi ≥ z0} −
x̂−

n 1{zi < z0})2 and (xi − x̂+
n 1{zi ≥ z0} − x̂−

n 1{zi < z0})(yi −
ŷ+

n 1{zi ≥ z0} − ŷ−
n 1{zi < z0}), respectively. Hence, a consis-

tent estimator of σ 2(b) can be constructed as

σ̂ 2
n (b) = σ̂ 2

y,n + bσ̂ 2
x,n − 2bσ̂xy,n. (3)

A common inference approach for the FRD effect is based on the
usual t-statistic. Thus, when testing H0 : β = β0 one typically
computes

Tn(β0) =
√

nhn

(
β̂n − β0

)
/

√
kσ̂ 2

n (β̂n)/(f̂z,n(z0)(�̂xn)2)

and compares it with standard normal critical values, as
Tn(β) →d N (0, 1), when �x �= 0 and is fixed. Confidence in-
tervals for β are constructed by collecting all values β0 for which
H0 : β = β0 cannot be rejected using a test based on Tn(β0).

2.2 Weak Identification in FRD

Weak identification is a finite-sample problem, which oc-
curs when the noise due to sampling errors is of the same
magnitude or even dominates the signal in estimation of a
model’s parameters. In such cases, the asymptotic normality
result Tn(β) →d N (0, 1) provides a poor approximation to the
actual distribution of the t-statistic, and as a result inference may
be distorted.

Assuming that H0 : β = β0, we can rewrite the t-statistic as

Tn(β) =
√

nhn

(
�̂yn − β�̂xn

)√
kσ̂ 2

n (β̂n)/f̂z,n(z0)
× sign

(
�̂xn

)
. (4)

When testing H0 against two-sided alternatives, one uses
the absolute value of Tn(β), which eliminates the sign
term. Since under standard (fixed distribution) asymptotics√

nhn

(
�̂yn − β�̂xn

) →d N (0, kσ 2(β)/fz(z0)), the usual t-
test has no size distortions as long as β̂n is con-
sistent and σ̂ 2

n (β̂n) approximates σ 2(β) very well. De-
fine �Yn = (fz(z0)/k)1/2(nhn)1/2(�̂yn − �y) and �Xn =
(fz(z0)/k)1/2(nhn)1/2(�̂xn − �x). We can now write

β̂n − β = �Yn − β�Xn

�Xn + (fz(z0)/k)1/2(nhn)1/2�x
. (5)

Note that in the above expression, the estimation errors �Yn

and �Xn represent the noise components, while the signal

component is given by (nhn)1/2�x. Since the noise terms
have bounded variances, the signal dominates the noise as
long as (nhn)1/2�x → ∞. In this case, β̂n →p β. If, however,
limn→∞ |(nhn)1/2�x| < ∞, the signal and noise are of the same
magnitude, which results in inconsistency of the FRD estimator
and weak identification.

Thus, similarly to the weak IV literature (Staiger and Stock
1997), it is appropriate to model weak identification by as-
suming that �x is inversely related to the square root of the
sample size. However, the kernel estimation framework and
presence of the bandwidth, which is chosen by the econome-
trician, require some adjustments. Suppose one models weak
identification as �x ∼ 1/(ngn)1/2, for some sequence gn → 0
as n → ∞. In this case, the econometrician can obtain consis-
tency of β̂n and resolve weak identification simply by choos-
ing hn so that hn/gn → ∞. This situation resembles so-called
nearly weak or semistrong identification, see Hahn and Kuer-
steiner (2002), Caner (2009), Antoine and Renault (2009, 2012),
and Antoine and Lavergne (2014). Hence, the worst-case sce-
nario, in which the econometrician cannot resolve weak identi-
fication by tweaking the bandwidth, occurs when gn = hn, that
is, �x ∼ 1/(nhn)1/2.

This idea can be formalized using the results obtained in the
recent literature on uniform size properties of tests and confi-
dence sets: Andrews and Guggenberger (2010), Andrews and
Cheng (2012), and Andrews, Cheng, and Guggenberger (2011).
The latter article provides a general framework of establishing
uniform size properties of tests and confidence sets. To describe
this framework, let Sn be a test statistic with exact finite-sample
distribution (in a sample of size n) determined by λ ∈ 	. Note
that λ may include infinite-dimensional components such as dis-
tribution functions. Let crn(α) denote a possibly data-dependent
critical region for nominal significance level α. The test rejects
a null hypothesis when Sn ∈ crn(α), and the rejection probabil-
ity is given by RPn(λ) = Pλ(Sn ∈ crn(α)), where subscript λ in
Pλ indicates that the probability is computed for a given value
of λ ∈ 	. The exact size is defined as ExSzn = supλ∈	 RPn(λ).
Note that ExSzn captures the maximum rejection probability
for any combination of parameters λ (the worst case scenario).
In large samples, the exact size is approximated by asymp-
totic size AsySz = lim supn→∞ supλ∈	 RPn(λ). Contrary to the
usual point-wise asymptotic approach, AsySz is determined by
taking supremum over the parameter space before taking limit
with respect to n. It has been argued in many articles that con-
trolling AsySz is crucial for ensuring reliable inference when
test statistics have discontinuous asymptotic distribution, that is,
when point-wise asymptotic distribution is discontinuous in a
parameter. On the importance of uniform size, see, for example,
Imbens and Manski (2004, p. 1848), Mikusheva (2007), and ref-
erences in Andrews, Cheng, and Guggenberger (2011). In what
follows, we rely on the following result of Andrews, Cheng, and
Guggenberger (2011): (Lemma 1 combines Assumption B and
Theorems 2.1 and 2.2 in Andrews, Cheng, and Guggenberger
(2011).

Lemma 1 (Andrews, Cheng, and Guggenberger 2011). Let
{dn(λ) : n ≥ 1} be a sequence of functions, where dn : 	 → R

J .
Define D = {d ∈ {R ∪ {±∞}}J : dpn

(λpn
) → d for some sub-

sequence {pn} of {n} and some sequence {λpn
∈ 	}. Sup-
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pose that for any subsequence {pn} of {n} and any se-
quence {λpn

∈ 	} for which dpn
(λpn

) → d ∈ D, we have that
RPpn

(λpn
) → RP(d) for some function RP(d) ∈ [0, 1]. Then,

AsySz = supd∈D RP(d).

To apply Lemma 1, we define

λ1 =
(

fz(z0)

k

)1/2 |�x|
σx

, λ2 = ρxy, λ3 = βσx/σy. (6)

We define λ4 = F , where F is the joint distribution of xi, yi, zi

and is such that, given λ1 ∈ R+, λ2 ∈ [−ρ̄, ρ̄], and λ3 ∈ R,
the three equations in (6) hold. Note that λ4 is an infinite-
dimensional parameter that depends on λ1, λ2, and λ3. As ex-
plained by Andrews, Cheng, and Guggenberger (2011, pp. 8–9),
dn(λ) is chosen so that when dn(λn) converges to d ∈ D for some
sequence of parameters {λn ∈ λ : n ≥ 1}, the test statistic con-
verges to some limiting distribution, which might depend on d.
In view of (4) and (5), we therefore define

dn,1(λ) =
√

nhnλ1, dn,2(λ) = λ2, dn,3(λ) = λ3. (7)

While λ4 = F affects the finite-sample distribution of the
test statistic, it does not enter its asymptotic distribution, and
therefore can be dropped from dn(λ) as discussed by An-
drews, Cheng, and Guggenberger (2011, p. 8). Hence, D =
{R+ ∪ {+∞}} × [−ρ̄, ρ̄] × {R ∪ {±∞}}.

Next, we describe the asymptotic size of tests for FRD based
on the usual t-statistic and standard normal critical value. Let zν

denote the νth quantile of the standard normal distribution.

Theorem 1. Suppose that Assumption 2 holds. Let X ,Y be
two bivariate normal variables with zero means, unit variances,
and correlation d2. Define

Td1,d2,d3 = Y − d3X√
1 +

(
Y+d3d1
X+d1

)2
− 2d2

Y+d3d1
X+d1

× sign(X + d1).

a. For tests that reject H0 : β = β0 in favor of
H1 : β �= β0 when |Tn(β0)| > z1−α/2, AsySz =
supd1∈R+∪{+∞},d2∈[0,ρ̄],d3=R∪{±∞} P (|Td1,d2,d3 | > z1−α/2).

b. For tests that reject H0 : β ≤ β0 in favor of
H1 : β > β0 when Tn(β0) > z1−α , AsySz =
supd1∈R+∪{+∞},d2∈[−ρ̄,ρ̄],d3=R∪{±∞} P (Td1,d2,d3 > z1−α).

Remark. A commonly. used measure of identification
strength is the so-called concentration parameter. On the im-
portance of the concentration parameter in IV estimation, see,
for example, Stock and Yogo (2005). In our framework, the
concentration parameter is given by d2

n,1, where d2
n,1 → ∞ cor-

responds to strong (or semistrong) identification, and identifica-
tion is weak when the limit of d2

n,1 is finite. As it is apparent from
the expressions for λ1 and dn,1 in (6) and (7), the concentration
parameter and, therefore, the strength of identification depend
not only on the size of discontinuity in treatment assignment
�x, but also on fz(z0), the PDF of the assignment variable at
z0. Hence, smaller values of fz(z0) would correspond to a more
severe weak identification problem.

For any permitted values of d2 and d3, when d1 = ∞, we have
T∞,d2,d3 ∼ N (0, 1). Thus, the asymptotic size of tests based on
Tn(β0) is equal to nominal size α under strong or semistrong
identification. When d1 < ∞, it is straightforward to compute
AsySz numerically. To compute asymptotic rejection probabili-
ties given d1, d2, d3, first using bivariate normal PDFs, one inte-
grates numerically 1(|Td1,d2,d3 | > z1−α/2) or 1(Td1,d2,d3 > z1−α)
over the support of the joint distribution of Y,X . Rejection
probabilities then can be numerically maximized over d’s.

Table 1 reports maximal rejection probabilities of one- and
two-sided tests based on the usual t-statistic. The rejection prob-
abilities reported in Table 1 were computed by numerical inte-
gration using quad2d function in Matlab. Integration bounds
for normal variables were set to [−7, 7], and the rejection proba-
bilities were maximized over the following grids of values: from
−0.99 to 0.99 at 0.01 intervals for d2, and from −1000 to 1000
at 0.5 intervals for d3. It shows that AsySz approaches one as the
concentration parameter approaches zero. Size distortions de-
crease monotonically as the concentration parameter increases.
In the case of two-sided testing, nearly zero size distortions (un-
der 0.5%) correspond to the concentration parameter of order
d2

1 ≥ 64 for asymptotic 5% tests, and d2
1 ≥ 502 for asymptotic

1% tests. The table also shows that one-sided tests suffer from
more substantial size distortions than two-sided tests, which is
due to asymmetries in the distribution of Td1,d2,d3 .

2.3 Testing for Potential Size Distortions

Following the approach of Stock and Yogo (2005), Table 1
can be used for testing a null hypothesis about the largest po-
tential size distortion against an alternative hypothesis under
which the largest potential size distortion does not exceed a cer-
tain prespecified level. Suppose that the econometrician decides
that identification is strong enough if, in the case of 1% two-
sided testing, the maximal rejection probability does not exceed
5%. Thus, the econometrician effectively adopts tests with 5%
significance level, however uses the 1% standard normal critical
value. According to the results in Table 1, the corresponding
null hypothesis and its alternative in this case can be stated in
terms of the concentration parameter d2

1 as HW
0 : d2

1 ≤ 9 and
HS

1 : d2
1 > 9, respectively. A test of HW

0 can be based on the
estimator of discontinuity �x. Define

Fn = nhn(�̂xn)2

σ̂ 2
x,nk/f̂z,n(z0)

= (
(�Xn/σx) + dn,1

)2 + op(1). (8)

As long as the concentration parameter is finite, Fn →d χ2
1 (d2

1 ),
a noncentral χ2

1 distribution with noncentrality parameter d2
1 .

Let χ2
1,1−τ (d2

1 ) denote the (1 − τ )th quantile of the χ2
1 (d2

1 ) dis-
tribution. Since size distortions are monotonically decreasing
when the concentration parameter increases, an asymptotic size
τ test of HW

0 should reject it when Fn > χ2
1,1−τ (d2

1 ).
Noncentral χ2

1 critical values are reported in the last two
columns of Table 1 for selected values of the concentra-
tion parameter and τ = 0.05, 0.01. For example, HW

0 : d2
1 ≤ 9

should be rejected in favor of HS
1 : d2

1 > 9 by a 5% test
when Fn > 21.57. In the case of 5% two-sided testing of β,
one needs the concentration parameter of at least 64 to en-
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Table 1. Maximal asymptotic rejection probabilities for different values of the concentration parameter (d2
1 ) of one- and two-sided t-tests for

FRD with significance level α, and noncentral χ 2
1 critical values for testing hypotheses about the concentration parameter at significance level τ

Maximal rejection prob. for FRD

One-sided Two-sided Noncentral χ 2
1 (d2

1 ) critical values

d2
1 α = 0.05 α = 0.01 α = 0.05 α = 0.01 τ = 0.05 τ = 0.01

10−4 0.906 0.885 0.893 0.877 3.84 6.64
0.01 0.691 0.636 0.664 0.622 3.88 6.70
0.25 0.363 0.294 0.322 0.261 4.76 8.08
1.0 0.221 0.153 0.187 0.134 7.00 11.06
4.0 0.144 0.086 0.113 0.070 13.28 18.72
9.0 0.119 0.062 0.099 0.050 21.57 28.37
16.0 0.106 0.051 0.076 0.038 31.87 40.03
25.0 0.097 0.045 0.067 0.031 44.15 53.67
36.0 0.091 0.037 0.060 0.029 58.45 69.34
49.0 0.086 0.033 0.056 0.023 74.73 86.98
64.0 0.081 0.032 0.053 0.022 93.03 106.63
81.0 0.078 0.029 0.052 0.022 113.31 128.28
102 0.076 0.029 0.052 0.020 135.60 151.94
252 0.061 0.020 0.051 0.015 709.96 746.72
502 0.056 0.014 0.051 0.012 2667.17 2738.06

sure that size distortions are under 0.5%. In that case, a 5%
test should reject the null hypothesis of weak identification if
Fn > 93.03.

Note that the critical values in Table 1 substantially ex-
ceed the rule-of-thumb of 10, which is often used in the lit-
erature as a threshold value for weak IVs. According to our
calculations, with an F-statistic of only 10, one cannot reject
HW

0 : d2
1 ≤ 1.512 at 5% significance level. However, a concen-

tration parameter of 1.512 corresponds to maximal rejection
probabilities of 16.9% and 13.6% for 5% one-sided and two-
sided tests, respectively.

The results from Table 1 can also be used for designing
valid tests (for the FRD effect β) based on usual t-statistics
in combination with somewhat larger than usual critical val-
ues. For example, suppose one is interested in a 5% two-sided
test about β, and rejects the null hypothesis when Fn > 21.57
and |Tn(β0)| exceeds the 1% standard normal critical value.
According to Table 1, if the concentration parameter d2

1 ≥ 9,
the asymptotic size does not exceed 5%. On the other hand, if
d2

1 ≤ 9, limn→∞ P (Fn > 21.75) ≤ 0.05. Hence, overall this test
has an asymptotic 5% significance level. Intuitively, such a test
is valid because the null-hypothesis for the F-pretest assumes
size distortions, and one proceeds using the t-statistic only if it
is rejected, that is, if the concentration parameter is found to be
large enough. Note, however, that the procedure is conservative.
Furthermore, passing the F-test does not completely safeguard
against size distortions, and the usual t-statistic must be used
with somewhat larger critical values.

Although the F-test provides useful guidance on the potential
magnitude of size distortions, practitioners should not solely
rely on this test to decide whether it is worth proceeding with
the estimation. With this in mind, we present a robust inference
approach in the next section that always yields valid confidence
intervals regardless of the strength of identification and does not
rely on any pretests.

2.4 Weak-Identification-Robust Inference for FRD

A common approach adopted in the weak IV literature is to
use weak-identification-robust statistics to test hypotheses about
structural parameters directly, instead of using their estimates
and standard errors. The Anderson–Rubin (AR) statistic (An-
derson and Rubin 1949; Staiger and Stock 1997) is often used
for that purpose. In the context of IV regression, the AR statistic
can be used to test H0 : β = β0 against H1 : β �= β0 by testing
whether the null-restricted residuals computed for β = β0 are
uncorrelated with the instruments.

In our case, the structural parameter is defined by (1). Hence,
to test H0 : β = β0 against H1 : β �= β0, following the AR
approach, we can test instead H0 : �y − β0�x = 0 against
H1 : �y − β0�x �= 0. A test, therefore, can be based on

nhn

(
�̂yn − β0�̂xn

)2

kσ̂ 2
n (β0)/f̂z,n(z0)

= ∣∣T R
n (β0)

∣∣2 ,

where T R
n (β0) denotes a modified or null-restricted version of

the usual t-statistic:

T R
n (β0) =

√
nhn

(
β̂n − β0

)
/

√
kσ̂ 2

n (β0)/(f̂z,n(z0)(�̂xn)2),

and the equality holds by (4). Unlike the usual t-statistic, T R
n (β0)

uses the null-restricted value β0 instead of β̂n when comput-
ing the standard error. In view of the discussion at the begin-
ning of Section 2.2 and since the asymptotic distribution of
|T R

n (β0)| does not depend on the concentration parameter, re-
placing σ̂ 2

n (β̂n) by σ̂ 2
n (β0) eliminates size distortions.

Theorem 2. Suppose that Assumption 2 holds. Tests that
reject H0 : β = β0 in favor of H1 : β �= β0 when |T R

n (β0)| >

z1−α/2 have AsySz equal to α.

Consider now a one-sided testing problem H0 : β ≤ β0 ver-
sus H1 : β > β0. Again, one can base a test on the null-
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restricted statistic. In this case under H0 when β = β0, we
have T R

n (β) = (�Yn − β�Xn) × sign
(
�Xn ± dn,1

)
/σ (β) +

op(1). When identification is strong or semistrong, dn,1 → ∞,
and the sign term is constant with probability one. Since the first
term is asymptotically N (0, 1), T R

n (β) is also asymptotically
N (0, 1), and one could use standard normal critical values. On
the other hand, when identification is weak and the concentra-
tion parameter is small, the sign term is random, and therefore,
the null asymptotic distribution of the product differs from stan-
dard normal. To obtain an asymptotically uniformly valid test,
one can use data-dependent critical values that automatically
adjust to the strength of identification. Such critical values can
be generated using the approach of Moreira (2001, 2003) by
conditioning on a statistic that is (i) asymptotically independent
of �Yn − β�Xn, and (ii) summarizes the information on the
strength of identification (see also Andrews, Moreira, and Stock
2006; Mills, Moreira, and Vilela 2014).

Define Sn = (�Yn − β�Xn)/σ (β) and Q = �Xn/σx −
(σxy − βσ 2

x )Sn/(σxσ (β)), so that, when β = β0, T R
n (β) = Sn ×

sign[Qn ± dn,1 + (σxy − βσ 2
x )Sn/(σxσ (β))] + op(1).

When identification is weak, Sn and Qn are asymptotically
independent by construction, while Sn →d N (0, 1). Therefore,
one can construct data-dependent critical values as follows.
First, compute

Q̂n(β0) =
√

nhn�̂xn√
kσ̂ 2

x,n/f̂z,n(z0)
− σ̂xy,n − β0σ̂

2
x,n

σ̂x,nσ̂n(β0)

×
⎛⎝√

nhn

(
�̂yn − β0�̂xn

)√
kσ̂ 2

n (β0)/f̂z,n(z0)

⎞⎠ .

Second, simulate M-independent N (0, 1) random variables
{S1, . . . ,SM} for some large M. Third, for m = 1, . . . M com-
pute

T̂ R
n,m(β0, Q̂n(β0)) = Sm × sign

(
Q̂n(β0) + σ̂xy,n − β0σ̂

2
x,n

σ̂x,nσ̂n(β0)
Sm

)
.

Let ĉvn,1−α(β0, Q̂n(β0)) denote the (1 − α)th quantile of the
sample distribution of {T̂ R

n,m(β0, Q̂n(β0)) : m = 1, . . . , M}. To
obtain an asymptotically uniformly valid one-sided test, one can
use ĉvn,1−α(β0, Q̂n(β0)) as the critical value.

Theorem 3. Suppose that Assumption 2 holds. Tests that
reject H0 : β ≤ β0 in favor of H1 : β > β0 when T R

n (β0) >

ĉvn,1−α(β0, Q̂n(β0)) have AsySz equal to α.

Weak-identification-robust confidence sets for β can be con-
structed by inversion of the robust tests. For example, a confi-
dence set for β with asymptotic coverage probability 1 − α can
be constructed by collecting all values β0 that cannot be rejected
by the two-sided robust test:

CS1−α,n = {
β0 ∈ R :

∣∣T R
n (β0)

∣∣ ≤ z1−α/2
}
. (9)

This confidence set can be easily computed analytically by solv-
ing for values of β0 that satisfy the inequality

(β̂n − β0)2σ̂ 2
x,nFn − z2

1−α/2(σ̂ 2
y,n + β2

0 σ̂ 2
x,n − 2σ̂xy,nβ0) ≤ 0, (10)

where Fn is defined in (8).
Depending on the coefficients of the second-order polynomial

(in β0) in Equation (10), CS1−α,n can take one of the following

forms: (i) an interval, (ii) a union of two disconnected half-lines
(−∞, a1] ∪ [a2,∞), where a1 < a2, or (iii) the entire real line.
One will see cases (ii) or (iii) if the coefficient on β2

0 in (10) is
negative, which occurs when

Fn − z2
1−α/2 < 0. (11)

Thus, in practice one will see nonstandard confidence sets if the
null hypothesis �x = 0 cannot be rejected using the F-statistic
and central χ2

1,1−α critical values. Case (iii) arises when the
discriminant of the quadratic polynomial in (10) is negative,
which occurs if

Fnσ̂
2
n (β̂n) − z2

1−α/2

(
σ̂ 2

y,n − σ̂ 2
xy,n/σ̂

2
x,n

)
< 0. (12)

Positive definiteness of the variance-covariance matrix com-
posed of σ̂ 2

x,n, σ̂ 2
y,n, and σ̂xy,n implies that (11) holds whenever

(12) holds. Thus, negative discriminants implied by (12) are
inconsistent with Fn > z2

1−α/2 or positive coefficients on β2
0 in

(10). This in turn implies that CS1−α,n cannot be empty.
When identification is strong or semistrong, the concentra-

tion parameter and, therefore, Fn diverge to infinity. In such
cases, both the discriminant and the coefficient on β2

0 tend to
be positive, and consequently, CS1−α,n will be an interval with
probability approaching one.

Furthermore, one can show that when identification is strong
and under local alternatives of the form β = β0 + μ/(nhn)1/2,
tests based on Tn(β0) and T R

n (β0) have the same asymptotic
power. Thus, in practice there is no loss of asymptotic power
from adopting the robust inference approach if identification is
strong.

3. TESTING FOR CONSTANCY OF THE RD EFFECT
ACROSS COVARIATES

In this section, we develop a test of constancy of the RD effect
across covariates, which is robust to weak identification issues.
Such a test can be useful in practice when the econometrician
wants to argue that the treatment effect is different for different
population subgroups. For example, in Section 4, we use this test
to argue that the effect of class sizes on educational achievements
is different for secular and religious schools, and therefore it
might be optimal to implement different rules concerning class
sizes in those two categories of schools. The problem is related
to the classical analysis of variance (ANOVA) hypothesis of
homogenous populations (see, e.g., Casella and Berger 2002,
chap. 11).

Similarly to Otsu, Xu, and Matsushita (2015), we consider the
RD effect conditional on some covariate wi . (See also Frölich
2007.) Let W denote the support of the distribution of wi . Next,
for w ∈ W we define y+(w) using the conditional expectation
given zi and wi = w: y+(w) = limz↓z0 E (yi |zi = z,wi = w) .

Let y−(w), x+(w), and x−(w) be defined similarly. The condi-
tional RD effect given wi = w is defined as β(w) = (y+(w) −
y−(w))/(x+(w) − x−(w)). Similarly to the case without covari-
ates, under an appropriate set of assumptions, β(w) captures the
(local) ATE at z0 conditional on wi = w. We are interested in
testing the null hypothesis of constancy of the RD effect

H0 : β(w) = β for some β ∈ R and all w ∈ W, (13)

against a general alternative H1 : β(w) �= β(v) for some v,w ∈
W. When identification is strong, the econometrician can esti-
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mate the conditional RD effect function consistently and then
use it for testing of H0. (Such a test can be constructed similarly
to the ANOVA F-test as in Casella and Berger (2002, chap. 11)
and is discussed in the supplement.) However, this approach
can be unreliable if identification is weak. We therefore take an
alternative approach.

Suppose thatW = {w̄1, . . . , w̄J }, that is, the covariate is cate-
gorical and divides the population into J groups. The assumption
of a categorical covariate is plausible in many practical applica-
tions where the econometrician may be interested in the effect
of gender, school type, etc. However, even when the covariate is
continuous, in a nonparametric framework it might be sensible
to categorize it to have sufficient power (as is often done in
practice). For j = 1, . . . , J , let ŷ+

n (w̄j ), ŷ−
n (w̄j ), x̂+

n (w̄j ), and
x̂−

j,n(w̄j ) denote the local linear estimators of the corresponding
population terms computed using only the observations with
wi = w̄j . Let nj be the number of such observations. Define
σ 2

y (w̄j ), σ 2
x (w̄j ), and σxy(w̄j ) as the conditional versions of the

corresponding population terms, and let σ̂ 2
y,n(w̄j ), σ̂ 2

x,n(w̄j ), and
σ̂xy,n(w̄j ) denote the corresponding estimators.

Suppose that Assumption 2 holds for each of the J cate-
gories, and none of the categories is redundant asymptotically:
njhnj

/(nhn) → pj > 0 for j = 1, . . . , J , where n = ∑J
j=1 nj .

If H0 is true and the FRD effect is independent of w, one
can construct a robust confidence set for the common effect:
CSJ

1−α,n = {
β0 ∈ R : Gn(β0) ≤ χ2

J,1−α

}
, where

Gn(β0) =
J∑

j=1

njhnj

(
β̂n(w̄j ) − β0

)2

kσ̂ 2
n (β0, w̄j )/(f̂z,n(z0|w̄j )(�̂xn(w̄j ))2)

,

β̂n(w̄j ) = �̂yn(w̄j )/�̂xn(w̄j ), �̂xn(w̄j ) = x̂+
n (w̄j ) − x̂−

n (w̄j );
σ̂ 2

n (β0, w̄
j ) is defined similarly to σ̂ 2

n (β0) in (3) using
the estimators conditional on wi = w̄j ; and f̂z,n(z0|w̄j ) =
(njhnj

)−1∑n
i=1 K((zi − z0)/hnj

)1{wi = w̄j } is the estimator
for fz(z0|w̄j ), which denotes the conditional density of zi at
z0 conditional on wi = w̄j .

Under H0 : β(w) = β for some β ∈ R, CSJ
1−α,n is an asymp-

totically valid confidence set since Gn(β) →d χ2
J under weak or

strong identification. We consider the following size α asymp-
totic test: Reject H0 if CSJ

1−α,n is empty. The test is asymp-
totically valid because under H0, P (CSJ

1−α,n = ∅) ≤ P (β /∈
CSJ

1−α,n) = P (Gn(β) > χ2
J,1−α) → α, which again holds under

weak or strong identification. Under the alternative, there is no
common value β that will provide a proper recentering for all
J categories, and therefore, one can expect deviations from the
asymptotic χ2

J distribution.
We show below that the test is consistent if there is strong (or

semistrong) identification for at least two values w̄j1 and w̄j2

that satisfy β(w̄j1 ) �= β(w̄j2 ). Let d2
n,1(w̄j ) = njhnj

|x+(w̄j ) −
x−(w̄j )|2fz(z0|w̄j )/(kσ 2

x (w̄j )) be the conditional version of the
concentration parameter.

Theorem 4. Suppose that njhnj
/(nhn) → pj > 0 and As-

sumption 2 holds for each j = 1, . . . , J .

a. Tests that reject H0 of constancy in (13) when CSJ
1−α,n =

∅ have AsySz less or equal to α.

Figure 1. Angrist and Lavy (1999): Empirical relationship between
class size and school enrollment.
Note: The solid line shows the relationship when Maimonides’ rule
(cap of 40 students) is strictly enforced.

b. Let W∗ = {w̄1, . . . , w̄J ∗ } ⊂ W be such that d2
n,1(w̄j ) →

∞ for w̄j ∈ W∗ and β(w̄j1 ) �= β(w̄j2 ) for some w̄j1 , w̄j2 ∈
W∗. Then, P (CSJ

1−α,n = ∅) → 1 as n → ∞.

4. EMPIRICAL APPLICATIONS

In this section, we compare the results of standard and weak
identification robust inference in two separate, but related, ap-
plications. We show that the standard method and our proposed
method yield significantly different conclusions when weak
identification is a problem, but similar results when it is not.
We also show that the robust confidence sets can provide more
informative answers than the standard confidence intervals in
cases when the usual assumptions are violated. We also apply
our weak identification robust constancy test.

We begin with a case where weak identification is not
a serious issue. In an influential article, Angrist and Lavy
(1999) studied the effect of class size on academic success
in Israel using the fact class size in Israeli public schools
was capped at 40 students during their sample period. As
demonstrated in Figure 1, this cap results in discontinuities
in the relationship between class size and total school en-
rollment for a given grade. In practice, school enrollment
does not perfectly predict class size and thus the appropriate
design is fuzzy rather than sharp. We use the same sample
selection rules as Angrist and Lavy (1999) and focus on
language scores among 4th graders. The data can be found at
http://econ-www.mit.edu/faculty/angrist/data1/data/anglavy99.
There is a total of 2049 classes in 1013 schools with valid
test results. Here, we only look at the first discontinuity at
the 40-student cutoff. The number of observations used in
the estimation depends on the bandwidth. It ranges from 471
classes in 118 schools for the smallest bandwidth (6), to 722
observations in 484 schools for the widest bandwidth (20). We
use the uniform kernel in all cases.

Table 2 shows that the estimated discontinuity in the treat-
ment variable ranges from 8 to 14 students depending on the
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Table 2. Angrist and Lavy (1999): Estimated discontinuity in the treatment variable for the first cutoff and their standard errors, estimated
effect of class size on class average verbal score, and standard and robust 95% confidence sets (CSs) for the class size effect for different values

of the bandwidth

Bandwidth Discont. Std. errors F-stat Effect Standard CS Robust CS

6 −8.40 1.60 27.5 −0.07 [−0.145, 0.007] [−0.170, −0.000]
8 −9.90 1.26 61.9 −0.07 [−0.129, −0.015] [−0.138, −0.019]
10 −10.83 1.03 110.2 −0.06 [−0.103,-0.015] [−0.103,-0.015]
12 −12.00 0.92 172.0 −0.02 [−0.056, 0.011] [−0.058, 0.010]
14 −12.62 0.78 258.8 −0.03 [−0.061, 0.000] [−0.062, −0.000]
16 −13.21 0.69 370.1 −0.02 [−0.048, 0.008] [−0.049, 0.007]
18 −13.87 0.61 525.8 −0.02 [−0.046, 0.003] [−0.047, 0.003]
20 −14.35 0.56 667.7 −0.02 [−0.042, 0.005] [−0.043, 0.004]

NOTES: Silverman’s normal rule-of-thumb bandwidth is 7.84 and the optimal bandwidth suggested by Imbens and Kalyanaraman (2012) is 7.90. The scores are given in terms of standard
deviations from the mean.

bandwidth chosen. The table also shows that, as expected, the
F-statistic becomes smaller as the bandwidth gets smaller. Sil-
verman’s normal rule-of-thumb and the optimal bandwidth pro-
cedure of Imbens and Kalyanaraman (2012) both suggest a
bandwidth value of approximately 8, which corresponds to a
relatively large value of the F-statistic (approximately 62). Ap-
plying the standards of Table 1, we then conclude that weak
identification is not a serious concern in this application. Using
the 5% noncentral χ2 critical value, we reject the null hypothesis
that the concentration parameter is below 36, and therefore, the
maximal size distortions of the 5% two-sided tests are expected
to be under 1%. Note that even at the smallest bandwidth, the
F-statistic is relatively large. This is consistent with Figure 2
that shows that the 95% standard and robust confidence sets for
the class size effect are very similar. The figure shows that the
two sets of confidence intervals are essentially indistinguish-
able for larger bandwidths, and only differ slightly for smaller
bandwidths.

In this application, we also compare the results of the stan-
dard constancy test of the treatment effect across subgroups to
the results of our robust constancy test. The first set of results
reported in Section 5 of the online supplement compares the

Figure 2. Angrist and Lavy (1999): 95% confidence intervals for
the effect of class size on verbal test scores for different values of the
bandwidth.
Note: This figure is for the enrollment cutoff of 40. The bandwidth
according to Silverman’s normal rule-of-thumb is 7.94. The optimal
bandwidth selected according to Imbens and Kalyanaraman (2012) is
7.90. The scores are given in terms of standard deviations from the
mean.

treatment effect for secular and religious schools. The null hy-
pothesis (the treatment effect is the same across subgroups) can
never be rejected using a standard test. By contrast, the robust
constancy test rejects the null hypothesis for the largest values
of the bandwidth (18 and 20). We reach similar conclusions
when comparing the treatment effect for schools with above
and below median proportions of disadvantaged students. The
null hypothesis is rejected by the robust test under the largest
bandwidth (20). This suggests that our proposed test may have
greater power against alternatives than the standard test in some
contexts.

The second application considers a similar policy in Chile
originally studied by Urquiola and Verhoogen (2009). It should
be noted that Urquiola and Verhoogen (2009) are not attempt-
ing to provide causal estimates of the effect of class size on
tests score. They instead showed how the RD design can be
invalid when there is manipulation around the cutoff, which re-
sults in a violation of Assumption 1(b) (exogeneity of zi). So
while this particular application is useful for illustrating some
pitfalls linked to weak identification in an FRD design, the re-
sults should be interpreted with caution. In this application, the
class sizes are capped at 45 students. Figure 3 shows the fuzzy
discontinuity in the empirical relationship between class size

Figure 3. Urquiola and Verhoogen (2009): Empirical relationship
between class size and enrollment.
Note: The solid line shows the relationship when the rule (cap of 45
students) is strictly enforced.
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Table 3. Urquiola and Verhoogen (2009): The estimated effect of class size on the class average math score and its 95% standard and robust
confidence sets (CSs) for different values of the bandwidth

Bandwidth Estimated effect Standard CS Robust CS

First cutoff (45)
6 0.146 [−0.061, 0.353] (−∞, −0.433] ∪ [0.043, ∞)
8 3.378 [−74.820, 81.576] (−∞, −0.120] ∪ [0.129, ∞)
10 −0.437 [−1.867, 0.993] (−∞, −0.078] ∪ [0.181, ∞)
12 −0.173 [−0.360, 0.014] [−1.720, −0.065]
14 −0.136 [−0.246, −0.026] [−0.376, −0.060]
16 −0.091 [−0.153, −0.029] [−0.186, −0.042]
18 −0.073 [−0.115, −0.031] [−0.127, −0.037]
20 −0.063 [−0.099, −0.027] [−0.107, −0.032]

Second cutoff (90)
6 0.128 [−0.025, 0.281] [0.004, 3.093]
8 0.261 [−0.061, 0.582] (−∞, −0.587] ∪ [0.085, ∞)
10 0.227 [−0.111, 0.566] (−∞, −0.241] ∪ [0.046, ∞)
12 0.306 [−0.296, 0.908] (−∞, −0.118] ∪ [0.053, ∞)
14 0.486 [−1.092, 2.063] (−∞, −0.056] ∪ [0.068, ∞)
16 1.636 [−18.745, 22.017] (−∞, 0.002] ∪ [0.065, ∞)
18 −1.056 [−10.968, 8.856] (−∞, ∞)
20 −0.425 [−2.041, 1.190] (−∞, 0.005] ∪ [0.162, ∞)

Third cutoff (135)
6 −2.145 [−15.627, 11.336] (−∞, −0.076] ∪ [0.584, ∞)
8 −0.298 [−0.692, 0.097] [−21.482, 0.007]
10 −0.307 [−0.850, 0.236] (−∞, 0.027] ∪ [1.414, ∞)
12 −0.309 [−0.861, 0.243] (−∞, 0.027] ∪ [1.550, ∞)
14 −0.328 [−0.885, 0.228] (−∞, −0.001] ∪ [1.838, ∞)
16 −0.231 [−0.652, 0.190] (−∞, 0.034] ∪ [1.604, ∞)
18 −0.181 [−0.500, 0.138] (−∞, 0.041] ∪ [21.933, ∞)
20 −0.136 [−0.389, 0.117] [−1.642, 0.063]

Fourth cutoff (180)
10 0.048 [−0.119, 0.216] (−∞, ∞)
12 0.035 [−0.130, 0.200] (−∞, ∞)
14 −0.047 [−0.371, 0.278] (−∞, ∞)
16 −0.045 [−0.343, 0.254] (−∞, ∞)
18 −0.039 [−0.316, 0.238] (−∞, ∞)
20 −0.029 [−0.299, 0.242] (−∞, ∞)

NOTES: Silverman’s rule-of-thumb bandwidth is 8.59. The optimal bandwidth suggested by Imbens and Kalyanaraman (2012) for the cutoff of 45 is 9.67 and for the cutoff of 90, the
suggested bandwidth is 11.60. The optimal bandwidth suggested by Imbens and Kalyanaraman (2012) for the cutoff of 135 is 14.12 and for the cutoff of 180, the suggested bandwidth is
17.81. The scores are given in terms of standard deviations from the mean.

and enrollment at the various multiples of 45. The figure also
shows that the discontinuity becomes smaller as enrollment in-
creases. In this example, the outcome variable is average class
scores on state standardized math exams and we restrict attention
to 4th graders. We also strictly adhere to the sample selection
rules used by Urquiola and Verhoogen (2009). The total number
of observations is 1636. The effective number of observations
varies with the bandwidth and the enrollment cutoff. The range
of the number of observations is 201 to 402 at the 90 student
enrollment cut off; 45 to 95 at the 135 student enrollment cutoff,
and 17 to 34 at the 180 student enrollment cutoff. The uniform
kernel is used to compute all the results below. Table 3 reports
the FRD estimates and the confidence sets for the different val-
ues of the bandwidth and cutoff points. As before, we set the
size of the test at 5%. Starting with the first cutoff point, Table 3
shows that the robust and conventional confidence sets diverge
dramatically as the bandwidth gets smaller. Interestingly, while
the robust confidence interval is much wider than the conven-
tional one, it nevertheless rejects the null hypothesis that the

effect of class size is equal to zero while the conventional fails
to reject the null.

To help interpret the results, we also graphically illustrate
the difference between standard and robust confidence sets in
Figure 4. The first panel plots the standard confidence sets as
a function of the bandwidth. The second panel does the same
for the weak identification robust method. The shaded area is
the region covered by the confidence sets. As the bandwidth
increases, the robust confidence sets evolve from two disjoint
sections of the real line to a well-defined interval. Note that
class size is a discrete rather than a strictly continuous variable,
hence the break between bandwidths 11 and 12 when the robust
confidence set switches from two disjoint half lines to a single
interval. This is consistent with the size of the discontinuity in
class size as a function of enrollment estimated at different band-
widths and the corresponding F-statistic. At bandwidths below
10, the estimated discontinuity is small and the F-statistic is be-
low 7. However at bandwidths higher than 12, the estimated
discontinuity is progressively closer to 10 students and the
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Figure 4. Urquiola and Verhoogen (2009): 95% standard and robust
confidence sets (CSs) for the effect of class size on class average math
score for different values of the bandwidth.
Note: This figure is for the first enrollment cutoff of 45. The bandwidth
according to Silverman’s normal rule-of-thumb is 8.59. The optimal
bandwidth selected according to Imbens and Kalyanaraman (2012) is
9.67. The scores are given in terms of standard deviations from the
mean.

F-statistic ranges from just over 40 to just over 188. This is im-
portant since the bandwidth suggested by Silverman’s normal
rule-of-thumb is only 8.59 and the optimal bandwidth suggested
by Imbens and Kalyanaraman (2012) is 9.67. See Section 5 in
the online supplement for a complete listing of the F-statistic
and discontinuity estimates at different bandwidths.

Identification is considerably weaker for the second cutoff
point. At all bandwidths, the standard confidence intervals fail
to reject the null that the effect of class size is zero. However,
for most bandwidths, the robust confidence sets do not include a
zero effect. For example, for a bandwidth of 8, we cannot reject
the null that class size is not related to grades when using the
standard method, while the robust method suggests rejecting the
null.

Identification is even weaker at the third cutoff and, for most
bandwidths, the robust confidence sets consist of two disjoint
intervals. Finally, results get very imprecise at the fourth cutoff
and the robust confidence sets now map the entire real line. This
suggests that identification is very weak at these levels and the
standard confidence intervals are overly narrow.

In summary, our results suggest that when weak identifica-
tion is not a problem, the robust and standard confidence sets
are similar. But when the discontinuity in the treatment variable
is not large enough, the robust confidence sets are very differ-
ent from those obtained using the standard method. We also

demonstrate that our robust inference method provides more
informative results than the standard method.

SUPPLEMENTARY MATERIALS

The supplementary materials contain: (i) the description of
the procedure for selection and evaluation of the influential
empirical RD papers; (ii) the proofs of Theorem 1, 3, and 4; (iii)
the Monte Carlo results for standard and weak-identification-
robust confidence sets; and (iv) the additional tables from the
empirical application.
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