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Abstract. This paper reviews the basic principles of inequality measurement, underlining
the advantages and shortcomings of alternative measures from a theoretical standpoint
and in the context of the study of the distribution of wealth. Adopting the two most pop-
ular measures, the Gini index and the P-shares, the paper documents wealth inequality
in Canada using the 1999, 2005 and 2012 Survey of Financial Security (SFS). It carries
out several decompositions with covariates, featuring DFL-type reweighting methods and
Gini and P-shares RIF regressions. The latter parallel decompositions deepen our under-
standing of how changes in socio-demographic characteristics, including the compensating
role of family formation and human capital, impact wealth inequality.

Résumé. Cet article débute par une revue des principes fondamentaux de la mesure de
l’inégalité de la richesse, en soulignant les avantages et inconvénients de diverses mesures
d’un point de vue théorique. Adoptant les deux mesures les plus populaires, l’indice de
Gini et les fractiles, cet article documente l’évolution de l’inégalité de la richesse au Canada
en utilisant les données des enquêtes sur la sécurité financière (ESF) de 1999, 2005 et
2012. Puis il réalise plusieurs types de décompositions, incluant les méthodes basées sur la
repondération de type DFL et les RIF régressions pour l’indice de Gini et les fractiles.
Ces dernières approfondissent notre compréhension de la façon dont les changements de
caractéristiques sociodémographiques ont un impact sur l’inégalité de la richesse, notam-
ment le rôle compensatoire de la formation des ménages et du capital humain.

JEL classification: D31, D63

1. Introduction

Over the last three decades, much empirical analysis has centred on
changes in wage and earnings inequality fuelled by technological change, insti-
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tutional transformation and globalization. In Canada, individual-based labour
force surveys (LFSs) and household-based surveys (such as SLID) provided re-
searchers with the information to evaluate the relative importance of these ex-
planatory factors on a more or less continuous basis. A compendium of
analyses in Green et al. (2016) summarizes the Canadian story in terms of income
inequality.1

Since the early 2000s, however, the concerns about increasing inequality have
shifted towards top income groups and researchers (Saez and Veall 2005, Veall
2012) have turned to data sources (such as LAD) based on income tax data, which
are available yearly. The sustained increases in top incomes since the 1990s raise
the question of why these were not accompanied by similarly strong increases in
top wealth shares, as measured in standard household surveys of assets and debts,
given that those richer individuals consume a relatively smaller share of their
income. A possible answer to this question, for the United States, was provided
by Saez and Zucman (2016). They extended the use of US income tax data to the
analysis of wealth inequality by capitalizing the incomes reported by individual
taxpayers. Their results indicate that the upsurge of top incomes combined with
an increase in saving rate inequality led to larger increases in top wealth shares
than shown by the Federal Reserve Board’s Survey of Consumer Finance (SCF),
with the top 1% share reaching 42% in 2013. However, these results are subject to
the general limitations of the income capitalization method (see, e.g., Atkinson
and Harrison 1978) and are also constrained by their reliance on income tax
records (Kopczuk 2015, Bricker et al. 2016). Bricker et al. carefully examine the
reasons for the difference in results between Saez and Zucman (2016) and those
based on the SCF. They also provide their own estimates based on multiple data
sources and refinements, concluding that the share of the top 1% in 2013 was just
33%. Like the SCF, their results do show an upward trend in wealth inequality
over the last three decades, albeit one less pronounced than that found by Saez
and Zucman (2016).

The Canadian case is different from that of the United States. While the US
evidence shows an upward trend in wealth inequality, Canada’s Survey of Finan-
cial Security (SFS) does not show such a trend as we find here. Further, adjusting
the SFS top wealth shares to make them consistent with the “rich lists” published
by Forbes magazine and other media outlets does not disturb the lack of trend
(Davies and Di Matteo 2017). Beginning in 2006 and continuing after the global
financial crisis (GFC) of 2007–2008, there was a collapse of house prices in the
United States, while there has been a more or less continuous rise of house prices
in Canada. Since housing is relatively less important for the wealthy than for the
middle class, this contrast helps to explain the lack of a rise in top wealth shares
in Canada over this period. Weaker performance of the Canadian stock market
since the GFC vs. its US counterpart further helps to explain the lack of trend
in Canada, as stocks are most important for the wealthy. However, the contrast

1 For example, Fortin and Lemieux (2015) find that the oil boom of the mid-2000s had an
important mitigating effect on increasing wage inequality.
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between the lack of an upward trend in Canada vs. rising top wealth shares in the
United States holds over the last three decades, not just the last five to 10 years.
A full explanation for the lack of trend in Canadian wealth inequality therefore
requires a look at more than just the behaviour of asset prices.

Here we document wealth inequality in Canada as reflected in the 1999, 2005
and 2012 Surveys of Financial Security. We carry out several decompositions
with covariates. The methods applied include the widely used DFL reweighting
method (DiNardo et al. 1996), the RIF Gini regressions proposed by Firpo et al.
(2009) and new RIF P-shares regressions. The latter parallel decompositions
deepen our understanding of how changes in socio-demographic characteristics
affect wealth inequality. We find that an important reason for the lack of trend
in wealth inequality in Canada over the last decades is that changes in family
formation and in human capital investment have had approximately offsetting
impacts.

The study of the measurement of wealth inequality has a long tradition in
the Canadian literature (Podoluk 1974; Davies 1979, 1993; Harrison 1980; Oja
1983; Osberg and Siddiq 1988; Siddiq and Beach 1995; Di Matteo 1997, 2016;
Morissette et al. 2006; Morissette and Zhang 2007; Brzozowski et al. 2010). We
are thus able to draw on the contributions of many authors who have discussed
the properties, advantages and disadvantages of different approaches.

The paper is organized as follows. Section 2 reviews the theoretical foundations
of inequality measurement and addresses the classical analysis of the decompos-
ability of the summary measures by income or wealth components and popula-
tion subgroups. In section 3, we provide a summary of decomposition methods
using covariates for the case of changes in wealth inequality. Section 4 features
an empirical application of the use of decomposition methods, using the 1999,
2005 and 2012 SFS surveys, as well as the 1984 Survey of Consumer Finances
(SCF). Section 5 concludes.

2. Theoretical foundations: Inequality measurement

The theory of inequality measurement is a rich and highly developed area. Our
emphasis here is on inequality measures or practices that are useful in the study
of wealth inequality.

The discussion in this section is couched in terms of the distribution of wealth
in a finite population with n members, which we will refer to as individuals. (This
is a help in exposition. In the next section, continuous distributions are used since
they are more appropriate in a statistical context.) The theory can of course be
applied to variables other than wealth, including income or labour earnings. And
the units studied could be families or households. Denoting individual i’s wealth
as yi , we order the individuals such that y1 �y1 � · · ·�yn and let Y = (y1y2,…, yn).
Mean wealth is ȳ.
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One of the foundations of the theory of inequality measurement is the Pigou–
Dalton principle of transfers (Dalton 1920), or principle of transfers for short.
It says that if wealth is transferred from a richer person to a poorer person,
without reversing their ranks, inequality goes down. And of course, a transfer in
the opposite direction makes inequality go up. If there are only two individuals,
any redistribution of wealth has an unambiguous effect on inequality. Either it
is a transfer from a richer to a poorer, or vice versa. But if there are more than
two people, it is easy to construct distributional changes that cannot be judged as
unambiguously inequality-reducing or increasing just by applying the principle
of transfers. Let n = 3. Transfer a small amount from individual 2 (the middle
person) to individual 1 (the poorest). At the same time make a transfer of an
equal amount from individual 2 to individual 3 (the richest). The first transfer is
equalizing while the second is disequalizing.

When elements of the same redistributive package have conflicting effects on
inequality, different observers will have different opinions about whether overall
inequality has risen or fallen. In the above example, suppose the three individuals
have wealth levels ($100,000; $200,000; $300,000) and the amounts transferred
are $1,000 in each case. Some observers, perhaps the majority, would feel that
equalizing the distribution at the bottom, by transferring $1,000 from the middle
person to the bottom person is a more significant change than the increase in
inequality caused by taking $1,000 from the middle person to give to the top
person. We can say that they believe inequality is falling. Other observers will
have the opposite opinion. In the theory of inequality measurement, the first
group of observers are said to be transfer sensitive.

The principle of transfers and transfer sensitivity each contribute to ranking
distributions according to their level of inequality. Suppose we have two wealth
distributions, Y and Y ′ with the same mean. If the Lorenz curve for Y , say, is
nowhere below that of Y ′ and it is above that of Y ′ at least somewhere2, then
distribution Y can be derived from Y ′ by a series of equalizing transfers. The
converse is also true, so Lorenz curves can always tell us whether there is an
unambiguous inequality ranking of different distributions that have the same
mean.

What do we do if the distributions we want to compare have different means?3

One approach is to restrict attention to relative inequality. If all individuals’ wealth
levels change by the same percentage, which alters the mean but has no effect on

2 Here “below” and “above” mean strictly below and strictly above, as they do throughout the
paper. The Lorenz curve displays the relationship between the proportion of overall wealth
accruing to the bottom p% of the population (with wealth below the p-th quantile qp),
L(p)=∑

(yi <qp) yi=
∑N

i=1 yi , and the corresponding proportion of the population, p.

3 If population sizes differ, inequality comparisons can still be made if we accept the principle of
population homogeneity, which says that inequality is not altered if the population is replicated.
If one distribution has the population size m and the other has population n, replicating the first
population n times and the second m times, generates two populations of the same size, mn, with
the same inequality levels as the respective original distributions, which therefore can indeed be
compared.
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the Lorenz curve, we would say that inequality does not change. This is the
usual approach in practice—we compare the Lorenz curves or Gini coefficients
for countries, time periods or whatever and discuss the differences in inequality
they show, ignoring differences in means. Differences in means are considered
separately. That is the approach followed in this paper, but it is not the only
possible one. The theory of inequality measurement has also been worked out for
absolute inequality, in which case a uniform absolute change in all individuals’
incomes is taken as having no effect on inequality (Kolm 1976a, 1976b).

What happens when Lorenz curves cross? In that case, the distributions cannot
be ranked by the principle of transfers alone. But Shorrocks and Foster (1987)
proved a remarkable and helpful result. If the Lorenz curves for two distributions,
Y and Y ′, cross once with the Y Lorenz curve higher than the Y ′ curve in the
lower range and if the coefficient of variation of Y , CV(Y), is strictly less than
CV (Y ′) then all observers who are transfer sensitive will say the Y distribution
is more equal than Y ′.4

These results show that the Lorenz curve is more than a handy tool. It is
central to relative inequality measurement. With very high-quality datasets, for
example administrative data on a country’s entire population, such as one sees
in Scandinavia, the results can be readily applied. With data based on household
surveys, which have much smaller sample sizes, as in the Statistics Canada SFS
surveys used in this article, there is an issue of how confident one can be that one
Lorenz curve lies completely above the other, or that they intersect a particular
number of times. These issues were addressed by Beach and Davidson (1983) and
Beach and Richmond (1985), who developed methods of statistical inference and
joint confidence intervals for income shares and Lorenz curves.5 In Canada, these
methods were applied to the study of historical wealth inequality by Siddiq and
Beach (1995).

As we show in section 4, while the Lorenz curve has central importance in in-
equality measurement, simply viewing Lorenz curves does not reveal the detailed
information one needs to carefully assess differences in distributions. For this
reason, analysts have long looked at decile and quintile shares, supplemented
in many cases by top shares such as those of the top 1% and 5%. These are
examples of what are referred to as percentile shares (or P-shares hereinafter)
in the modern literature. They are the shares of individuals between particular
percentiles. Use of P-shares has refocused attention away from the “standard”
top shares, e.g., to the shares of individuals between the 95th and 99th percentiles
and between the 90th and 95th percentiles. While using a battery of summary
inequality indexes is still useful in comparing inequality across a large number
of distributions, for example in international datasets, carefully examining the

4 Davies and Hoy (1995) extended this result to the case where Lorenz curves may intersect any
number of times.

5 There is a large literature on the statistical aspects of inequality and social welfare comparisons.
Cowell and Mehta (1982) was an important early contribution. See Bishop, Chakraborti et al.
(1991); Bishop, Formby et al. (1991); Davidson and Duclos (2000); and Cowell and
Victoria-Feser (1996, 2008) for examples of later work.
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shape of the wealth distribution with the help of P-shares is indispensable for
understanding the sometimes subtle differences in a small set of distributions,
which is our goal in this article.

P-shares have a special advantage in the context of wealth inequality. This
is that interior P-shares are unaffected, in relative terms, by errors in the esti-
mated extremes of the distribution. Suppose, for example, that it is known that
a particular wealth survey underestimates the share of the top 1% by at least
10 percentage points but that the remainder of the distribution is well captured.
Then the estimated P-shares below the 99th percentile are all too high, but we do
not know by how much since the precise degree of error in the top 1% share is
not known. The required adjustment in the P-shares below the top 1% would be
equi-proportional, however, so their relative differences would be unaffected.

2.1. Classical decomposition
An important question about any inequality measure or index is whether it can be
decomposed. In this section we discuss “classical decomposition,” which breaks
up total inequality into the contributions either of subgroups or wealth com-
ponents. The classical approach is applied in section 4 to the decomposition of
wealth inequality in Canada by family types. The next two sections set out and
apply regression-based decomposition methods using covariates.

2.1.1. Decomposition by subgroups
Let a population be composed of m subgroups with population nj , mean wealth
ȳj and wealth vector Yj , all for j = 1,…, m. Let I (·) be an inequality index, with
overall value I (Y ), and I (Yj) for a subgroup. Then we say that I is decomposable
if it can be written as:

I
(
Y

)= I
(
n1,…, nm; ȳ1,…, ȳm; I

(
Y1

)
,…, I

(
Yj

))
, (1)

with I (Y ) strictly increasing in each I (Yj). It is additively decomposable if it can
be written:

I
(
Y

)= IB
(
Y

)+∑m
j=1 sjI (Yj), (2)

where IB(Y ) is between-group inequality (the value of I if there were no inequality
within the subgroups) and the weights sj sum to one. Typically, sj is either the
population share, nj=n, or the wealth share, nj ȳj=nȳ.

Some of the most popular inequality measures, for example Atkinson’s in-
dex and the coefficient of variation (CV), are decomposable and some others,
such as Theil’s index, are also additively decomposable (Jenkins 1991, Cowell
2011). However, there are at least two popular indexes that are not decomposable:
the variance of logarithms, often used in conjunction with earnings or income
regressions, and the Gini coefficient.6

6 If subgroup wealth distributions are non-overlapping, the Gini coefficient is additively
decomposable (see, e.g., Cowell 2011). It is also worth noting that the concept of between-group
inequality remains well defined for non-decomposable indexes.
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2.1.2. Decomposition by income components
Let wealth have K components, mean wealth of type k be denoted ȳk and the vec-
tor of type k wealth be Y k, for k =1,…, K . Again, I is an inequality index, with
overall value I (Y ). Inequality of component k is I (Y k). Decomposing I (Y ) in
this case means attributing to each component a proportional share, Sk , of I (Y ).
Shorrocks (1982) showed that even for a single inequality index there are legiti-
mate alternative ways of doing this unless an appropriate symmetry assumption
is made. But clear-cut results are obtained if one imposes “two factor symmetry”.
The latter requires that, if k = 2, two components should be assigned the same
contribution to inequality if (a) the distribution of wealth from both sources is
identical and (b) together they make up total wealth. Under this assumption,
whatever inequality index is used, Sk is given by the “natural” decomposition of
the variance, V (Y ), or the square of the CV.

The natural decomposition of V (Y ) can be found from:

V
(
Y

)=∑
k V (Y k)+∑

j �=k
∑

k ½jk [V
(
Y j)V

(
Y k

)
]

1
2 . (3)

The contribution of component k to the first term is simply V (Y k), but what is its
contribution to the second interaction term? In Shorrocks’ analysis, the natural
approach is to assign to component k half the value of all the interaction terms
involving that factor. If that is done, we get: Sk = cov(Y k , Y )

V (Y ) , where cov(Y k, Y )
is the covariance between component k and total wealth. This decomposition
can be used with any valid relative inequality index. Thus, there is a unique
decomposition of inequality by wealth components—a useful result in applied
work.

2.2. Gini coefficient
The most popular inequality index is the Gini coefficient. This may be true partly
because it is easy to explain to a general audience, simply because it ranges from
0 to 1. (It is easy to overlook how unusual this property is, but there is no other
inequality index in common use that has it.) More sophisticated audiences know
that the Gini equals twice the area between the diagonal and the Lorenz curve
in the familiar diagram, which is a nice aid to intuition. This is the usual way to
explain the Gini coefficient, e.g., in first-year economics textbooks.

Gini (1914) defined his index in terms of the mean difference, that is, the
average absolute difference between the incomes of pairs of individuals. This he
divided by 2 and normalized by the mean, yielding:

G = 1
2n2ȳ

∑n
i=1

∑n
j=1

∣∣yi −yj
∣∣. (4)

At bottom, economic inequality is about income differences between peo-
ple. This formula shows that the Gini coefficient takes into account every such
difference—a virtue emphasized, e.g., by Sen (1973). It also obeys the princi-
ple of transfers. But while the Gini coefficient is attractive in these ways, it also
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has some less happy properties. One we have seen already is its lack of additive
decomposability.

Probably the most important limitation of the Gini coefficient is that its sen-
sitivity to transfers depends only on the amount transferred and the number of
individuals between the “donor” and “recipient”. It does not depend on the dif-
ference in wealth between these two individuals, nor does it depend directly on
how high their wealth is. The result is that, in practice, the Gini coefficient is most
sensitive to transfers in the middle of the distribution. That is because typical
distributions of wealth, income, or earnings are unimodal and have high den-
sity in the middle. This means, for example, that if $1,000 is transferred across
a wealth gap of $100,000 in the middle of the distribution, the Gini will change
much more than if $1,000 were transferred across a $100,000 wealth gap close to
the bottom of the distribution or at the very high top, where fewer individuals
would be between the donor and recipient.

The fact that the Gini coefficient is more sensitive to transfers in the middle of
the distribution than in the bottom end is somewhat troubling. This means that the
most popular inequality index is not transfer sensitive, despite the fact that many,
if not most, observers apparently feel that inequality is more important lower
in the distribution—as revealed by the intense interest in poverty and poverty
measurement. The appropriate response is not to stop using the Gini coefficient.
When many distributions are being compared it can be supplemented with other
measures that are transfer sensitive, for example Atkinson’s index or Theil’s index
(see, e.g., Sen 1973, Jenkins 1991 or Cowell 2011). When a small number of
distributions are being compared, as in this paper, there is no need to rely heavily
on a summary index, as discussed above.

3. Decomposition methods with covariates

3.1. Decompositions and counterfactuals
Despite the limitations mentioned above, the Gini coefficient remains a widely
used measure of inequality. Over the last 15 years, scholars and policy analysts
have also increasingly used top income (or wealth) shares as a measure of in-
equality. This focus was in large part motivated by the tremendous growth in the
share of income going to the top 1% in the United States, Canada and many other
countries. Top income shares, or other percentile shares, indicate the percentage
of income going to different groups depending on their rank in the distribution.
P-shares are all simple functions of the Lorenz curve. For instance, the top 10%
share of the distribution F (·) is given by 1−L(F ; p90), where L(F ; p) is the Lorenz
ordinate evaluated at the p-th percentile.

Like the Gini coefficient, Lorenz ordinates and P-shares are not decomposable
measures of inequality, as discussed in section 2. Nor are interquartile differences
like the gap between the 90th and 10th percentiles that have been widely used in
the labour economics literature on wage inequality. Strictly speaking, this means
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these inequality measures cannot be explicitly written out as a function of the
sample composition, group means and within-group inequality (the terms sj , ȳj
and I (Y j) in equations (1) and (2), respectively).

Fortunately, several procedures are now available to carry out informative
decompositions using covariates when the inequality measure of interest is not
decomposable in the conventional way defined in equations (1) or (2). Going
back to the famous Oaxaca–Blinder (OB) decomposition of the mean, the critical
issue when performing decompositions is to construct counterfactual values for
the measure of interest. For instance, one may be interested in knowing how the
mean and other features of the distribution would change if we were to increase
the share of university-educated workers by 10% and reduce the share of high-
school educated students by the same amount. Since the overall mean can be
written as ȳ=∑m

j=1 sj ȳj , the counterfactual mean ȳC =∑m
j=1 sC

j ȳj is obtained by
replacing the shares sj by counterfactual shares sC

j . It is easy to show that replacing
sj by sC

j is equivalent to reweighting each observation by a factor Ã̂j = sC
j =sj

when computing the sample mean.7 The same procedure can then be used to
compute the counterfactual value of any other distributional measure of interest
(DiNardo et al. 1996). For example, consider the case of the top 10% share,

S(p90)=1−L(F ; p90), which is estimated as Ŝ(p90)=
∑

(yi�q̂90) yi∑N
i=1 yi

, where q̂90 is the

sample estimate of the 90th quantile of the distribution of y. The counterfactual
wealth share Ŝ

C
(p90) can be computed as:

Ŝ
C

(p90)=
∑

(yi�q̂C
90) Ã̂jyi∑N

i=1 Ã̂jyi

. (5)

Thus, it is always possible to compute a counterfactual value of an inequality
measure where each observation is reweighted by the factor Ã̂j = sC

j =sj regardless
of whether the measure is decomposable. Note, however, that counterfactuals
obtained by reweighting are partial equilibrium in nature. For example, changing
the fraction of individuals with different levels of education may have an impact
on their wages and, ultimately, on their wealth level. We abstract from these
possible general equilibrium effects in this paper.

In the remainder of the paper, we will work with a set of covariates X that could
either capture groups (e.g., if X is a categorical variable indicating the level of
completed education), or a more general set of discrete or continuous covariates.
In the more general setting, the reweighting factor Ãj will be replaced with Ã(X ).

In a setting with a more general set of covariates, it becomes important to
go beyond the simple counterfactual experiment discussed above and consider

7 Since the group means are defined as ȳj = (1=Nj )
∑Nj

i=1 yij , substituting this expression into
the equation for the counterfactual mean and using the fact that sj =Nj=N yields:
ȳC =∑m

j=1 sC
j (1=Nj )

∑Nj
i=1 yij = (1=N)

∑m
j=1 sC

j (N=Nj )
∑Nj

i=1 yij = (1=N)
∑m

j=1
∑Nj

i=1(sC
j =sj )yij .

Technically speaking, ȳ denotes a sample average rather than a population mean; we have
dispensed with the distinction so far, but we return to a more formal notation below.
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alternative counterfactuals where only some elements of X are being manipu-
lated. For instance, we may want to know how much of the increase in the top
1% wealth share can be attributed to observed changes in the distribution of
education, holding other factors unchanged. In the case of the mean, this is a
well-known problem, typically tackled using an OB decomposition. The decom-
position is based on a linear (in the parameters) model, Y = X ¯ + ", where the
error " satisfies the zero conditional mean assumption (E("|X )=0). Applying the
law of iterated expectations, it follows that:

E
(
Y

)=EX [E [Y |X ]]=E
(
X

)
¯ =¯0 +∑K

k=1 E
(
Xk

)
¯k , (6)

where K is the number of individual covariates excluding the constant. The sample
analog of equation (6) is given by:

Ȳ = X̄ ˆ̄ = ˆ̄
0 +∑K

k=1 X̄ k ˆ̄
k , (7)

where ˆ̄ is the OLS estimate of ¯. As discussed at the beginning of this section,
the OB decomposition is based on a comparison between actual and counter-
factual means. Consider an OB decomposition of the change in mean wealth
between 1999 and 2012, two of the periods considered in the empirical appli-
cation in section 4. One interesting counterfactual in this setting is the average
wealth that would prevail in 2012 if the distribution of the covariates X had
remained as in 1999. Under the linearity and zero conditional mean assumption,
the counterfactual average wealth Ȳ

C
can be computed as:

Ȳ
C = X̄ 1999 ˆ̄

2012 = ˆ̄
0,2012 +∑K

k=1 X̄ k,1999 ˆ̄
k,2012. (8)

Note that the reweighting approach introduced above could also be used to com-
pute the counterfactual mean as: Ȳ

C
RWT = (1=N)

∑N
i=i Ã̂(Xi)Yi .

As discussed below, in this setting the reweighting factor Ã̂(Xi) represents
the estimated probability that an observation with covariates Xi is observed in
2012 instead of 1999. But unlike equation (8), this alternative way of computing
the counterfactual mean is a potentially complicated function of Xi .8 One major
advantage of the counterfactual based on the linear model is that it yields a linear
closed form solution in the mean value of the covariates. When comparing the
actual mean income in 2012, Ȳ 2012, to the counterfactual mean, Ȳ

C
, we get:

Ȳ 2012 − Ȳ
C = X̄ 2012 ˆ̄

2012 − X̄ 1999 ˆ̄
2012 =∑K

k=1
(
X̄ k,2012 − X̄ k,1999

)
ˆ̄
k,1999. (9)

Thus, the difference between the actual and the counterfactual mean is a weighted
sum of the 1999 to 2012 difference in the mean value of each covariate, using the
OLS coefficients as weights. For example, if the k-th covariate is years of educa-
tion, (X̄ k,2012 − X̄ k,1999) ˆ̄

k,1999 indicates the impact on mean wealth of changing
education from its 1999 to its 2012 level. In the OB decomposition, these types of
counterfactual experiments are used to compute the “explained” or “composition
effect” part of the decomposition.
8 Kline (2011) discusses a special case where the reweighting factor is a linear function of the X s,

in which case the two ways of computing the counterfactual are equivalent.
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The OB decomposition is obtained by subtracting and adding the counter-
factual mean Ȳ

C
to the difference in means between 1999 and 2012:

Ȳ 2012 − Ȳ 1999 = 1̂
¹
OB ≡ (Ȳ 2012 − Ȳ

C
)− (Ȳ 1999 − Ȳ

C
)

=
K∑

k=1

(
X̄ k,2012 − X̄ k,1999

)
ˆ̄
k,2012 + (

ˆ̄
0,2012 − ˆ̄

0,1999
)

+
K∑

k=1
X̄ k,1999

(
ˆ̄
k,2012 − ˆ̄

k,1999
)
.

(10)

As just discussed, the first term represents the explained or composition effect.
Under the above two assumptions, the last two terms reflect changes in the “wealth
structure” as summarized by the regression coefficients, or returns to observable
characteristics, ˆ̄. These last two components are often referred to as the un-
explained part of the decomposition.

The OB decomposition is very easy to compute as it simply involves estimat-
ing OLS regressions and sample means. Because of the linearity assumption,
OB provides a “detailed” decomposition of Ȳ 2012 − Ȳ 1999 in the sense that both

the composition effect, 1̂
¹
OB:X = Ȳ 2012 − Ȳ

C
, and the wealth structure effect,

1̂
¹
OB:S = Ȳ 1999 − Ȳ

C
, can be divided up in the contribution of each covariate.

This is arguably the most important advantage of the OB decomposition over
other methods, like reweighting, that can be used when one is interested only in
performing an aggregate decomposition, i.e., dividing up Ȳ 2012 − Ȳ 1999 into the
two broad components Ȳ 2012 − Ȳ

C
and Ȳ 1999 − Ȳ

C
. Note, however, that the con-

tribution of each covariate to the wealth structure effect arbitrarily depends on
the choice of the base group (Oaxaca and Ransom 1999) and has to be interpreted
with caution. The detailed decomposition also critically relies on the assumption
that the error term " satisfies the zero conditional mean assumption. The as-
sumption insures that the estimated effect of the covariates is not confounded by
unobserved factors.9

Fortin et al. (2011) show that this convenient feature of the OB decomposi-
tion can be generalized to arbitrary measures of inequality. They show how to
perform a detailed OB-type decomposition of inequality measures using the re-
centred influence function (RIF) regressions of Firpo et al. (2009). This provides
a convenient way of analyzing the source of changes in inequality measures, such
as the Gini coefficient or P-shares, despite the fact these measures are not decom-
posable in the sense defined in section 2. The remainder of this section describes in
more detail decomposition methods based on reweighting and RIF regressions,
focusing on the case of the Gini coefficient and P-shares.

9 For example, if " represents cognitive skills that are positively correlated with education, the
estimated effect of education will likely be biased because of the usual omitted variable bias
problem. Counterfactual experiments based on changes in education will capture both the direct
effect of education and the indirect effect of cognitive skills that are correlated with education.
Interestingly, as long as the correlation between education and cognitive skills is same across
groups and/or periods, the aggregate decomposition will remain valid. See footnote 13 and
Fortin et al. (2011) for more details.
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3.2. Reweighting
Inequality measures such as the Gini coefficient and P-shares can be represented
as real-valued functionals º : Fº → R of the underlying income (or wealth) dis-
tribution FY . For instance, the p-th Lorenz ordinate, º(FY ) = L(FY ; p) can be
represented as:

L
(
FY ; p

)=

∫ qp

y
ydFY (y)

∫ ∞

y
ydFY (y)

= 1
¹

∫ qp

y
ydFY (y), (11)

where y is the lower bound of the support of FY and ¹ represents its mean. The
P-shares are simply differences of Lorenz ordinates.10 Likewise, the Gini coeffi-
cient can be represented as:

G(FY )= 1
¹

∫ ∞

y
FY

(
y
) (

1−F Y
(
y
))

dy. (12)

As discussed above, an aggregate decomposition of an inequality measure can
be performed by computing a counterfactual value of this measure, which is
itself a function of the underlying distribution FY. Thus, once we know how to
compute the counterfactual distribution F C

Y , it is straightforward to compute the
counterfactual value of the Gini or P-shares.

Using the law of iterated probabilities, the (marginal) distribution of Y at time
t can be written as: FYt (y)=∫

FY |Xt (y|X )dFXt (X ), where FY |Xt is the conditional
distribution of Y at time t given covariates X and FXt is the marginal distribution
of X at time t.

Now consider the counterfactual distribution that would prevail if the distri-
bution of covariates at time t was replaced by the distribution at another time
period r. The resulting counterfactual distribution is:

F C
Yt

(
y
)=

∫
FY |Xt

(
y|x)

dFXr (x) =
∫

FY |Xt

(
y|x)

ÃX (x)dFXt (x), (13)

where the reweighting factor ÃX (x) is defined as: ÃX (x) = dFXr (x)=dFXt (x).11

Using Bayes’ law (DiNardo et al. 1996), it follows that:

ÃX (x)= dFXr (x)
dFXt (x)

= Pr(X |T = r)
Pr(X |T = t)

= Pr(T = r|X )
Pr(T = r|X )

/
Pr(T = t)
Pr(T = r)

. (14)

Pr(T = r|X ) can be computed by estimating a probit or logit model for the prob-
ability of being in period r (in a pooled sample for period r and t data) given
X . The sample proportion Pr(T = r) is computed as the empirical fraction of

10 The Lorenz ordinate is typically computed over positive values in the case of income inequality.
In the case of net worth that includes debt, negative values can be included.

11 Equation (13) makes explicit the fact that the assumption of invariance of the conditional
distribution is maintained in the construction of counterfactuals. As discussed earlier, it
excludes general equilibrium effects.
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observations in period r, P̂r(T = r) when data from periods r and t are pooled
together. The estimated reweighted factor Ã̂X (x) is then obtained by plugging in
the estimates P̂r(T = r|X ) and P̂r(T = r) in equation (14).

In principle, the estimated reweighting factor could be used to construct an es-
timate F̂

C
Yt

(y) of the counterfactual distribution F C
Yt :X |t=r(y), which, in turn, could

be plugged into the equations for the Gini or Lorenz ordinates
(equations (11) and (12)). A simpler procedure is to directly compute the dis-
tributional measure of interest by reweighting each observations with Ã̂X (x). For
instance, in the case of the p-th Lorenz ordinate, the estimated counterfactual
value is: L̂

C
RWT (p) =∑

(yi�q̂C
p,t)

Ã̂(Xi)yi=
∑Nt

i=1 Ã̂(Xi)yi , where q̂C
p,t is the counter-

factual p-th quantile.12 This formula generalizes the simpler formula for coun-
terfactual P-shares (or Lorenz ordinates) presented in Section 3.1.

Once an estimate of the counterfactual inequality measure is available, it is
straightforward to compute an aggregate decomposition of changes in that mea-
sure over time. For example, using L̂t(p) as a short for L̂(FYt ; p) the change in the
p-th Lorenz ordinate between 1999 and 2012 can be written as:

L̂2012
(
p
)− L̂1999

(
p
)= 1̂

L(p)
RWT ≡

(
L̂2012

(
p
)− L̂

C
2012

(
p
))

+
(

L̂
C
2012

(
p
)− L̂1999

(
p
))

,
(15)

where the first term on the right hand side represents the composition (or ex-
plained) effect, while the second term represents the wealth structure (or un-
explained) effect. Intuitively, since L̂

C
2012(p) is obtained by replacing the 2012

distribution of X s by the one in 1999, 1̂
L(p)
RWT ,X = L̂2012(p) − L̂

C
2012(p) should re-

flect solely changes in the distribution of covariates, i.e., composition effects.

The remaining “unexplained” change, 1̂
L(p)
RWT ,S = L̂

C
2012(p)− L̂1999(p) depends on

changes in the way covariates X map into Y.
When looking only at means under the assumption that Y = X ¯ + ", the

parameters ¯ summarize all the required information about the relationship be-
tweenY and X. Fortin et al. (2011) discuss in detail how the same rationale applies
in the case of distributional statistics besides the mean. They consider a general
case where Y depends in a fairly arbitrary way on X and " through a general
function: Y =m(X , "). Fortin et al. (2011) show that under the assumption that
the time period indicator T is conditionally independent of " given X, or T⊥"|X
(also known as the ignorability assumption), the composition effect depends
solely on changes in the distribution of X and ", while the wealth structure effect

in equation (15), 1̂
L(p)
RWT ,S = L̂

C

2012(p) − L̂1999(p), depends only on changes in the
functions m(. , . ). In other words, although decompositions are often viewed as

12 The counterfactual quantile q̂C
p, t can be computed using any statistical software (like Stata) that

supports the use of weights in the computation of quantiles. Reweighted terms are computed by
multiplying the sample weights by Ã̂X (x)



Decomposition of wealth inequality 1237

simple accounting exercises, they can be given more of a structural interpretation
under the conditional independence assumption.13

3.3. Detailed decompositions based on RIF regressions
Reweighting methods provide a convenient way of computing counterfactuals
based on secular changes in the distribution of all covariates X. But as discussed
in section 3.1, we are often interested in computing counterfactuals linked to spe-
cific covariates such as educational achievement, family composition, etc. These
covariate-specific counterfactuals are the building blocks of detailed decomposi-
tions à la Oaxaca–Blinder.

Firpo et al. (2007, 2009) propose to estimate recentred influence function (RIF )
regressions as a way of estimating these counterfactuals. Influence functions, also
known as Gâteaux (1913) derivatives, were introduced by Hampel (1974) as a
tool for robustness analysis. The influence function IF (y; º) of a distributional
statistic º evaluated at Y = y indicates by how much º changes when there is
a small increase in the fraction of the distribution FY concentrated at Y = y.
More formally, IF (y; º) is a directional derivative indicating by how much º(FY )
changes when an (infinitesimally) small step is taken in the direction of a mass
point distribution centred at Y =y.14

To provide intuition on how the influence function can be used to compute
counterfactuals, consider what happens when we increase (by a small amount)
the share of university relative to high school educated individuals. As the av-
erage influence function among university and high school educated students is
E[IF (y; º)|Univ] and E[IF (y; º)|HS], respectively, the effect of changing the share
of university-educated individuals is given by E[IF (y; º)|Univ]−E[IF (y; º)|HS].15

Ignoring other covariates, this difference corresponds to the coefficient in a
bivariate regression of the influence function on a dummy variable for univer-
sity education (with high school as the base group). Thus, as in a standard OB
decomposition, regression methods can be used to compute counterfactuals when
the regressand is an influence function instead of y.

13 The conditional independence assumption is slightly weaker than the independence assumption
as it allows X and " to be correlated, provided that the correlation does not change over time. In
addition to conditional independence, Fortin et al. (2011) show that three other conditions must
hold for the structural interpretation to be valid. The first condition requires two mutually
exclusive groups—which correspond to the two time periods in this case. Second, the
counterfactual must be simple, in that it refers to the wealth structure of one group or the other.
Third, the support of the distribution of the two groups must be overlapping in its entirety.

14 To measure the influence of a particular point y of the distribution, the idea is to construct a
mixture of the actual distribution F and a contamination of F at point y: T = (1− ")F + "±y,
where ±y is a degenerate distribution with mass of 1 at point y. The influence function of the
distributional statistic º(F ) is then obtained as the directional derivative of º(T ) as " goes to
zero: IF (y; º)= lim"→0[º(T)−º(F)]="

15 Firpo et al. (2009) provide a formal derivation of how to use the influence function to compute
the effect of a small change in the distribution of covariates. Applied to this specific example,
their theorem 1 implies that the effect of a small change 1s in the share of university-educated
individuals on the distributional statistic º is given by 1s · (E[IF (y; º)|Univ]−E[IF (y; º)|HS]).
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For the purpose of performing decompositions, it is more convenient to work
with the recentred influence function that is obtained by adding the distributional
statistic to the IF. This insures that the change in the average value of the RIF
over time is equal to the change in the distributional statistics.16 Note that in
the case of the mean, the influence function, IF (y; ¹), is y −¹ and RIF (y; ¹) =
IF (y; ¹) + ¹ = y. Thus, in that simple case, counterfactuals can be computed
by running a standard OLS regression of the RIF—y in this case—on the co-
variates and using the estimated regression coefficients ˆ̄ to compute covariate-
specific counterfactuals. Firpo et al. (2009) show that the same regression ap-
proach can be used for other distributional statistics when y is replaced by
the relevant RIF. One potential limitation is that for statistics other than the
mean, the RIF (y; º) is based on a first-order approximation of the impact of
y on the distributional statistic. For this reason, Fortin et al. (2011) propose a
decomposition procedure that combines an OB decomposition with reweighting
and ensures that the decomposition separates composition and wealth structure
effects even if the first-order approximation is valid only locally.

While Firpo et al. (2009) focus mostly on the case of quantiles, the RIF can be
readily computed for other distributional statistics such as the Gini (Monti 1991)
and Lorenz ordinates (Essama-Nssah and Lambert 2012). The RIF for the Gini
is given by:

RIF
(
y; G

)=2
y
¹

G +1− y
¹

+ 2
¹

∫ y

0
F (z)dz, (16)

while the RIF for the p-th Lorenz ordinate is:

RIF
(
y; L

(
p
))=

⎧⎪⎪⎨
⎪⎪⎩

y − (
1−p

)
qp

¹
+L

(
p
) ·

(
1− y

¹

)
if y < qp

pqp

¹
+L

(
p
) ·

(
1− y

¹

)
if y �qp.

(17)

By design, influence functions integrate to zero and recentred influence func-
tions integrate to the distributional statistic º(F ). Thus, using the law of iterated
expectations, we can write: º(FY )=EX [E[RIF (y; º)|X ]]. If we assume that, as in
the case of the mean, the conditional expectation of the RIF can be represented
as a linear function, E[RIF (y; º)|X ] = X ° , where ° represent the parameters of
the RIF regression, it follows that:

º
(
FY

)=E [X ] ° . (18)

Each element of the parameter vector ° indicates by how much the distri-
butional statistic º(FY ) changes in response to a change in the mean value of
the corresponding element of the covariate vector X. In other words, ° can
be used to compute covariate-specific counterfactuals and form the basis of an
16 Since recentring the influence function involves only adding a constant to the IF , the estimated

coefficients from a regression of the IF or RIF on the covariates are identical except for the
constant.
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OB-type decomposition of º(FY ), as in the case of the counterfactual experiment
discussed above (increase in the share of university-educated individuals). After
plugging in the sample estimates into equation (18), we have: º̂ = X̄ °̂ , where °̂

is estimated by running an OLS regression of RIF (y; º) on X. It follows that an
OB-type decomposition for the distributional statistic º can be written down as:
º̂t − º̂r = 1̂

º
OB ≡ (X̄ t − X̄ r)°̂ t+X̄ r(°̂ t − °̂r).

As noted earlier, one concern with the approach based on RIF regressions is
that it may not provide an accurate estimate of counterfactuals when changes in X
are large, given that the RIF is based on a linear approximation. The importance
of this problem can be assessed by comparing RIF- and reweighted-based coun-
terfactuals. Consider the counterfactual ºC where the distribution of covariates
at time t is replaced by the distribution at time r.17 When using RIF regressions,
the counterfactual is estimated as º̂C

RIF = X̄ r°̂ t.
By definition, the average value of the RIF in the reweighted sample is equal

to the reweighted estimate of the distributional statistic. Using again the assump-
tion that the RIF is linear in X , we can write the counterfactual estimate under
reweighting as º̂C

RWT = X̄
C
t °̂C

t , where X̄
C
t is the reweighted average of X obtained

using the reweighting factor Ã̂X , while °̂C
t is the OLS estimate from a regression

of RIF on X in the reweighted sample.18

As discussed in the empirical application of section 4, the reweighted aver-
age X̄

C
t tends to be very close to X̄ r in practice. The main source of discrepancy

between º̂C
RIF and º̂C

RWT is, therefore, potential differences between the OLS es-
timates obtained with (°̂C

t ) and without (°̂ t) reweighting. Fortin et al. (2011)
discuss how this difference is linked to specification errors in the linear regression
equation. They show that while differences between °̂r and °̂ t may either be due
to changes in the wealth structure (the underlying m(. , . ) functions) or specifi-
cation errors, the difference between °̂r and °̂C

t reflects solely differences in the
wealth structure between the two periods. They address this issue by adding and
subtracting alternative counterfactuals, X̄

C
2012°̂C

2012 and X̄ 1999°̂C
2012. After a few

re-arrangements, this yields the alternative OB decomposition with reweighting
(OBR) of changes in the distributional statistic between 1999 and 2012:

º̂2012 − º̂1999 = 1̂
º
OBR ≡

(
X̄ 2012 − X̄

C
2012

)
°̂2012 + X̄ 1999

(
°̂C

2012 − °̂1999

)
+

(
X̄

C
2012 − X̄ 1999

)
°̂C

2012 + X̄
C
2012

(
°̂2012 − °̂C

2012

)
.

(19)

The first two terms in equation (19) are the adjusted estimates of the compo-
sition and wealth structure effects. The third term reflects possible reweighting
errors, while the fourth term represents the specification error, just discussed.
Finding a small specification error suggests that the RIF regressions provide an
accurate way of computing counterfactuals. Likewise, a small reweighting error

17 Fortin et al. (2011) show that reweighting provides a consistent estimate of the counterfactual
provided that the logit or probit used for computing the reweighting factor is
non-parametrically estimated (i.e., flexible enough in X ).

18 See Fortin et al. (2011) for more details.
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indicates that the probit or logit model being estimated captures well the changes
in the distribution of X over time.

4. Empirical evidence

4.1. Data and descriptive statistics
We investigate changes in wealth inequality using data from the four wealth sur-
veys conducted by Statistics Canada over the last 35 years: the Assets and Debts
module (ADS) of the 1984 Survey of Consumer Finances (SCF) and the 1999,
2005 and 2012 Survey of Financial Security (SFS). These specialized modules
and surveys collect information from a relatively small sample (from 9,000 to
24,000) of Canadian families on their assets, debts, employment, income and
education and in the SFSs, include employer-sponsored pension plans valued on
a termination basis. Appendix table A1 provides some descriptive statistics on
the socio-demographic variables that we utilize. Some differences between these
data sources are worth noting. A fundamental difference between income and
wealth inequality is that while the first is measured at the individual level, the lat-
ter is usually available only at the family level.19 Thus as with changes in family
earnings inequality (Fortin and Schirle 2006), changes in family formation figure
prominently as a driving force in the evolution of wealth inequality.20 In turn,
changes in family formation are arguably driven less by economic forces than
socio-demographic changes, which are less likely influenced by public policy. The
ADS is based on information from individual surveys of family members aged 15
plus on assets (except housing) and debts, which is then aggregated to the family
level. In contrast, the SFSs collect this information directly at the family level
and use a supplementary “high-income” sample to improve the quality of wealth
estimates.

The range of assets surveyed differs substantially between the ADS and the
SFS, as the latter includes information on employer-sponsored retirement plans.21

Because of the importance of this source of wealth for families at the lower end
of the distribution, we will focus mostly on the evolution (from 1999 to 2012) of
the more complete measure of wealth—net worth with pensions. It is defined as
the difference between total assets and total debts, but where total assets include

19 In Canada, where couples file their income tax separately, it would be in principle possible to
know the extent to which wealth is divided unequally within couples. For the United States, Saez
and Zucman (2016) make the assumption that wealth is divided equally within couples.

20 In the analysis of family earnings inequality, it is common practice because of economies of
scale in consumption to use family equivalent scales by dividing the total family income by the
square of the number of family members for example (OECD 2013). That case is less clear in
terms of wealth, which can be cast in terms of future consumption or bequest motives. We refer
the reader to Cowell and Van Kerm (2015) for a complete discussion of this issue.

21 In addition, SFS assets include contents of the home, collectibles and valuables, annuities and
registered retirement income funds (RRIFs). Also the ADS does not include mortgages on real
estate other than the primary residence, but it includes in assets a variable called “cash on hand”
not covered in the SFS.
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FIGURE 1 Lorenz curves for market income and net worth (without pensions)

the value of employer-sponsored pensions. We direct the reader to Morissette
et al. (2006) and Morissette and Zhang (2007) for an exhaustive analysis of net
worth without pensions, which makes the ADS and SFS more comparable. As
noted in the introduction, issues surrounding the coverage of the top end of the
wealth distribution and top coding are important caveats to take into account in
the interpretation of the results. The combination of small sample sizes and spo-
radic temporal coverage has also influenced the methodologies used to describe
the evolution of wealth inequality, until recently.22

We begin in figure 1 by displaying the Lorenz curve for market income in
panel A and net worth (without pensions) in panel B.23 Because debts can exceed
assets, the measure of net worth can take on negative values. But as long as the
mean net worth is positive, the wealth shares, Lorenz curve and Gini coefficient
will be well defined. Also displayed in the figure is the 45-degree line; the area
between this line of equality and the Lorenz curve corresponds to half of the Gini
coefficient.

Figure 1 illustrates two well-known stylized facts about income and wealth
inequality in industrialized economies (Davies and Shorrocks 2000, Cowell and
Van Kerm 2015). First, wealth inequality is much higher than income inequal-
ity. As can be seen by looking carefully at the graph, panel A shows that the
bottom decile in 2012 (most outward dashed line) has a negative share or null
total income share while the top decile gets 35% of total income. On the other
hand, panel B shows much fatter tails for wealth, with the bottom 35% hold-
ing negative or zero wealth and the top decile holding 54% of total wealth. The

22 See Morissette and Zhang (2007) on the consequences of changes in interviewing techniques on
the ability to capture high net worth individuals across survey waves. They also note that the
degree of truncation may have changed over time. These authors compare all measures to those
that exclude families in the top 1% and top 5% to assess the impact of the changes.

23 Recall that the Lorenz curve is the graph, {(p, L(F ; p)) : 0�p�1}, of the p-th wealth percentile
and the wealth share (Lorenz ordinate) L(F ; p)= (1=¹)

∫ qp
y ydF (y), where qp =Q(F ; p)=

inf(y|F (y)�p) and y is the lower bound of the support of F, the wealth distribution, which can
be negative.
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TABLE 1
Gini coefficient by assets components

Year (1) (2) (3) (4)
1984 1999 2005 2012

Market income 0.472 0.503 0.519 0.526
(0.003) (0.004) (0.007) (0.005)

Wealth without pensions 0.694 0.718 0.741 0.721
(0.006) (0.005) (0.010) (0.005)

Wealth with pensions 0.665 0.685 0.672
(0.004) (0.009) (0.005)

Total assets without pensions 0.644 0.645 0.671 0.653
(0.006) (0.005) (0.010) (0.006)

Total assets with pensions 0.614 0.634 0.623
(0.004) (0.009) (0.005)

Housing 0.633 0.616 0.646 0.630
(0.004) (0.004) (0.012) (0.006)

Debt 0.764 0.719 0.720 0.730
(0.003) (0.003) (0.007) (0.005)

NOTES: Negative and null values of assets are included in the computa-
tion using the sgini (Van Kerm 2009) Stata routine. Standard errors are
computed using the jackknife procedure.

above discussion shows how difficult it is to quantify those changes in terms of
“what happens where” in the distribution using Lorenz curves. Another impor-
tant stylized fact—increasing inequality over time—is illustrated by the fact that
Lorenz curves for both market income and net worth (without pensions) are
becoming more convex over time. However, the changes in Lorenz ordinates are
not statistically significantly different, except for market income between 1984
and 1999.24 We discuss next the fact that changes over time in the corresponding
Gini coefficients are rarely statistically significant.

Table 1 reports the Gini coefficients by asset classes to illustrate in which
classes there is more inequality. Recall that the formula for the Gini coefficient
can be written in terms of the Lorenz curve G(F )=1−2

∫ 1
0 L(F ; p)dp, where F (·)

is the distribution of the asset class. In these small samples, there are significant
increases from 1984 to 1999 in the Gini coefficients for market income and wealth
without pensions, but significant decreases for housing and debt. From 1999 to
2005, we can see statistically significant increases in all inequality components,
except debt. The changes from 2005 to 2012 correspond to decreases in inequality,
except for debt, but these changes are not statistically significant. Only market
income shows continuous increases over the entire period, whereas there are no
significant increases from 1999 to 2012 in any asset component.

We turn next to the modern way (Piketty and Saez 2003, 2013) of describing
changes in inequality in terms of P-shares. The P-share, S(p1, p2) = L(F ; p2) −
L(F ; p1) with p1 � p2, corresponds to the proportion of total wealth that falls
into the interval [p1, p2]. Because pensions are an important asset for households

24 For clarity, we do not display the confidence bands in figure 1, but they are available upon
request.
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FIGURE 2 P-shares of net worth (with pensions)

at the lower end of the distribution, we focus on net worth including pensions.
Thus we omit the 1984 ADS when we display the changes over time in the shares
accruing to six percentile groupings, which clearly separates the middle quintiles
(P40–80) from other quintiles and provides a detailed partition of the upper
decile.25

Figure 2 shows that for Canada as a whole, the shares of total wealth including
pensions accruing to the top centile increased from 13.2% to 15.5% from 1999
to 2005, but following the GFC of 2007/08 decreased to 12.5% in 2012.26 There
were barely any significant changes for the upper-middle class (P80–99). The share
of total wealth accruing to the middle class (P40–80), around 30%, saw swings
similar to those of the top 1% but about half in magnitude and less statistically
significant. The two bottom quintiles saw statistically significant declines in their
shares from about 3% to 2% over the entire period. This qualitative description
applies to each region, with differences in the magnitude of the rebound of the top
centile. In Quebec, the middle class experienced continued increases at the expense
of the upper middle class. In British Columbia, the top centile share experienced
continued decreases and the middle class experienced a greater rebound in 2012
ending up with a 33% share instead of 30% in Canada.

25 See Bonesmo Fredriksen (2012) for a comparison of similar P-shares between Canada and seven
other industrialized countries, computed with the Luxembourg Income Study data circa 2000.

26 Because of the smaller number of observations in 2005, the changes from 1999 to 2005 in the
wealth of the top centile is significant only at the 10% level. The decline in the share of the two
bottom quintiles is significant at the 5% level. Changes for the other P-shares are not statistically
significant. Appendix table A2 displays the numbers behind figure 2 with standard errors
computed using Jann (2016) Stata routine.
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TABLE 2
Decomposition of Gini coefficient by family types

Year 1984 1999 2005 2012

Aggregate wealth inequality 0.694 0.665 0.685 0.672
(0.006) (0.004) (0.009) (0.005)

Between-family types 0.239 0.265 0.258 0.303
(0.010) (0.008) (0.037) (0.008)

Within-family types 0.155 0.135 0.142 0.139
(0.002) (0.002) (0.003) (0.002)

Overlap 0.300 0.265 0.285 0.230
(0.009) (0.007) (0.037) (0.006)

NOTES: The measure of wealth is net worth with pensions, except
for 1984, when the employer sponsored pensions are unavailable. De-
composition by sub-groups performed using the ginidesc Stata routine
(Aliaga and Montoya 1999). Standard errors are computed using the
jackknife procedure.

4.2. Decompositions by family types and by reweighting
Among the most important explanatory factors behind changes in wealth in-
equality, previous research has identified changes in family types and life-cycle
patterns as unavoidable ones (Pendakur 1998, Milligan 2005, Morissette and
Zhang 2006). We regroup the family types into six categories to allow compar-
isons across survey waves, distinguishing elderly and non-elderly households.
Among the non-elderly, there are four groups: unattached individuals, lone parent
families, other families with children and families without children. As shown in
table A1, there has been an increase in the fraction of households without children
(either single or couples) and a decrease in families with children. Among the el-
derly, we distinguish single individuals and couples. In table 2, we provide a classic
decomposition of the Gini coefficient by sub-groups, in this case, family types.

The overall Gini coefficient can be decomposed into a between-family types
component plus the sum of Gini coefficients within each family type weighted by
the population and wealth share of each family type as:

G
(
F

)=GB
(
F

)+∑J
j=1 sj¼jG

(
Fj

)+R, (20)

where GB(F ) is the “between-group” Gini coefficient, Fj is the wealth distribution
within family type j, sj and ¼j are respectively the population share and the total
wealth share of each family type j. In this case, the between-group Gini coefficient
is derived by assigning to each individual the mean wealth within their family
group. Finally, R captures the degree of overlap between the wealth distributions
of the different family groups.

Table 2 reports the results of this decomposition for the family types described
above. The precise evolution of the shares of family types is reported in appendix
table A1. It shows the decreasing importance of families with children (both
lone parent and couples) whose share decreased by 12.4 percentage points and
represented less than a quarter of households in 2012. The growing importance
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of households without children among the non-elderly (both unattached indi-
viduals and couples), whose share increased by 8.5 percentage points over the
period, is substantial; these households constituted more than half of all house-
holds in 2012.27 The growth in the share of elderly households (both unattached
individuals and couples) of 3.8 percentage points implies that elderly households
represented more than 20% of households in 2012.28 Given the greater wealth
shares of the families without children and elderly couples, the between compo-
nent always dominates the within component. In addition, reflecting the fact that
the Gini coefficient is not a fully decomposable index, the overlap dominates the
within changes and often the between component. Despite the fact that changes
over time in the components of wealth inequality are generally not statistically
significant, the results of table 2 highlight the important role of family formation
and population aging in changes in wealth inequality.

Our next exercise is thus to construct counterfactuals similar to those presented
in Morissette and Zhang (2007) to assess the impact of changes in
socio-demographic characteristics on wealth inequality. Here we additionally
distinguish the role of family types from that of other covariates. We construct
counterfactuals that show what the distribution of wealth would have been in the
absence of changes in these covariates, such as educational improvement, popu-
lation aging, or changes in family formation, using a reweighting factor ÃX (x)
defined in equation (14) under the assumption of invariance of the conditional
distribution. For example, we ask what would be the distribution of wealth in
2012 if the above covariates had stayed at their 1999 level.

To estimate Pr(T = 2012|X ), we pool data from the two waves and estimate
a logit for the probability of being in year 2012 as a function of the X s. We use
the simple logit formulation to simplify the exposition, though most empirical
studies use a more flexible functional form to ensure that the estimated model fits
well the odds ratio. A flexible specification involving a large number of interactions
between covariates will yield a more accurate prediction, but one has to be careful
that no single value of a particular variable or interaction becomes a perfect pre-
dictor, as this would violate the assumption of overlapping or common support.

To isolate the effect of one particular covariate, let’s say family type, U, from
the set of all covariates, X ={U , Z} we compute a counterfactual that keeps that
factor at the 2012 level by excluding that covariate from the reweighting:

F C
Y2012:U |T=2012,Z|T=1999 =

∫
FYt|U ,Z(y|u, z)ÃU |Z(u, z)dFUt (u|z)dFZt (z), (21)

27 Because of the smaller number of observations in 2005, the changes from 1999 to 2005 in the
wealth of the top centile is significant only at the 10% level. The decline in the share of the two
bottom quintiles is significant at the 5% level. Changes for the other P-shares are not statistically
significant. Appendix table A2 displays the numbers behind figure 2, with standard errors
computed using Jann (2016) Stata routine.

28 We note that part of the change may be linked to the life cycle of baby boomers that have
become empty nesters over the period.
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TABLE 3
Gini and P-shares under alternative counterfactuals obtained by reweighting

Year/ 1999 2005 2005 with 2005 with 2012 2012 with 2012 with
counterfactual 1999 Xs 1999 Xs 1999 Xs 1999 Xs

w/o FT w/o FT
(1) (2) (3) (4) (5) (6) (7)

1: Gini 0.665 0.685 0.693 0.693 0.672 0.692 0.695
(0.004) (0.009) (0.010) (0.010) (0.005) (0.005) (0.005)

%1 from 1999 2.9%** 4.2%** 4.2%** 1.1% 4.0%** 4.5%***

2: P0–40 0.028 0.022 0.019 0.020 0.020 0.015 0.015
(0.001) (0.002) (0.002) (0.002) (0.001) (0.001) (0.001)

%1 from 1999 −21.4%*** −32.1%*** −28.6%*** −28.6%*** −46.4%*** −46.4%***

3: P40–80 0.300 0.289 0.279 0.282 0.304 0.289 0.285
(0.004) (0.008) (0.010) (0.010) (0.005) (0.005) (0.005)

%1 from 1999 −3.7% −7.0%** −6.0%* 1.3% −3.7%* −5.0%*

4: P80–90 0.193 0.185 0.185 0.183 0.197 0.200 0.197
(0.002) (0.005) (0.006) (0.006) (0.002) (0.003) (0.003)

%1 from 1999 −4.1% −4.1% −5.2%* 2.1% 3.6%** 2.1%

5: P90–95 0.148 0.146 0.146 0.144 0.153 0.153 0.152
(0.002) (0.004) (0.004) (0.004) (0.002) (0.002) (0.002)

%1 from 1999 −1.4% −1.4% −2.7% 3.4%* 3.4%* 2.7%

6: P95–99 0.199 0.203 0.212 0.207 0.200 0.210 0.213
(0.003) (0.006) (0.008) (0.008) (0.004) (0.004) (0.005)

%1 from 1999 2.0% 6.5% 4.0% 0.5% 5.5%** 7.0%**

7: P99–100 0.132 0.155 0.159 0.164 0.125 0.133 0.138
(0.005) (0.013) (0.017) (0.017) (0.005) (0.005) (0.005)

%1 from 1999 17.4% 20.5% 24.2% −5.3% 0.8% 4.5%

NOTES: The measure of wealth is net worth with pensions. Counterfactuals are computed us-
ing reweighting on the available covariates: head’s age, head’s education (4 categories), family size
(5 categories), family types (6), regions (5) in columns (3) and (6). In columns (4) and (7), family types
(FTs) are omitted thereby revealing the impact of family types. ***p< 0.01, **p< 0.05, *p< 0.10.

where ÃU |Z(u, z)= dFU |T=1999(u|z)
dFU |T=2012(u|z) = ÃUZ (u, z)

ÃZ (z) . The difference between the two coun-
terfactuals F C

Y2012:X |T=1999 and F C
Y2012:U |T=2012,Z|T=1999 will give the effects of U.

The results are presented in table 3, which displays the Gini coefficient for net
worth with pensions for the years 1999, 2005 and 2012, as well as the P-shares for
the six intervals, illustrated in figure 2, in columns (1), (2) and (5). The counter-
factuals that bring back all covariates to their 1999 levels are presented in columns
(3) and (6). Those that leave family formation at its contemporaneous level are
shown in columns (4) and (7). As explained above, wealth inequality as measured
by the Gini coefficient increased from 1999 to 2005, but in 2012 was back at a level
not statistically significantly different from 1999. Interestingly, if these changes in
socio-demographic characteristics had not taken place, wealth inequality would
have been even significantly larger in 2005 and 2012; without changes in family
formation between 2005 and 2012, inequality would have remained as high as in
2005.
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Changes in P-shares are more informative about the winners and losers of
increasing wealth inequality. While the Gini shows no changes in inequality from
1999 to 2012, the P-shares in panel 2 show that the shares of the wealth accruing
to the two bottom deciles decreased by 0.7 percentage points, a 25% decline.29

That decline would have been larger by 0.3 to 0.5 percentage points if not for
the changes in socio-demographic characteristics, although changes in family
formation were conducive to a lower decline.

Contrary to what some might fear given the meagre market income increases
experienced by the middle class over the period, the next four deciles (P40–80,
the wider middle class) in panel 3 did not see much decline in their share of total
wealth, with initial declines largely compensated by later gains. The middle class’s
share of total wealth stood at 30% in 1999. After going down to 28.9% in 2005,
it was back up to 30.4% in 2012. The second upper decile experienced a similar
larger decline from 1999 to 2005, going from 19.3% to 18.5%, but rebounded to
19.7% in 2012. The wealth shares of the next 5% and next 4% show similar largely
non-significant changes of about half a percentage point. The top 1% experienced
a larger increase in percentage terms followed by a sharp decrease. Because these
changes are largely not statistically significant, the appropriate interpretation of
these numbers is that not much changed in the wealth distribution.

Our reweighting exercise shows that the socio-demographic changes provided a
larger buffer against increasing wealth inequality for the four lowest quintiles (P0–
40 and P40–80). Reweighting the samples to make them look like 1999 reduces
their share of wealth even more, yielding statistically significant declines. The
socio-demographic changes had almost no impact on the second upper decile
(P80–90). For the P95–99 and top 1%, these changes appear to reduce the shares
accruing to these groups; reweighting the samples to make them look like 1999
increases their share of wealth even more, although there is a lack of statistical
significance.

We turn next to a decomposition exercise that allows us to perform a detailed
decomposition of the Gini indexes and the related P-shares to better assess how
the socio-demographic factors interact.

4.3. Decomposition using recentred influence functions
An important advantage of using RIF regressions is that it allows the decompo-
sition of any distributional statistic for which the influence function exists. Firpo
et al. (2007) initially focused only on quantiles, the variance of logs and the Gini.
Several papers have begun to use the RIF–Gini regressions to explore changes
in income inequality (Choe and Van Kerm 2014, Gradin 2016). Carpentier et al.
(2017) have used the approach to assess the effects of caps on loan-to-value (LTV)
ratios on net wealth inequality across several EU countries.30 Cowell et al. (2017)
29 A similar decline in the lower two quintiles has been reported in Uppal and LaRochelle-Côté

(2015).
30 They find that among households with active mortgages, those with higher LTV ratios tend to

be in tails of the distribution thereby increasing wealth inequality, but there are some offsetting
effects of increases in house prices in the middle of the distribution.
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use RIF–Gini regressions to study the role of inheritance in wealth inequality
across several OECD countries. Here we also estimate RIF-P-shares regressions,
which given the close link between the Gini index and Lorenz ordinates, give
us the opportunity to shed new light on the empirical contribution of different
P-shares to the Gini index.

Integrating by parts equation (16) leads to the following more intuitive expres-
sion for the recentred influence function of the Gini index, G:

RIF
(
y; G

)=2
y
¹

[
F

(
y
)− 1+G

2

]
+2

[
1−G

2
−L

(
F (y)

)]+G, (22)

where L(F (y)) is the Lorenz ordinate at p = F (y), 1+G
2 and 1−G

2 corresponds
respectively to the areas above and below the Lorenz curve. As pointed out by
Monti (1991), the first term is unbounded because it increases by the factor y=¹,
while the second is bounded between G − 1 and 1 + G. Thus the RIF (y; G) is
continuous and convex in y; its first derivative is equal to 2

¹
[F (y) − 1+G

2 ], and it
reaches its minimum when F (y) = 1+G

2 .31 Given the range of the Gini index of
wealth in our samples (around 0.67), this minimum should be reached around
the 84th percentile. The function is theoretically unbounded from above, but in
practice it reaches its maximum at the upper bound of the empirical support of
the distribution. This implies that the Gini index is not robust to measurement
error in high incomes, as pointed out by Cowell and Victoria-Fesser (1996).

Figure 3a illustrates, for 2012, the average value of the RIF (y; G) by percentile
of net worth in comparison with its mean value, which is equal to the Gini in-
dex by construction.32 It shows that, as expected, the values of the RIF (y; G)
are higher than the Gini both at the bottom and very top of the wealth dis-
tribution. However, the proportion of households with values above the mean

31 The second derivative of RIF (y; G) is 2
¹

dF (y)
dy = 2

¹
f (y)�0.

32 Figures for the other years are similar with slight differences at the very top.
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is much larger in the bottom two quintiles than at the top.33 The numbers be-
hind the graph reveal that the 40% of poorest households account for about 20%
of the total Gini, while the richest percentile account for 4.7%. This implies that
the contribution of the top percentile to the Gini is lower than its contribution
to the mean wealth of 12.5% in 2012.

As discussed in section 2, the impact of a transfer between two households
on the Gini coefficient depends only on the proportion of households between
the donor and the recipient household. The same result can be shown in the
case of the RIF (y; G). Since the RIF (y; G) is a linear function in F (y), it follows
that the impact of a transfer 1 from a donor with wealth y′ to a recipient with
wealth y is given by ( 1

N )1 2
¹

[F (y′) − F (y)], where F (y′) − F (y) is the proportion
of observations between the recipient and the donor.34

That said, plotting the RIF (y; G) provides a more nuanced interpretation of
the notion that the Gini coefficient is particularly sensitive to what happens in
the middle of the distribution. For instance, figure 3a suggests that increasing the
proportion of a group concentrated in the upper middle (e.g., university gradu-
ates) relative to the lower middle (e.g., high school graduates) of the distribution
would likely reduce the Gini coefficient. As we will see below, this is consistent
with the findings in tables 4 and 5 that secular increases in the proportion of
university graduates contributed to a reduction of the Gini coefficient over time.

For the P-share, S(p1, p2)=L(p2)−L(p1), where L(p) is the Lorenz ordinate,
differencing the RIF for Lorenz ordinates in equation (17) yields the piece-wise
linear function:

RIF
(
y; S

(
p1, p2

))=

⎧⎪⎪⎨
⎪⎪⎩

(1−p1)q1−(1−p2)q2
¹

+S
(
p1, p2

) ·
(

1− y
¹

)
if y < q1

y−(1−p2)q2−p1q1
¹

+S
(
p1, p2

) ·
(

1− y
¹

)
if q1 �y < q2,

p2q2−p1q1
¹

+S
(
p1, p2

) ·
(

1− y
¹

)
if y �q2

(23)

where q1 = Q(F ; p1) and q2 = Q(F ; p2).35 For values below the lower bound of
the interval of interest, the slope of the RIF, −(1=¹)S(p1, p2) is negative. It turns
positive in the middle segment, (1=¹)(1 − S(p1, p2)) before becoming negative
again, −(1=¹)S(p1, p2) in the upper segment. This change of slope reflects two
offsetting effects on the numerator,

∫ q2
q1

ydFY (y), and denominator,
∫ ∞

y ydFY (y),
of the P-share S(p1, p2). Recall that the RIF indicates by how much the P-share
increases when the distribution of Y moves in the direction of a mass point at
Y =y. A higher value of y below the lower bound (q1) increases the denominator

33 Gradin (2016) finds similar effects for the income distribution in Spain and Germany in 2012.
34 Consider a small transfer 1 from a donor with wealth y′ to a recipient with wealth y, where

y < y′. Making a transfer 1 to a household with wealth y amounts to replacing it with a
household with wealth y +1. The impact on the Gini is
1Gini = (1=N)(RIF (y +1; G)−RIF (y; G)). For a small 1 we have
1Gini ≈ ( 1

N )1 dRIF (y, G)
dy = ( 1

N )1( 2
¹

)[F (y)− 1+G
2 ]. Adding the impact on the Gini for the two

households (wealth change of -1 and 1 for the donor and recipient, respectively), we get a total
effect of ( 1

N )1( 2
¹

)[F (y′)−F (y)].
35 See footnote 23.
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of the P-share without affecting the numerator. As a result, the P-share decreases.
The same phenomenon occurs above the upper bound (q2). It is only for obser-
vations in the middle segment (between q1 and q2) that a higher value of y has a
larger impact on the numerator relative to the denominator.

A more subtle effect in equation (23) is linked to the fact that adding observa-
tions at different points of the distribution changes the value of the quantiles q1
and q2, which are the bounds between the three segments. For instance, adding
an observation with a value of y just above q2 increases the mass in the upper
part of the distribution. The quantile q2 (and q1) has to increase accordingly to
ensure that we still have a fraction of observations 1 − p2 above q2. Moving the
interval [q1, q2] up in the distribution has a positive effect on the P-share, as it
increases average wealth in the interval [q1, q2], holding the average in the whole
sample (the denominator in the P-share) constant.

Figure 3b plots the value of the RIF (y; S(p1, p2)) in 2012 by percentile of net
worth for three middle P-shares (P40–80, P80–90, P90–95). One important mes-
sage from figure 3b is that the P-shares do not depend in a simple way on the value
of y because of the factors mentioned above. For example, in the case of P40–80,
observations just above the 40th percentile decrease the value of the P-share (the
RIF is below its mean indicated by P40–80 horizontal line), while observations
just above the 80th percentile increase it. In the former case, the dominant effect
is that adding an observation at the lower range of the [q40, q80] interval reduces
average wealth between the 40th and 80th percentile and has a negative impact on
the P-share. In the latter case, the dominant effect is that adding an observation
just above the 80th percentile shifts up the [q40, q80] interval, which increases the
P-share. As we consider observations higher and higher up in the distribution
(e.g., above the 95th percentile), the effect eventually turns negative because of
the large increase in the denominator of the P-share.

By analogy with the OB decomposition, we can study the changes in inequality
measures by constructing, for example, the counterfactual Gini of net worth that
would have prevailed if households’ characteristics had remained as in 1999, but
were valued as in 2012, using the RIF (y; G) coefficients °̂G

2012 :GC
RIF = X̄ 1999°̂G

2012.
As shown in table A1, our limited set of covariates includes six family types, four
family sizes, the education level (four categories) and age of the head of household,
and the five regions.36

The results of this decomposition for 1999–2005 are presented in table 4,
panel A, along with the results for the 1999–2012 comparison, in panel B. The
changes in inequality measures have been multiplied by 100 for ease of display. But
going back to table 3, one should remember that many of these changes are small.
Thus it is not surprising to see that most changes, except for P0–40, are not statis-
tically significant.37 There is nevertheless something to learn from the decomposi-

36 The base household in our decomposition is a non-elderly one-person household without
children with a head with a high school education living in Ontario.

37 We note that our limited set of covariates do not allow us to account for this decline, which
remained largely unexplained in table 4.
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FIGURE 4 Impact of family types and education differences on RIF P-shares (SFS 2012)

tion; it shows which forces have been at play to yield this null change. In particular,
changes in family types and size generally account for a decrease in the bottom
P-shares and an increase in the top P-shares. This should lead to an increase in
overall inequality as measured by the Gini. Changes in head’s educational attain-
ment and age account for an increase in bottom P-shares and a decrease in very
top P-shares, as shown above. This should lead to a decrease in overall inequality
as measured by the Gini index, given the relative importance of those very top
P-shares, illustrated in figure 3. Indeed, these effects dominate in the explained
part of the decomposition, leaving a total unexplained component that is larger
and more significant than the raw changes.

To better understand how changes in covariates affect the P-shares, we illus-
trate in figure 4 the differences in the proportion of households with a univer-
sity degree and those with a high school degree and the differences between the
proportion of non-elderly non-lone parent households with children and those
without children by percentile of net worth in the SFS 2012 (line with trian-
gles). In panel A, the relationship between the education differential and the
RIF (y; S(40, 80)) appears positively correlated until percentile 80. After that, the
two lines go in opposite directions, but the positive relationship dominates. This
is consistent with the results in table 4 showing that head’s education positively
contributes to increases in the P40–80 share.38 The negative effect of educa-
tion on the P95–99 share reported in table 4 is less intuitive. Therefore, panel B
of figure 4 is helpful in showing the largely negative relationship between the
38 As educational achievement increases over time, this means that the RIF-regression coefficient

for university education is positive, thus generating a positive composition effect. Ignoring other
covariates, the estimated coefficient on the dummy variable for university education indicates
the difference between the average value of the RIF for this group relative to the average value
for the omitted group (high school graduates). This difference in averages can be expressed as a
weighted average of the RIF at each percentile of the distribution, using the difference in the
proportion of university and high school graduates as weights. Thus, the sign of the
RIF-regression coefficient depends on the sign of the correlation between the RIF and the
difference in proportion. Figure 4 provides a graphical illustration of what drives the sign of this
correlation.
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education differential and the RIF (y; S(95, 99)). Observations close, but below
the 95th percentile contribute negatively to the P95–99 share, while the education
differential continues to rise and contributes to a negative relationship between
the two curves. The RIF (y; S(95, 99)) turns around and increases rapidly after the
95th percentile, but this is not enough to generate an overall positive relationship
with the education differential. The overall relationship between the two curves
remains negative and contributes to the negative terms found in the decomposi-
tion in table 4 for the head’s education level.

Opposite effects are found for the differences in family types. Figure 4 illus-
trates the difference between the proportion of couples with and without children
(line with plus signs).39 This difference is lower than average at the lower end (up
to the 35th percentile) and upper end (starting at the 90th percentile) of the dis-
tribution of net worth, but it is relatively stable at around 18 percentage points
in between. Because it does not increase in the part of the distribution where the
RIF (y; S(40, 80)) strongly increases (between the 40th and the 80th percentile),
we expect to see a negative relationship, which is consistent with the results
reported in table 4 (panel B). On the other hand, figure 4b shows a more positive
relationship between the two curves in the case of the P95–99, a finding confirmed
by the results of table 4 (panel B).

We attempt to dig a little deeper into the unexplained component of the
traditional OB decomposition by performing a reweighted decomposition. As
explained in Fortin et al. (2011), the problematic interpretation of the unex-
plained part of the OB decomposition arises from the fact that the linearity
assumption may not hold. Estimating a reweighted decomposition allows us to
assess the importance of this potential departure from the OB assumptions. The
idea is to use the average of the reweighted sample, X̄

C
2012 = ∑

i Ã̂X Xi,2012, to

construct the counterfactual º̂C
RWT = X̄

C
2012°̂

C,º
2012, where °̂

C,º
2012 are the coefficients

estimated in the 2012 sample where the covariates are reweighted to look like 1999.
Adding and subtracting that second counterfactual term, the reweighted decom-
position now comprises four terms as in equation (19). The first term, 1̂

º
OBR,X ≡

(X̄ 2012 − X̄
C
2012)°̂º

2012, corresponds to a “pure” composition effect attributable to
changes in characteristics. The second term, 1̂

º
OBR,S ≡ X̄ 1999(°̂C,º

2012 − °̂º
1999), cor-

responds to the wealth structure effect, that is the difference in the impact of the
explanatory variables on the statistic of interest evaluated at the 1999 means. The
third term, 1̂

º
OBR,RE ≡ (X̄

C
2012 − X̄ 1999)°̂C,º

2012, is the reweighting error and goes to
zero in a large sample when the logit model is well specified. Finally, the fourth
term, 1̂

º
OBR,SE ≡ X̄

C
2012(°̂º

2012 − °̂
C,º
2012) is the specification error that corresponds

to the difference in the composition effects estimated by reweighting and RIF
regressions.

These components are easily obtained by running two OB decompositions on
RIF (y; º). First, perform the decomposition using the 2012 sample and the 2012

39 Important changes in the proportion of these types of households are reported in table A1.
Essentially, the proportion of couples with children decreases over time while those without
children increase. However, these changes are not uniform across the net worth distribution.
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sample reweighted to be as 1999 to get the pure composition effect, 1̂
º
OBR,X .

The total unexplained in this decomposition corresponds to the specification
error 1̂

º
OBR,SE and allows one to assess the importance of departures from the

linearity assumption. Second, perform the decomposition using the 1999 sample
and the 2012 sample reweighted to be as 1999 to get the pure wealth structure
effect 1̂

º
OBR,S in the unexplained part of the decomposition. The reweighting

error 1̂
º
OBR,RE is given by the total explained effect in this decomposition. It

provides an easy way of assessing the quality of the reweighting.
Tables 5 and 6 report the results of the decompositions that reweight the 2005

sample to look like 1999 and the 2012 sample to look like 1999, respectively,
as in table 3. The first observation is that the composition effects from these
decompositions are very similar to those of table 4 and the specification and
reweighting errors are small and not statistically significant, with a small exception
for the P90–95 in table 5. This is reassuring about the validity of the traditional
OB decomposition.

The next question is whether we can attribute changes in wealth inequality
to the changes in the wealth structure, i.e., the changes in the returns to the
covariates. The analogy with income inequality is that increases in the returns to
education are understood to have played a leading role in increases in earning
inequality (Lemieux 2006). For the Gini index, no explanatory variables seemed
to have played a similar role. For the P0–40, the only P-share where we have
significant changes over time, the impact of changing age wealth effects is found
to be significantly negative in both comparisons and is of sufficient size to yield
a negative wealth structure effect. Further investigations may want to explore
which components of wealth, likely debt in this case, have changed over time for
these poorer households.

5. Conclusion

This article provides an overview of some of the main issues linked to the
analysis of changes in wealth inequality and uses recent advances in decomposi-
tion methods to further our understanding of these changes. One novel contribu-
tion is to analyze how changes in the distribution of socio-economic factors such
as age, education and family type have contributed to the changes in the concen-
tration of wealth at different points of the distribution. In particular, we show how
recentred influence function (RIF) regressions can be used to study the determi-
nants of percentile shares, including the famous top 1% share. Notwithstanding
the shortcomings of survey data on wealth, the findings reveal the compensating
role of family formation and increases in human capital in mitigating increases
in wealth inequality in Canada.

As noted in many studies (e.g., Davies 1993, Morissette and Zhang 2007),
the precise measurement of wealth in the upper tail is challenging because of
both sampling and non-sampling error. Random sampling would only occasion-
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ally select billionaire families to interview, for example, so they are unlikely to
be included even without non-sampling issues. But two forms of non-sampling
error also affect the upper tail—differentially low response rates among wealthier
families and under-reporting of their assets. The SFS places the wealth share of
the top 1% in Canada at the implausibly low level of 12.5% in 2012. Much higher
estimates are obtained taking evidence from additional, independent sources
into account.40 However, the survey data used here comprise a set of covari-
ates that include educational attainment, which is not the case in alternative data
sources such as income tax records. Exploiting these advantages while acknow-
ledging the shortcomings of survey data, we have focused on measurement and
decomposition methods that are robust in the face of difficulties in measuring the
extremes of the distribution.

Appendix

TABLE A1
Descriptives statistics – Proportions and means

Variables 1984 1999 2005 2012

Family type:
Unattached non-elderly 21.53 23.55 25.48 25.29
Lone parent families 5.05 4.85 4.46 3.84
Other families with children non-elderly 31.82 26.78 23.10 20.67
Families without children non-elderly 24.75 26.56 28.96 29.49
Older unattached individuals 8.05 8.61 8.20 9.31
Older head families 8.80 9.66 9.79 11.41

Family size:
1 person 29.58 32.16 33.68 34.59
2 persons 26.08 27.97 29.63 31.36
3 persons 16.30 16.17 15.46 12.23
4 persons 17.18 15.42 14.21 13.21
5 or more persons 10.87 8.29 7.02 8.61

Head’s age 45.32 46.94 47.53 49.45
Head’s education level:

Less than high school 38.96 26.86 20.96 16.20
High school diploma 36.34 23.27 26.20 25.70
Postsecondary certificate or diploma 11.47 28.25 27.89 28.32
University degree or certificate 13.23 21.26 24.58 29.26
Not stated 0 0.35 0.36 0.52

Regions
Atlantic provinces 0.079 0.076 0.074 0.071
Quebec 0.257 0.255 0.252 0.246
Ontario 0.361 0.367 0.372 0.374
Prairie provinces 0.179 0.164 0.166 0.174
British Columbia 0.125 0.138 0.137 0.136

No. of observations 14,029 15,933 5,267 12,003

NOTE: Sample weighted.

40 Using the Forbes billionaire data to adjust the upper tail and aligning the SFS data with
national balance sheet totals, Davies et al. (2016, table 6–5) estimates the share of the top
1% in household wealth in Canada at 25.6%. See also Davies et al. (2017).
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TABLE A2
Percentile shares of total net worth (with pensions)

Year Canada Atlantic Quebec Ontario Prairie British
provinces provinces Columbia

1999
P0–40 0.028 0.036 0.026 0.030 0.034 0.020

(0.001) (0.003) (0.002) (0.002) (0.002) (0.003)
P40–80 0.300 0.314 0.281 0.315 0.306 0.309

(0.004) (0.008) (0.009) (0.007) (0.007) (0.011)
P80–90 0.193 0.196 0.186 0.194 0.188 0.194

(0.002) (0.004) (0.005) (0.003) (0.004) (0.006)
P90–95 0.148 0.146 0.145 0.151 0.143 0.145

(0.002) (0.003) (0.004) (0.003) (0.003) (0.004)
P95–99 0.199 0.197 0.205 0.195 0.196 0.187

(0.003) (0.007) (0.011) (0.005) (0.006) (0.006)
P99–100 0.132 0.111 0.157 0.114 0.134 0.145

(0.005) (0.008) (0.010) (0.007) (0.011) (0.017)
2005
P0–40 0.022 0.023 0.019 0.030 0.021 0.015

(0.002) (0.010) (0.003) (0.004) (0.004) (0.005)
P40–80 0.289 0.288 0.285 0.308 0.282 0.282

(0.008) (0.020) (0.014) (0.014) (0.023) (0.019)
P80–90 0.185 0.194 0.196 0.182 0.179 0.183

(0.005) (0.013) (0.008) (0.008) (0.013) (0.010)
P90–95 0.146 0.150 0.161 0.140 0.138 0.151

(0.004) (0.010) (0.007) (0.006) (0.009) (0.008)
P95–99 0.203 0.190 0.211 0.188 0.201 0.235

(0.006) (0.012) (0.009) (0.011) (0.012) (0.031)
P99–100 0.155 0.154 0.128 0.151 0.178 0.134

(0.013) (0.037) (0.014) (0.024) (0.041) (0.011)
2012
P0–40 0.020 0.031 0.020 0.020 0.026 0.017

(0.001) (0.004) (0.002) (0.003) (0.003) (0.004)
P40–80 0.304 0.314 0.293 0.311 0.304 0.330

(0.005) (0.008) (0.010) (0.009) (0.009) (0.011)
P80–90 0.197 0.202 0.191 0.196 0.191 0.202

(0.002) (0.005) (0.005) (0.004) (0.005) (0.006)
P90–95 0.153 0.165 0.154 0.150 0.151 0.149

(0.002) (0.005) (0.006) (0.004) (0.004) (0.004)
P95–99 0.200 0.201 0.205 0.196 0.206 0.198

(0.004) (0.007) (0.006) (0.006) (0.006) (0.014)
P99–100 0.125 0.087 0.137 0.127 0.123 0.103

(0.005) (0.005) (0.012) (0.009) (0.011) (0.006)

NOTE: Percentile shares and standard errors computed with Jann (2016)
P-share Stata routine.
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