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Abstract 

 

 

The paper discusses early stochastic approaches to index number theory. The stochastic 

approach to the construction of price indexes that uses only price information is due to 

Carli, Dutot, Jevons and Edgeworth. Later approaches due to Walsh and Keynes argued 

for the use of quantity or expenditure share information to weight the price information. 

The benefits and costs of different forms of weighting are discussed. Finally, Summer’s 

country product dummy method for constructing price indexes has been adapted to the 

time series context, leading to the time product dummy method.  
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1. Introduction                                                                                                               
 
“In drawing our averages the independent fluctuations will more or less destroy each other; the one 

required variation of gold will remain undiminished.”  W. Stanley Jevons (1884; 26). 

 

The stochastic approach to the determination of the price index can be traced back to the work of 

Jevons and Edgeworth over a hundred years ago
2
. In section 2 below, the work of these early 

pioneers will be explained. Basically, their approach was to take an average of the price ratios 

pertaining to two periods as their index number. However, Keynes (1930) was critical of this 

approach to index number theory because it did not take into account the economic importance of 

each commodity in the index. Thus in section 3, the weighted stochastic approach of Theil (1967) 

will be explained. This approach does take into account the economic importance of each 

commodity.  

 

In section 4, an introduction to the time product dummy stochastic approach to index number 

theory will be presented. Using this approach, the focus is on providing representative price levels 

for two periods.
3
 Weighted versions of this approach are described in section 5.  

 

A weakness of the material presented in this Chapter is that it is assumed that all prices are 

positive. In Chapters 7 and 8, this assumption will be relaxed. The reason for postponing a 

discussion of index number theory when there are missing prices is that it is useful to develop the 

economic approach to index number theory before discussing the problem of missing prices. The 

missing price problem and the treatment of new and disappearing products will be studied in 

some detail in Chapters 7 and 8. The economic approach to index number theory will be 

discussed in Chapters 5 and 8. 

 

2. Early Unweighted Stochastic Approaches to Bilateral Index Number Theory  
 

The basic idea behind the early stochastic approaches to index number theory is that each price 

relative, pn
1
/pn

0
 for n = 1,2,…,N can be regarded as an estimate of a common inflation rate  

between periods 0 and 1; i.e., it is assumed that 

 

(1) pn
1
/pn

0
 =  + n  ;                                                                                                       n = 1,2,…,N 

 

where  is the common inflation rate and the n are random variables with mean 0 and variance 


2
. The least squares estimator for  is the Carli (1764) price index PC defined as 

 

(2) PC(p
0
,p

1
)  n=1

N
 (1/N) pn

1
/pn

0
. 

 

Unfortunately, PC does not satisfy the time reversal test, i.e., PC(p
1
,p

0
)  1/ PC(p

0
,p

1
)

4
. 

 

Now suppose that the stochastic specification of the error terms is changed; i.e., assume that the 

logarithm of each price relative, ln(pn
1
/pn

0
), is an unbiased estimate of the logarithm of the 

inflation rate between periods 0 and 1,  say.  Thus we have: 

                                                      
2
 For references to the literature, see Diewert (1993; 37-38) (2010). 

3
 The extension of the price levels approach to many periods will be undertaken in Chapter 7. 

4
 In fact Fisher (1922; 66) noted that PC(p

0
,p

1
)PC(p

1
,p

0
)  1 unless the period 1 price vector p

1
 is 

proportional to the period 0 price vector p
0
; i.e., Fisher showed that the Carli index has a definite upward 

bias. He urged statistical agencies not to use this formula. The upward bias of the Carli index will be 

illustrated in Chapter 11. 
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(3) ln(pn
1
/pn

0
) =  + n  ;                                                                                                  n = 1,2,…,N 

 

where   ln and the n are independently distributed random variables with mean 0 and 

variance 
2
. The least squares or maximum likelihood estimator for  is the logarithm of the 

geometric mean of the price relatives. Hence the corresponding estimate for the common inflation 

rate  
5
 is the Jevons (1865) price index PJ defined as: 

 

(4) PJ(p
0
,p

1
)  n=1

N
 (pn

1
/pn

0
)

1/N
. 

 

The Jevons price index PJ does satisfy the time reversal test and hence is much more satisfactory 

than the Carli index PC. However, both the Jevons and Carli price indexes suffer from a fatal 

flaw: each price relative pn
1
/pn

0
 is regarded as being equally important and is given an equal 

weight in the index number formulae (2) and (4). Keynes was particularly critical of this 

unweighted stochastic approach to index number theory. He directed the following criticism 

towards this approach, which was vigorously advocated by Edgeworth (1923): 

 
“Nevertheless I venture to maintain that such ideas, which I have endeavoured to expound above as fairly 

and as plausibly as I can, are root-and-branch erroneous. The ‘errors of observation’, the ‘faulty shots 

aimed at a single bull’s eye’ conception of the index number of prices, Edgeworth’s ‘objective mean 

variation of general prices’, is the result of confusion of thought. There is no bull’s eye. There is no moving 

but unique centre, to be called the general price level or the objective mean variation of general prices, 

round which are scattered the moving price levels of individual things. There are all the various, quite 

definite, conceptions of price levels of composite commodities appropriate for various purposes and 

inquiries which have been scheduled above, and many others too. There is nothing else. Jevons was 

pursuing a mirage. 

     What is the flaw in the argument? In the first place it assumed that the fluctuations of individual prices 

round the ‘mean’ are ‘random’ in the sense required by the theory of the combination of independent 

observations. In this theory the divergence of one ‘observation’ from the true position is assumed to have 

no influence on the divergences of other ‘observations’. But in the case of prices, a movement in the price 

of one commodity necessarily influences the movement in the prices of other commodities, whilst the 

magnitudes of these compensatory movements depend on the magnitude of the change in expenditure on 

the first commodity as compared with the importance of the expenditure on the commodities secondarily 

affected. Thus, instead of ‘independence’, there is between the ‘errors’ in the successive ‘observations’ 

what some writers on probability have called ‘connexity’, or, as Lexis expressed it, there is ‘sub-normal 

dispersion’. 

     We cannot, therefore, proceed further until we have enunciated the appropriate law of connexity. But the 

law of connexity cannot be enunciated without reference to the relative importance of the commodities 

affected—which brings us back to the problem that we have been trying to avoid, of weighting the items of 

a composite commodity.”  John Maynard Keynes (1930; 76-77).  
 

                                                      
5
 Greenlees (1999) pointed out that although (1/N)n=1

N
 ln(pn

1
/pn

0
) is an unbiased estimator for , the 

corresponding exponential of this estimator, PJ defined by (4), will generally not be an unbiased estimator 

for  under our stochastic assumptions. To see this, let xn = ln(pn
1
/pn

0
). Taking expectations, we have: Exn = 

 = ln(). Thus each xn is an unbiased estimator of overall log price change. If we wish to measure overall 

price change  instead of log price change , then use yn  exp[xn] as an estimator for . Define the 

positive, convex function f of one variable x by f(x)  e
x
. By Jensen’s (1906) inequality, we have Ef(x)  

f(Ex). Letting x equal the random variable xn, this inequality becomes: E(pn
1
/pn

0
) = Ef(xn)  f(Exn) = f() = 

e

 = e

ln
 = . Thus for each n, we have E(pn

1
/pn

0
)  , and it can be seen that the Jevons price index defined 

by (4) will generally have a upward bias from a statistical point of view. However, if we make the 

measurement of average log price change our estimation target, then the Jevons index is no longer biased 

for this alternative target index.  
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One of the points Keynes makes in the above quotation is that prices in the economy are not 

independently distributed from each other and from quantities. In current macroeconomic 

terminology, we can interpret Keynes as saying that a macroeconomic shock will be distributed 

across all prices and quantities in the economy through the normal interaction between supply and 

demand; i.e., through the workings of the general equilibrium system. Thus Keynes seemed to be 

leaning towards the economic approach to index number theory (even before it was developed to 

any great extent), where quantity movements are functionally related to price movements. A 

second point that Keynes made in the above quotation is that there is no such thing as the 

inflation rate; there are only price changes that pertain to well specified sets of commodities or 

transactions; i.e., the domain of definition of the price index must be carefully specified. A final 

point that Keynes made is that price movements must be weighted by their economic importance; 

i.e., by quantities or expenditures. 

 

In addition to the above theoretical criticisms, Keynes also made the following strong empirical 

attack on Edgeworth’s unweighted stochastic approach: 

 
“The Jevons—Edgeworth “objective mean variation of general prices’, or ‘indefinite’ standard, has 

generally been identified, by those who were not as alive as Edgeworth himself was to the subtleties of the 

case, with the purchasing power of money—if only for the excellent reason that it was difficult to visualise 

it as anything else. And since any respectable index number, however weighted, which covered a fairly 

large number of commodities could, in accordance with the argument, be regarded as a fair approximation 

to the indefinite standard, it seemed natural to regard any such index as a fair approximation to the 

purchasing power of money also. 

     Finally, the conclusion that all the standards ‘come to much the same thing in the end’ has been 

reinforced ‘inductively’ by the fact that rival index numbers (all of them, however, of the wholesale type) 

have shown a considerable measure of agreement with one another in spite of their different compositions. 

… On the contrary, the tables give above (pp. 53,55) supply strong presumptive evidence that over long 

period as well as over short period the movements of the wholesale and of the consumption standards 

respectively are capable of being widely divergent.” John Maynard Keynes (1930; 80-81). 

 

In the above quotation, Keynes noted that the proponents of the unweighted stochastic approach 

to price change measurement were comforted by the fact that all of the then existing (unweighted) 

indexes of wholesale prices showed broadly similar movements. However, Keynes showed 

empirically that these wholesale price indexes moved quite differently than his consumer price 

indexes.
6
  

 

In order to overcome the Keynsian criticisms of the unweighted stochastic approach to index 

numbers, it is necessary to: 

 

 have a definite domain of definition for the index number and 

 weight the price relatives by their economic importance. 

 

                                                      
6
 Using the OECD national accounts data for the last five decades, some broad trends in the rates of 

increase in prices for the various components of GDP can be observed: rates of increase for the prices of 

internationally traded goods have been the lowest, followed by the prices of reproducible capital goods, 

followed by consumer prices, followed by wage rates. From other sources, land prices have shown the 

highest rate of price increase over this period. Of course, if a country adjusts the price of computer related 

equipment for quality improvements, then the aggregate price of capital machinery and equipment tends to 

move downwards in recent years. Another source of long run differential rates of price increase is due to 

the fact that service prices tend to increase more rapidly than product prices. Thus there are long term 

systematic differences in price movements over different domains of definition. 
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On the second dot point above, it should be noted that the issue of weighting price ratios came up 

early in the history of index number theory. Young (1812) advocated some form of rough 

weighting of the price relatives according to their relative value over the period being considered 

but the precise form of the required value weighting was not indicated.
7
  However, it was Walsh 

(1901; 83-121) (1921; 81-90) who stressed the importance of weighting the individual price 

ratios, where the weights are functions of the associated values for the commodities in each 

period and each period is to be treated symmetrically in the resulting formula: 

 
“What we are seeking is to average the variations in the exchange value of one given total sum of money in 

relation to the several classes of goods, to which several variations [price ratios] must be assigned weights 

proportional to the relative sizes of the classes. Hence the relative sizes of the classes at both the periods 

must be considered.” Correa Moylan Walsh (1901; 104).  

 

“Commodities are to be weighted according to their importance, or their full values. But the problem of 

axiometry always involves at least two periods. There is a first period and there is a second period which is 

compared with it. Price variations
8
 have taken place between the two, and these are to be averaged to get 

the amount of their variation as a whole. But the weights of the commodities at the second period are apt to 

be different from their weights at the first period. Which weights, then, are the right ones—those of the first 

period or those of the second? Or should there be a combination of the two sets? There is no reason for 

preferring either the first or the second. Then the combination of both would seem to be the proper answer. 

And this combination itself involves an averaging of the weights of the two periods.” Correa Moylan Walsh 

(1921; 90).        

 

In the following section, Theil’s solution to the weighting problem will be described. 

 

3. The Weighted Stochastic Approach of Theil 

 
“It might seem at first sight as if simply every price quotation were a single item, and since every 

commodity (any kind of commodity) has one price-quotation attached to it, it would seem as if price-

variations of every kind of commodity were the single item in question. This is the way the question struck 

the first inquirers into price-variations, wherefore they used simple averaging with even weighting. But a 

price-quotation is the quotation of the price of a generic name for many articles; and one such generic name 

covers a few articles, and another covers many. … A single price-quotation, therefore, may be the 

quotation of the price of a hundred, a thousand, or a million dollar’s worths, of the articles that make up the 

commodity named. Its weight in the averaging, therefore, ought to be according to these money-unit’s 

worth.” Correa Moylan Walsh (1921; 82-83). 

 

Theil (1967; 136-137) proposed a solution to the lack of weighting in the Jevons index defined by 

(4). He argued as follows. Suppose we draw price relatives at random in such a way that each 

dollar of expenditure in the base period has an equal chance of being selected. Then the 

probability that we will draw the nth price relative is equal to sn
0
  pn

0
qn

0
/p

0
q

0
, the period 0 

expenditure share for commodity n. The resulting overall mean (period 0 weighted) logarithmic 

price change is n=1
N
 sn

0
ln(pn

1
/pn

0
). Now repeat the above mental experiment and draw price 

relatives at random in such a way that each dollar of expenditure in period 1 has an equal 

probability of being selected. This leads to the overall mean (period 1 weighted) logarithmic price 

change of n=1
N
 sn

1
ln(pn

1
/pn

0
). Each of these measures of overall logarithmic price change is 

                                                      
7
 Walsh (1901; 84) refers to Young’s contributions as follows: “Still, although few of the practical 

investigators have actually employed anything but even weighting, they have almost always recognized the 

theoretical need of allowing for the relative importance of the different classes ever since this need was first 

pointed out, near the commencement of the century just ended, by Arthur Young. … Arthur Young advised 

simply that the classes should be weighted according to their importance.”   
8
 A price variation is a price ratio or price relative in Walsh’s terminology. 
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equally valid so it is best to take a symmetric average of the two measures in order to obtain a 

final single measure of overall logarithmic price change
9
. Theil

10
 argued that a nice symmetric 

index number formula can be obtained if we make the probability of selection for the nth price 

relative equal to the arithmetic average of the period 0 and 1 expenditure shares for commodity n.  

Using these probabilities of selection, Theil's final measure of overall logarithmic price change 

was 

 

(5)  lnPT(p
0
,p

1
,q

0
,q

1
)  n=1

N
 (½)(sn

0
 + sn

1
)ln(pn

1
/pn

0
). 

 

It is possible give the following statistical interpretation of the right hand side of (5). Define the 

nth logarithmic price ratio rn by: 

 

(6)   rn  ln(pn
1
/pn

0
) ;                                                                                                          n = 1,…,N. 

 

Now define the discrete random variable, R say, as the random variable that can take on the 

values rn with probabilities n  (1/2)(sn
0
 + sn

1
) for n = 1,…,N. Note that since each set of 

expenditure shares, sn
0
 and sn

1
, sum to one, the probabilities n will also sum to one. It can be seen 

that the expected value of the discrete random variable R is 

 

 (7)  E[R]  n=1
N
 nrn = n=1

N
 (½)(sn

0
 + sn

1
)ln(pn

1
/pn

0
) = lnPT(p

0
,p

1
,q

0
,q

1
) 

 

using (5) and (6). Thus the logarithm of the index PT can be interpreted as the expected value of 

the distribution of the logarithmic price ratios in the domain of definition under consideration, 

where the N discrete price ratios in this domain of definition are weighted according to Theil’s 

probability weights, n  (½)(sn
0
 + sn

1
) for n = 1,…,N.    

 

Taking antilogs of both sides of (7), we obtain the Törnqvist (1936) (1937) Theil price index, PT. 

This index number formula has a number of good properties.
11

 In particular, PT satisfies the time 

reversal test:  

 

(8) P(p
1
,p

0
,q

1
,q

0
) = 1/P(p

0
,p

1
,q

0
,q

1
).  

 

The price index PT also satisfies the following linear homogeneity test in current period prices: 

 

(9)  P(p
0
,p

1
,q

0
,q

1
) = P(p

0
,p

1
,q

0
,q

1
)  

 

                                                      
9
 “The [asymmetric] price index (1.6) has certain merits. It is, for example, independent of the units in 

which we measure the quantities of the various commodities (tons, gallons, etc.). It has the disadvantage, 

however, of being one sided in the sense that it is based on the distribution of expenditure in the ath region. 

We could equally well apply our random selection procedure to the bth region, in which case, wia is 

replaced by wib in (1.5) and (1.6). We must conclude that (1.6) is an asymmetric index number, which is a 

disadvantage because the question asked is symmetric: If the price level of the bth region exceeds that of 

the ath by a factor 1.2, say, we should expect that the price level of the latter region exceed that of the 

former by a factor 1/1.2.” Henri Theil (1967; 137).   
10

 “The price index number defined in (1.8) and (1.9) uses the n individual logarithmic price differences as 

the basic ingredients. They are combined linearly by means of a two stage random selection procedure: 

First, we give each region the same chance ½ of being selected, and second, we give each dollar spent in 

the selected region the same chance (1/ma or 1/mb) of being drawn.” Henri Theil (1967; 138).     
11

 See section 5 of Chapter 3 for a listing of the test properties of the Törnqvist Theil index. 
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for all positive numbers  and strictly positive vectors p
0
,p

1
,q

0
,q

1
. Thus if all period one prices 

increase by the same positive number  and if the price index P satisfies the test (9), then the 

price index increases by this same scalar factor .    

 

The time reversal test and the linearly homogeneous test can be used to justify Theil’s 

(arithmetic) method of forming an average of the two sets of expenditure shares in order to obtain 

his probability weights, n  (½)[sn
0
 + sn

1
] for n = 1,…,N. Consider the following symmetric mean 

class of Theil type logarithmic index number formulae: 

 

(10) lnPml(p
0
,p

1
,q

0
,q

1
)  n=1

N
 m(sn

0
,sn

1
)ln(pn

1
/pn

0
) 

 

where m(sn
0
,sn

1
) is a homogeneous symmetric mean of the period 0 and 1 expenditure shares, sn

0
 

and sn
1
 respectively. In order for Pml to satisfy the time reversal test, it is necessary that the mean 

function m be symmetric. In order for the weights in (10) to sum to one so that the linear 

homogeneity test is satisfied and the weights can be interpreted as probability weights, it can be 

shown that the homogeneous symmetric mean function m(a,b) that appears in (10) must be the 

arithmetic mean.   

 

The stochastic approach of Theil has another nice symmetry property. Instead of considering the 

distribution of the price ratios rn = ln(pn
1
/pn

0
), we could also consider the distribution of the 

reciprocals of these price ratios, say: 

 

(11)   tn  ln(pn
0
/pn

1
);                                                                                                          n = 1,…,N 

             = ln(pn
1
/pn

0
)
1

 

             =  ln(pn
1
/pn

0
) 

             =  rn 

 

where the last equality follows using definitions (6). We can still associate the symmetric 

probability, n  (1/2)[ sn
0
 + sn

1
], with the nth reciprocal logarithmic price ratio tn for n = 1,…,N. 

Now define the discrete random variable, T say, as the random variable that can take on the 

values tn with probabilities n  (1/2)(sn
0
 + sn

1
) for n = 1,…,N.  It can be seen that the expected 

value of the discrete random variable T is 

 

(12)  E[T]  n=1
N
 ntn  

                 =  n=1
N
  nrn                   using (11) 

                 =  E[R]                            using (7) 

                 =   lnPT(p
0
,p

1
,q

0
,q

1
). 

 

Thus it can be seen that the distribution of the random variable T is equal to minus the 

distribution of the random variable R. Hence it does not matter whether we consider the 

distribution of the original logarithmic price ratios, rn  ln(pn
1
/pn

0
), or the distribution of their 

reciprocals, tn  ln(pn
0
/pn

1
): we obtain essentially the same stochastic theory. 

 

It is possible to consider weighted stochastic approaches to index number theory where we look 

at the distribution of price ratios, pn
1
/pn

0
, rather than the distribution of the logarithmic price 

ratios, ln(pn
1
/pn

0
). Thus, again following in the footsteps of Theil, suppose we draw price relatives 

at random in such a way that each dollar of expenditure in the base period has an equal chance of 

being selected. Then the probability that we will draw the nth price relative is equal to sn
0
  
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pn
0
qn

0
/p

0
q

0
, the period 0 expenditure share for commodity n. Now the overall mean (period 0 

weighted) price change is: 

 

(13) PL(p
0
,p

1
,q

0
,q

1
) =  n=1

N
 sn

0
(pn

1
/pn

0
), 

 

which turns out to be the Laspeyres price index, PL defined in Chapter 2.   

 

Now repeat the above mental experiment and draw price relatives at random in such a way that 

each dollar of expenditure in period 1 has an equal probability of being selected. This leads to the 

overall mean (period 1 weighted) price change equal to:  

 

 (14)  PPal(p
0
,p

1
,q

0
,q

1
)  = n=1

N
 sn

1
(pn

1
/pn

0
).    

 

The right hand side of (14) is known as the Palgrave (1886) index number formula, PPal.
12

 

 

It can be verified that neither the Laspeyres nor Palgrave price indexes satisfy the time reversal 

test, (8). Again following in the footsteps of Theil, we might try to obtain a formula that satisfied 

the time reversal test by taking a symmetric average of the two sets of shares. Consider the 

following class of symmetric mean index number formulae:  

 

(15)  PSM(p
0
,p

1
,q

0
,q

1
)  n=1

N
 m(sn

0
,sn

1
)(pn

1
/pn

0
) 

 

where m(sn
0
,sn

1
) is a homogeneous symmetric mean of the period 0 and 1 expenditure shares, sn

0
 

and sn
1
 respectively. However, in order to interpret the right hand side of (15) as an expected 

value of the price ratios pn
1
/pn

0
, it is necessary that  

 

(16)  n=1
N
 m(sn

0
,sn

1
)  = 1. 

 

However, in order to satisfy (16), m cannot be a symmetric geometric or harmonic mean or any 

of the commonly used homogeneous symmetric means. In fact, the only simple homogeneous 

symmetric mean that satisfies (16) is the arithmetic mean.
13

 With this choice of m, (15) becomes 

the following (unnamed) index number formula, PU: 

 

(17) PU(p
0
,p

1
,q

0
,q

1
)  n=1

N
 (½)(sn

0
  + sn

1
)(pn

1
/pn

0
). 

 

Unfortunately, the unnamed index PU does not satisfy the time reversal test either. 

 

The above considerations explain why Theil’s stochastic index number formula PT seems to be 

the preferred member of this class of index number formula. 

 

In the following two sections, stochastic approaches to index number theory will be considered 

that focus on the estimation of price levels rather than bilateral price indexes. In section 4, the 

price level approach will be applied to the case of two time periods while in section 5, the price 

level approach will be applied to many periods.  

 

4. The Time Product Dummy Approach to Bilateral Index Number Theory 

 

                                                      
12

 It is formula number 9 in Fisher’s (1922; 466) listing of index number formulae. 
13

 For a proof of this assertion, see Diewert (2000). 
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In this section, a stochastic model that estimates average price levels for two periods will be 

derived using an adaptation of the Country Product Dummy model.
14

 The adaptation is to move 

from the context of comparing prices across two countries to the time series context where the 

comparison of prices is made between two time periods. 

 

Consider the following model of price behavior for the value aggregate under consideration: 

  

(18) pn
t
 = tnetn ;                                                                                                  t = 0,1; n = 1,...,N. 

 

The parameter t can be interpreted as the time product dummy price level for period t, n can be 

interpreted as a commodity n quality adjustment factor 
15

 and etn is a positive stochastic error term 

with a mean that is assumed to be 1. Define the logarithms of pn
t
 and etn as ytn  lnpn

t
 and tn  

lnetn for t = 0,1; n = 1,...,N, define the logarithm of t as t  lnt for t = 0,1 and define the 

logarithm of n as n  lnn for n = 1,...,N. Then taking logarithms of both sides of (18) leads to 

the following linear regression model: 

 

(19) ytn = t + n + tn ;                                                                                          t = 0,1; n = 1,...,N.   

 

It can be seen that the parameters in the linear regression model defined by (19), the t and the n, 

are not uniquely determined. If any number  is added to each t and the same number  is 

subtracted from each n, the right hand side of each equation in (19) will not change. Thus in 

order to obtain unique estimates for the t and n on the right hand side of equations (19), we 

need to impose a normalization on these parameters. Impose the following normalization: 

 

(20) 0  0. 

 

This normalization corresponds to setting the period 0 price level, 0  exp[0], equal to 1. Thus 

1/0 = 1 and thus the estimated 1
*
  exp[1

*
] can be interpreted as a bilateral index number 

where 1
*
 and 1

*
,...,N

*
 solve the following least squares minimization problem: 

 

(21) min
N ,...,1,1

 n=1
N
 (y0n  0  n)

2
 + n=1

N
 (y1n  1  n)

2
.  

 

The first order necessary (and sufficient) conditions for solving (21) are equation (22) and the N 

equations (23) listed below: 

 

(22) N1 +  n=1
N
 n = n=1

N
 y1n ;                                                            

(23)    1  +    2n     = y0n +  y1n ;                                                                                       n = 1,...,N. 

 

The solution to equations (22) and (23) is given by the following estimators: 

 

(24) 1
*
 = (1/N)n=1

N
 [y1n  y0n] ;  

                                                      
14

 See Summers (1973) who introduced the CPD model. Balk (1980) was the first to adapt the CPD method 

to the time series context. 
15

 In the context of commodities that are close substitutes, the interpretation of the n as quality adjustment 

factors is intuitively plausible. In the context of commodities that are not close substitutes, the n can be 

interpreted as relative utility valuation factors; i.e., n represents the marginal utility value to purchasers of 

the product of an extra unit of qn. This interpretation relies on the economic approach to index number 

theory and is pursued in more depth in Chapter 8.  
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(25) n
*
 = (½)y0n + (½)[y1n  1

*
] ;                                                                                    n = 1,...,N. 

 

Exponentiating the estimators defined by (24) and (25) leads to the following estimators for the 

period 1 price level (and price index) 1
*
  exp[1

*
] and the quality adjustment factors n

*
  

exp[n
*
] : 

 

(26) 1
*
  n=1

N
 (pn

1
/pn

0
)

1/N
 = PJ(p

0
,p

1
) ; 

(27) n
*
  (pn

0
)

1/2
(pn

1
/1

*
)

1/2
 ;                                                                                               n = 1,...,N 

 

where PJ(p
0
,p

1
) is the Jevons price index defined earlier by (4). This is Summer’s (1973) country 

product dummy multilateral method adapted to the time series context for the case of two time 

periods with no missing observations. 

 

The model defined by (18) or (19) can be interpreted as a highly simplified hedonic regression 

model 
16

 where the n are interpreted as quality adjustment factors for each product n. The only 

characteristic of each commodity is the commodity itself. As noted above, this model is also a 

special case of the Country Product Dummy method for making international comparisons 

between the prices of different countries. A possible advantage of this regression method for 

constructing a price index is that a standard error for the period 1 log price level 1 (and hence for 

1) can be obtained. This advantage of the stochastic approach to index number theory was 

stressed by Selvanathan and Rao (1994). However, suppose that the standard error (or variance) 

for the estimated 1
*
 were zero. Then all of the error terms etn in equations (18) must be equal to 1 

and under these conditions, with 0 1, equations (18) imply that p
1
 = 1

*
p

0
 so that prices move in 

a proportional manner going from period 0 to period 1. Thus a nonzero standard error simply 

means that prices did not move in a proportional manner going from period 0 to 1. This fact does 

not imply that a larger standard error for 1
*
 means that the overall inflation rate for the 

commodity group is more uncertain. For example, if the quantity vector q for periods 0 and 1 

were constant, then most economists would agree that the appropriate measure of overall 

purchaser inflation is exactly measured by the Lowe index, p
1
q/p

0
q. Prices need not move in a 

proportional manner under these conditions so the standard error for 1
*
 could be large but yet a 

very precise exact measure of overall inflation is available. Thus it must be kept in mind that 

standard errors for price levels or price indexes that are generated by a stochastic approach to 

index number theory are measures of parameter dispersion that are conditional on the underlying 

model of price formation. If the underlying model is faulty and the error variance is high, then the 

parameter standard errors that are generated by the model should be viewed with some degree of 

caution.  

 

5. The Weighted Time Product Dummy Approach to Bilateral Index Number Theory 

 

There is a problem with the unweighted least squares model defined by (21): namely that the 

logarithm of each price quote is given exactly the same weight in the model no matter what the 

expenditure on that item was in each period. This is obviously unsatisfactory since a price that 

has very little economic importance (i.e., a low expenditure share in each period) is given the 

same weight in the regression model compared to a very important item. As was mentioned 

above, Walsh was the first serious index number economist to stress the importance of weighting. 

                                                      
16

 For an introduction to hedonic regression models, see Griliches (1971). Hedonic regression models will 

be studied in great detail in Chapter 8 below. 
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Keynes was quick to follow up on the importance of weighting
17

 and Fisher emphatically 

endorsed weighting.
18

 Griliches also endorsed weighting in the hedonic regression context.
19

 Thus 

it is useful to consider how to introduce weights into the time product dummy model that reflect 

the economic importance of the various commodities into the model. 

 

In order to take economic importance into account, replace (21) by the following weighted least 

squares minimization problem:
20

 

 

(28) min
N ,...,1,1

n=1
N
 qn

0
[lnpn

0
   n]

2
  + n=1

N
 qn

1
[lnpn

1
  1  n]

2
 

 

where we have set 0 = 0. The squared error for product n in period t is repeated qn
t
 times to 

reflect the sales of product n in period t. Thus the new problem (28) takes into account the 

popularity of each product.
21

  

 

The first order necessary conditions for the minimization problem defined by (28) are the 

following N + 1 equations: 

 

(29)  (qn
0
+qn

1
)n  = qn

0
lnpn

0
 + qn

1
(lnpn

1
  1) ;                                                                 n = 1,...,N;   

(30) (n=1
N
 qn

1
)1 = n=1

N
 qn

1
(lnpn

1
  n). 

 

The solution to (29) and (30) is the following one:
22

 

 

(31) 1
*
  n=1

N
 qn

0
qn

1
(qn

0
 + qn

1
)
1 

ln(pn
1
/pn

0
)/i=1

N
 qi

0
qi

1
(qi

0
 + qi

1
)
1

; 

(32) n
*
  qn

0
(qn

0
 + qn

1
)
1 

ln(pn
0
) + qn

1
(qn

0
 + qn

1
)
1 

ln(pn
1
/1

*
) ;                                          n = 1,...,N 

 

where 1
*
  exp[1

*
]. Note that the weight for the term ln(pn

1
/pn

0
) in (31) can be written as 

follows: 

                                                      
17

 “It is also clear that the so-called unweighted index numbers, usually employed by practical statisticians, 

are the worst of all and are liable to large errors which could have been easily avoided.” J.M. Keynes 

(1909; 79). This paper won the Cambridge University Adam Smith Prize for that year. Keynes (1930; 76-

77) again stressed the importance of weighting in his later 1930 paper which drew heavily on his 1909 

paper.  
18

 “It has already been observed that the purpose of any index number is to strike a fair average of the price 

movements or movements of other groups of magnitudes. At first a simple average seemed fair, just 

because it treated all terms alike. And, in the absence of any knowledge of the relative importance of the 

various commodities included in the average, the simple average is fair. But it was early recognized that 

there are enormous differences in importance. Everyone knows that pork is more important than coffee and 

wheat than quinine. Thus the quest for fairness led to the introduction of weighting.” Irving Fisher (1922; 

43). 
19

 “But even here, we should use a weighted regression approach, since we are interested in an estimate of a 

weighted average of the pure price change, rather than just an unweighted average over all possible models, 

no matter how peculiar or rare.”  Zvi Griliches (1971; 8). 
20

 Balk (1980; 70) was the first to both apply the country product dummy model to the time series context 

and he was the first to introduce some form of weighting to the basic model. However, the specific forms of 

weighting used in this section were introduced by Diewert (2005) for the models defined by (28), (35) and 

(42). Rao (1995) (2005) introduced the form of weighting for the model defined by (38).    
21

 One can think of repeating the term [lnpn
0
   n]

2
 for each unit of product n sold in period 0. The result is 

the term qn
0
[lnpn

0
   n]

2
. A similar justification based on repeating the price according to its sales can also 

be made. This repetition methodology makes the stochastic specification of the error terms somewhat 

complicated but the least squares minimization problem is simple enough.    
22

 This solution was derived by Diewert (2005). 
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(33) qn
*
  n=1

N
 qn

0
qn

1
(qn

0
 + qn

1
)
1 

/i=1
N
 qi

0
qi

1
(qi

0
 + qi

1
)
1

 ;                                               n = 1,...,N 

              = h(qn
0
,qn

1
)/i=1

N
 h(qi

0
,qi

1
)  

 

where h(a,b)  2ab/(a+b) = [½ a
1

 + ½ b
1

]
1

 is the harmonic mean of a and b.
23

  

   

Note that the qn
*
 sum to 1 and thus 1

*
 is a weighted average of the logarithmic price ratios 

ln(pn
1
/pn

0
). Using 1

*
 = exp[1

*
] and 0

*
 = exp[0

*
] = exp[0] =1, the bilateral price index that is 

generated by the solution to (28) is 

 

(34) 1
*
/0

*
 = exp[1

*
] = exp[n=1

N
 qn

* 
ln(pn

1
/pn

0
)]. 

 

Thus 1
*
/0

*
 is a weighted geometric mean of the price ratios pn

1
/pn

0
 with weights qn

*
 defined by 

(33). Although this seems to be a reasonable bilateral index number formula, it must be rejected 

for practical use on the grounds that the index is not invariant to changes in the units of 

measurement.  

 

Since values are invariant to changes in the units of measurement, the lack of invariance problem 

could be solved if we replace the quantity weights in (28) with expenditure or sales weights.
24

 

This leads to the following weighted least squares minimization problem where the weights vn
t
 

are defined as pn
t
qn

t
 for t = 0,1 and n = 1,...,N: 

 

(35) min
N ,...,1,1

n=1
N
 vn

0
[lnpn

0
   n]

2
  + n=1

N
 vn

1
[lnpn

1
  1  n]

2
. 

 

It can be seen that problem (35) has exactly the same mathematical form as problem (28) except 

that vn
t
 has replaced qn

t
 and so the solutions (31) and (32) will be valid in the present context if vn

t
 

replaces qn
t
 in these formulae. Thus the solution to (35) is: 

 

(36) 1
*
  n=1

N
 vn

0
vn

1
(vn

0
 + vn

1
)
1 

ln(pn
1
/pn

0
)/i=1

N
 vi

0
vi

1
(vi

0
 + vi

1
)
1

; 

(37) n
*
  vn

0
(vn

0
 + vn

1
)
1 

ln(pn
0
) + vn

1
(vn

0
 + vn

1
)
1 

ln(pn
1
/1

*
) ;                                           n = 1,...,N 

 

where 1
*
  exp[1

*
].  

 

The resulting price index, 1
*
/0

*
 = 1

*
 = exp[1

*
] is indeed invariant to changes in the units of 

measurement. However, if we regard 1
*
 as a function of the price and quantity vectors for the 

two periods, say P(p
0
,p

1
,q

0
,q

1
), then another problem emerges for the price index defined by the 

solution to (35): P(p
0
,p

1
,q

0
,q

1
) is not homogeneous of degree 0 in the components of q

0
 or in the 

components of q
1
. These properties are important because it is desirable that the companion 

implicit quantity index defined as Q(p
0
,p

1
,q

0
,q

1
)  [p

1
q

1
/p

0
q

0
]/P(p

0
,p

1
,q

0
,q

1
) be homogeneous of 

                                                      
23

 h(a,b) is well defined by 2ab/(a+b) if a and b are nonnegative and at least one of these numbers is 

positive. In order to write h(a,b) as [½ a
1

 + ½ b
1

]
1

, we require that a > 0 and b > 0. 
24

 “But on what principle shall we weight the terms? Arthur Young’s guess and other guesses at weighting 

represent, consciously or unconsciously, the idea that relative money values of the various commodities 

should determine their weights. A value is, of course, the product of a price per unit, multiplied by the 

number of units taken. Such values afford the only common measure for comparing the streams of 

commodities produced, exchanged, or consumed, and afford almost the only basis of weighting which has 

ever been seriously proposed.” Irving Fisher (1922; 45). 
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degree 1 in the components of q
1
 and homogeneous of degree minus 1 in the components of q

0
.
25

 

We also want P(p
0
,p

1
,q

0
,q

1
) to be homogeneous of degree 1 in the components of p

1
 and 

homogeneous of degree minus 1 in the components of p
0
 and these properties are also not 

satisfied. Thus we conclude that the solution to the weighted least squares problem defined by 

(35) does not generate a satisfactory price index formula.  

 

The above deficiencies can be remedied if the expenditure amounts vn
t
 in (35) are replaced by 

expenditure shares, sn
t
, where v

t
  n=1

N
 vn

t
 for t = 0,1 and sn

t
  vn

t
/v

t
 for t = 0,1 and n = 1,...,N. 

This replacement leads to the following weighted least squares minimization problem:
26

 

 

(38) min
N ,...,1,1

n=1
N
 sn

0
[lnpn

0
   n]

2
  + n=1

N
 sn

1
[lnpn

1
  1  n]

2
. 

 

Again, it can be seen that problem (38) has exactly the same mathematical form as problem (28) 

except that sn
t
 has replaced qn

t
 and so the solutions (31) and (32) will be valid in the present 

context if sn
t
 replaces qn

t
 in these formulae. Thus the solution to (38) is: 

 

(39) 1
*
  n=1

N
 sn

0
sn

1
(sn

0
 + sn

1
)
1 

ln(pn
1
/pn

0
)/i=1

N
 si

0
si

1
(si

0
 + si

1
)
1

; 

(40) n
*
  sn

0
(sn

0
 + sn

1
)
1 

ln(pn
0
) + sn

1
(sn

0
 + sn

1
)
1 

ln(pn
1
/1

*
) ;                                              n = 1,...,N 

 

where 1
*
  exp[1

*
]. Define the normalized harmonic mean share weights as sn

*
  h(sn

0
,sn

1
)/i=1

N
 

h(si
0
,si

1
) for n = 1,...,N. Then the weighted time product dummy bilateral price index, 

PWTPD(p
0
,p

1
,q

0
,q

1
)  1

*
/0

*
 = 1

*
, has the following logarithm: 

 

(41) lnPWTPD(p
0
,p

1
,q

0
,q

1
)  n=1

N
 sn

* 
ln(pn

1
/pn

0
). 

 

Thus PWTPD(p
0
,p

1
,q

0
,q

1
) is equal to a share weighted geometric mean of the price ratios, pn

1
/pn

0
.
27

 

This index is a satisfactory one from the viewpoint of the test approach to index number theory. 

Of the first 16 tests listed in Chapter 3, it can be shown that PWTPD(p
0
,p

1
,q

0
,q

1
) satisfies all of these 

tests (assuming strictly positive prices and quantities) except for Test 4 (the basket test, 

P(p
0
,p

1
,q,q) = p

1
q/p

0
q), Test 12 (the quantity reversal test), Test 13 (the price reversal test), Test 

15 (the mean value test for quantities) and Test 16 (the Paasche and Laspeyres bounding test). It 

is likely that PWTPD(p
0
,p

1
,q

0
,q

1
) passes the monotonicity in prices tests, T17 and T18 and it is not 

likely that PWTPD(p
0
,p

1
,q

0
,q

1
) passes the monotonicity in quantity tests, T19 and T20.

28
 Moreover, 

Diewert (2005; 564) showed that PWTPD(p
1
,p

2
,q

1
,q

2
) approximated the Fisher, Walsh and 

                                                      
25

 Thus we want Q to have the following properties: Q(p
0
,p

1
,q

0
,q

1
) = Q(p

0
,p

1
,q

0
,q

1
) and Q(p

0
,p

1
,q

0
,q

1
) = 


1

Q(p
0
,p

1
,q

0
,q

1
) for all  > 0; see Chapter 3 for a list of desirable properties or tests for bilateral price 

indexes of the form P(p
0
,p

1
,q

0
,q

1
).  

26
 Note that the minimization problem defined by (38) is equivalent to the problem of minimizing n=1

N
 e0n

2
 

+ n=1
N
 e1n

2
 with respect to 1, 1, ..., N where the error terms etn are defined by the equations (sn

0
)

1/2
lnpn

0
 = 

(sn
0
)

1/2
n + e1n for n = 1,...,N and (sn

1
)

1/2
lnpn

1
 = (sn

1
)

1/2
1 + (sn

1
)

1/2
n + e2n for n = 1,...,N. Thus the solution to 

(38) can be found by running a linear regression using the above two sets of estimating equations. The 

numerical equivalence of the least squares estimates obtained by repeating multiple observations or by 

using the square root of the weight transformation was noticed long ago as the following quotation 

indicates: “It is evident that an observation of weight w enters into the equations exactly as if it were w 

separate observations each of weight unity. The best practical method of accounting for the weight is, 

however, to prepare the equations of condition by multiplying each equation throughout by the square root 

of its weight.” E. T. Whittaker and G. Robinson (1940; 224).  
27

 See Diewert (2005) for this formula. Note that Rao (1995) (2005) considered the extension of the model 

defined by (38) to T periods and so he pioneered this class of models.  
28

 See Diewert (2006) who initiated an investigation of the test properties of hedonic regressions.   
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Törnqvist-Theil indexes to the second order around an equal price and quantity point where p
0
 = 

p
1
 and q

0
 = q

1
. Thus if changes in prices and quantities going from one period to the next are not 

too large and there are no missing products, PWTPD should be close to these indexes that have 

emerged as being “best” in several contexts.
29

                   

         

Recall the unweighted least squares minimization problem defined by (21) that was introduced at 

the beginning of section 4. The solution to this unweighted bilateral time product dummy 

regression model generated the Jevons index as its solution. But appropriate weighting of the 

squared errors has changed the solution index dramatically: the index defined by (41) weights 

products by their economic importance and has good test properties whereas the Jevons index can 

generate very problematic results because of its lack of weighting according to economic 

importance. Note that both models have the same underlying structure; i.e., they assume that ptn is 

approximately equal to tn for t = 0,1 and n = 1,...,N. Thus weighting by economic importance 

has converted a least squares minimization problem that generates a rather poor price index into 

a problem that generates a rather good index.    

 

There is one more weighting scheme that generates an even better index in the bilateral context 

where we are running a time product dummy hedonic regression using the price and quantity data 

for only two periods. Consider the following weighted least squares minimization problem: 

 

(42) min
N ,...,1,1

n=1
N
 (½)(sn

0
+sn

1
)[lnpn

0
   n]

2
 + n=1

N
 (½)(sn

0
+sn

1
)[lnpn

1
  1  n]

2
. 

  

As usual, it can be seen that problem (42) has exactly the same mathematical form as problem 

(28) except that (½)(sn
0
+sn

1
) has replaced qn

0
 and qn

1
 and so the solutions (31) and (32) will be 

valid in the present context if (½)(s1n+s2n) replaces qn
t
 in these formulae. Thus the solutions to 

(42) simplify to the following solutions: 

 

(43) 1
*
  n=1

N
 (½)(sn

0
+sn

1
)ln(pn

1
/pn

0
); 

(44) n
*
  (½)ln(pn

0
) + (½)ln(pn

1
/1

*
) ;                                                                                n = 1,...,N 

 

where 1
*
  exp[1

*
] and 0  exp[0] = exp[0] = 1 since we have set 0 = 0. Thus the bilateral 

index number formula that emerges from the solution to (42) is 1
*
/0 = exp[n=1

N
 

(½)(sn
0
+sn

1
)ln(pn

1
/pn

0
)]  PT(p

0
,p

1
,q

0
,q

1
), which is the Törnqvist (1936) Theil (1967; 137-138) 

bilateral index number formula. Thus the use of the weights in (42) has generated an even better 

bilateral index number formula than the formula that resulted from the use of the weights in 

(38).
30

 This result reinforces the case for using appropriately weighted versions of the basic time 

product dummy hedonic regression model.
31

 However, if the implied residuals in the 

minimization problem (42) are small (or, equivalently, if the fit in the linear regression model that 

                                                      
29

 However, with large changes in price and quantities going from period 0 to 1, PWTPD will tend to lie 

below these alternative indexes. Consider a case with only 2 commodities. Let the price vectors be p
0
  

[1,1] and p
1
  [1,0.5] and let the share vectors be s

0
  [0.5,0.5] and s

1
  [0.1,0.9]. Thus the two products are 

highly substitutable and when the price of product 2 goes on sale at half price, its market share jumps from 

0.5 to 0.9. The Törnqvist Theil index for this example is 0.6156 which is considerably above the Weighted 

Time Product Dummy index value which is 0.5767. This example is based on an example due to Diewert 

and Fox (2017). Missing prices can also cause substantial differences between these indexes.   
30

 Diewert (1992; 223) and Balk (2008) listed the commonly used tests that PT(p
0
,p

1
,q

0
,q

1
) satisfies; see also 

Chapter 3. 
31

 Note that the bilateral regression model defined by the minimization problem (38) is readily generalized 

to the case of T periods whereas the bilateral regression model defined by the minimization problem (42) 

cannot be generalized to the case of T periods. These facts were noted by de Haan and Krsinich (2014).    
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can be associated with (42) is high, so that predicted values for log prices are close to actual log 

prices), then weighting will not matter very much and the unweighted version of (42), which was 

(21) in the previous section, will give results that are similar to (42). This comment applies to all 

of the weighted hedonic regression models that are considered in this section.
32

 But in most 

practical applications of index number theory, prices will not move in a proportional manner over 

time. Under these conditions, weighting according to the economic importance of the individual 

commodities will lead to more representative estimates of overall price change; i.e., the  measures 

of price change generated by the models defined by the minimization problems (38) and (42) are 

to be preferred over the unweighted minimization problem defined by (21) in the previous 

section.  

 

In Chapter 7, generalizations of the bilateral weighted time product dummy model defined by the 

weighted least squares minimization problem (38) will be generalized from 2 periods to T 

periods. The problems arising from missing prices will also be addressed in this chapter. 

 

At this point, it is perhaps useful to contrast stochastic approaches to index number theory to the 

approaches explained in Chapter 2 (basket approaches) and in Chapter 3 (axiomatic or test 

approaches). These earlier approaches led to  a small number of preferred indexes such as the 

Fisher and Walsh indexes. The stochastic approach or the descriptive statistics approach to index 

number theory attempts to find a single summary measure of a distribution of price changes. The 

practical problem associated with this method is that there are many ways of summarizing 

relative price distributions as was seen at the end of section 3. We chose Theil’s summary 

measure of price change because it satisfied some key tests; i.e., we had to draw on the test 

approach to index number theory in order to pin down our final specific estimator of price 

change. Similarly, in this section, we again drew on the test approach to index number theory to 

determine “best” measures of price change. This is the problem with the stochastic approach to 

index number theory: by itself, it does not narrow down the range of possible estimators of price 

change. Nevertheless, in subsequent chapters, we will utilize the stochastic approach to index 

number theory in order to address the problems associated with measuring quality change. 

However, as was done in this chapter, we will draw on the other approaches to index number 

theory to help us to narrow down the range of possible stochastic specifications that could be used 

to measure quality change.    

 

Additional material on stochastic approaches to index number theory and references to the 

literature can be found in Selvanathan and Rao (1994), de Haan (2004), Diewert (2004) (2010), 

Rao (2004), Clements, Izan and Selvanathan (2006) and de Haan and Krsinich (2014).  
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