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1. Introduction                                                                                                               
 
This chapter will attempt to place most methods used by statistical agencies to quality adjust 
prices into a common economic framework. The economic framework is based on purchasers 
maximizing a linearly homogeneous utility function subject to a budget constraint on their 
purchases of a group of related products. This framework is far from a perfect description of 
reality but it captures an important empirical phenomenon: when the price of a product drops a 
lot, purchasers of the product buy more of it! Moreover, the theory allows us to provide a welfare 
interpretation for the quantity indexes which are generated by this approach. The very concept of 
comparing the relative quality of two related products means that we are comparing the relative 
usefulness or utility of the products to the purchaser. Thus it seems to be necessary to take an 
economic approach to the problem of quality adjustment.   
 
The theory of quality adjustment to be presented in this chapter is meant to be applied at the level 
where subindexes are constructed at the first stage of aggregation; i.e., at what is called the 
elementary level of aggregation by price statisticians. Furthermore, the methods for quality 
adjustment to be discussed in this chapter are largely aimed at the scanner data context; i.e., we 
will assume that the statistical agency has access to detailed price and quantity (or value) 
information at the product code level, either from retail outlets or from the detailed purchases of a 
group of similar households.2 Thus our focus will be on both the construction of consumer price 
indexes at the elementary level as well as on the companion consumer quantity indexes.  
 
The assumption of linearly homogeneous utility or valuation functions is an important restriction 
so one may ask: why impose it? The reason is that economic models constructed by private and 
public sector economists generally do not make use of disaggregated information; instead, they 
use the elementary indexes that are produced by national statistical agencies in their models. 
However, the price levels that correspond to these elementary indexes are treated as “normal” 
prices by applied economists; i.e., the elementary prices are not regarded as prices that are 
conditional on particular levels of the corresponding quantity levels. In order to construct 
unconditional price levels, we need to assume that the underlying aggregator or utility functions 
are linearly homogeneous.3 
 
Marshall (1887) was one of the first to introduce the new goods problem: how exactly should 
price indexes be adjusted to account for the introduction of new and hopefully improved 
products? 4 Marshall suggested that chaining period to period indexes would provide a partial 
solution to the problem. Keynes (1909) endorsed Marshall’s suggestion as a step in the right 
direction but noted that chaining alone will not solve the fundamental problem: increased product 
choice will generally increase the utility of purchasers of products but it is very difficult to 

 
2 As cash transactions diminish in importance, credit and debit card companies will have detailed price and 
quantity information on household purchases. Once this information on consumer transactions also includes 
product bar codes, statistical agencies will eventually be able to access this information and use it to 
produce high quality consumer price indexes.   
3 The underlying index number theory using linearly homogeneous aggregator functions was developed by 
Shephard (1953), Samuelson and Swamy (1974) and Diewert (1976). This theory was explained in Chapter 
5 and will be summarized in section 2 below.  
4 “This brings us to consider the great problem of how to modify our unit so as to allow for the invention of 
new commodities. The difficulty is insuperable, if we compare two distant periods without access to the 
detailed statistics of intermediate times, but it can be got over fairly well by systematic statistics.” Alfred 
Marshall (1887; 373). Lehr (1885; 45-46) also introduced the chain system as a way of mitigating the new 
goods problem.  For more on the early history of the new goods problem, see Diewert (1993; 59-63).  
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measure this increase.5 This is the essence of the quality adjustment problem; how can statistical 
agencies construct price and quantity indexes over two or more periods when there are new and 
disappearing products? 
 
Hicks (1940; 114) suggested a general approach to this measurement problem in the context of 
the economic approach to index number theory. His approach was to apply normal index number 
theory but estimate (somehow) hypothetical prices that would induce utility maximizing 
purchasers of a related group of products to demand 0 units of unavailable products.6 With these 
reservation or imputed prices in hand, one can just apply normal index number theory using the 
augmented price data and the observed quantity data (which impute zero quantities to unavailable 
products). This is the economic framework we will use in this chapter.7 The practical problem 
facing statistical agencies is: how exactly are these reservation prices to be estimated? 
 
The approach to the estimation of reservation prices that will be taken below is to use consumer 
demand theory to estimate preferences. Suppose that purchasers maximize a utility function f(q) 
subject to the budget constraint p×q º Sn=1

N pnqn = v > 0 where the price and quantity of 
commodity n are pn and qn for n = 1,...,N. Define the price and quantity vectors p º [p1,...,pN] and 
q º [q1,...,qN]. Suppose that p, q and v are observed and q is a solution to the utility maximization 
problem max q {f(q) : p×q = v}. Then given a functional form for f, the solution q to the utility 
maximization problem will satisfy the usual consumer demand functions, qn = dn(p,v) for n = 
1,...,N where dn(p,v) is the nth consumer demand function. Given price and quantity for many 
periods, the unknown parameters for the utility function that are imbedded in these consumer 
demand functions can be estimated using econometric methods. Duality theory can be used to 
simplify the derivation of the consumer demand functions. 8  This is the approach used by 
Hausman (1981) (1996) (1999) (2003) to estimate reservation prices. However, the econometrics 
of this method are complex. To illustrate these problems, suppose that in the first sample period, 
product 1 was not available. The observed demand for product 1 in period 1 is zero. Thus the first 
estimating equation in the sample would take the form 0 = d1(p1

1*,p2
1,...,pN

1,v1) + e1
1 where 

d1(p,v) is the demand function for commodity 1, p2
1,...,pN

1 are the observed prices for products 
2,3,...,N in period 1, v1 is the observed period 1 expenditure on the N products, e1

1 is an error term 
and p1

1* is the unknown period 1 reservation price for product 1. It can be seen that p1
1* is now an 

extra parameter that must be estimated. Hence the usual approach that conditions on prices (on 

 
5 “The [chaining] method has another advantage. It enables us to introduce new commodities and to drop 
others which have fallen out of use. ... For most practical purposes, therefore, this is the method to be 
recommended. ... Yet we must not exaggerate its merits.” John M. Keynes (1909; 80). “We cannot hope to 
find a ratio of equivalent substitution for gladiators against cinemas, or for the conveniences of being able 
to buy motor cars against the conveniences of being able to buy slaves.” John M. Keynes (1930; 96). 
6 “The same kind of device can be used in another difficult case, that in which new sorts of goods are 
introduced in the interval between the two situations we are comparing. If certain goods are available in the 
II situation which were not available in the I situation, the p1’s corresponding to these goods become 
indeterminate. The p2’s and q2’s are given by the data and the q1’s are zero. Nevertheless, although the p1’s 

cannot be determined from the data, since the goods are not sold in the I situation, it is apparent from the 
preceding argument what p1’s ought to be introduced in order to make the index-number tests hold. They 
are those prices which, in the I situation, would just make the demands for these commodities (from the 
whole community) equal to zero.” John R. Hicks (1940; 114). Von Hofsten (1952; 95-97) extended Hicks’ 
methodology to cover the case of disappearing goods as well.  
7 Two major problems with this framework are: (i) it does not take into account the fact that purchasers 
may stockpile goods on sale and this will affect demand in subsequent periods and (ii) the introduction of a 
new revolutionary product may change purchaser preferences over existing goods. However, until a better 
welfare oriented model of purchaser behavior comes along, we are stuck with using the Hicksian approach.  
8 See for example Diewert (1974; 120-133). 
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the right hand sides of the estimating equations) and treats quantities as random variables on the 
left hand sides of the estimating equations does not apply due to the endogeneity of the 
reservation price. Moreover, the variable on the left hand side of the above equation is 0 and this 
is not a random variable. Thus simple econometric techniques cannot be used in this situation. 
 
To deal with the above econometric problem, one can abandon the estimation of traditional 
consumer demand functions and switch to the estimation of the system of inverse consumer 
demand functions. The nth inverse demand function gives the observed price for product n, pn, as 
a function of the vector of quantities chosen by the purchasers, q, and total expenditure on the 
products v; i.e., we have pn = gn(q,v) for n = 1,...,N where gn is the nth inverse demand function.9 
Again suppose product 1 was not available in period 1. Then the first inverse demand function in 
period 1 becomes p1

1* = g1(0,q2
1,...,qN

1,v1) + e1
1 using the notation in the previous paragraph. 

Thus we simply drop this equation from the system of inverse demand estimating equations and 
use the remaining equations to estimate the unknown parameters in the direct utility function 
Q(q). Once these unknown parameters have been estimated, the period 1 reservation price for 
product 1 can be defined as p1

1* = g1(0,q2
1,...,qN

1,v1). This methodology will be described in 
sections 9 and 10 in more detail.10       
 
It turns out that a special case of this inverse demand function methodology is the case of a linear 
utility function; i.e., set f(q) = Sn=1

N anqn º a×q where the an are quality adjustment factors. Thus 
an gives the increase in utility of purchasers due to the acquisition of an extra unit of product n. 
The case of a linear utility function will be used as an underlying economic model in sections 3 
and 5-8. Furthermore, it turns out that the assumption of an underlying linear utility function 
provides a rationale for hedonic regression models, which will be studied in sections 5-8 below. 
 
In sections 3 and 4, we apply the linear utility function assumption to some special situations 
where it is possible to generate missing prices without using any econometrics. These sections 
introduce inflation adjusted carry forward and carry backward prices which have been used for 
many years by statistical agencies to replace missing prices.11 
 
In section 5, we also assume an underlying linear utility function but we no longer assume that 
the underlying economic model holds exactly. Thus error terms make their appearance in this 
section (and in subsequent sections). The resulting model is the time product dummy hedonic 
regression model. This model is an application of Summer’s (1973) country product dummy 
model to the time series context. The underlying time product dummy hedonic regression model 
is ptn = ptan for n = 1,...,N and t = 1,...,T where the an are the quality adjustment factors that 
appear in the purchasers’ linear utility function and the pt turn out to be period t aggregate price 
levels.12 However, in real life applications, these equations will not hold exactly and thus it is 
necessary to introduce error terms. The above exact equations can be replaced by lnptn = lnpt + 

 
9 Suppose that the utility function f(q) is differentiable and linearly homogeneous and we have an interior 
solution to the purchaser’s utility maximization problem. Then using Wold’s (1944; 69-71) identity, pn = 
[¶f(q)/¶qn]v/f(q) º gn(q,v) for n = 1,...,N. We will derive these equation in more detail in section 2 below. 
See also section 4 in Chapter 5.   
10 This methodology was first suggested by Diewert (1980; 498-503) and implemented by Diewert and 
Feenstra (2017). 
11 See von Hofsten (1952), Triplett (2004), de Haan and Krsinich (2012; 31-32) and Diewert, Fox and 
Schreyer (2017). Inflation adjusted carry forward and backward prices were discussed in section 19 of 
Chapter 7. 
12 A bilateral price index between period t relative to period r is defined as the ratio of the relevant price 
levels, pt/pr.  
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lnan + etn for n = 1,...,N and t = 1,...,T where the etn are error terms. This is a stochastic model 
which was discussed in Chapter 7. It is also a special case of a hedonic regression model where 
prices are regressed on the characteristics of products. In this simple special case framework, each 
product has its own separate characteristic. Estimators for the logarithms of pt and an are found 
by minimizing the sum of squared errors, St=1

T Sn=1
N [etn]2 = St=1

T Sn=1
N [lnptn - lnpt - lnan]2. 

However, the log prices are not weighted according to their economic importance and the model 
does not allow for missing products as was seen in Chapter 7. In section 17 of Chapter 7, we 
found a satisfactory stochastic model that allowed for missing observations and weighted prices 
by their economic importance. This model is reviewed in section 5 of the present chapter. 
 
It should be noted that the hedonic regression models that will be studied in sections 5-8 are fairly 
complicated since they deal with expenditure weights and missing observations. For readers who 
are not familiar with hedonic regression models and want a simpler introduction to the topic, see 
the excellent book by Aizcorbe (2014).      
 
The model described in section 5 generates price levels that have some good axiomatic properties 
but the model has an important drawback: a product that is available only in one period out of the 
T periods has no influence on the estimated aggregate price levels pt

* for all periods. Thus the 
introduction of a new product in period T will have no effect on the estimated price level for 
period T, pT

*. This goes against the spirit of the Hicksian approach to the treatment of new goods. 
The hedonic regression models considered in sections 6 and 7 do not suffer from this drawback. 
 
Sections 6 and 7 deal with hedonic regression models that make use of information on the 
characteristics of the N products under consideration. The models in these two sections are more 
satisfactory than the weighted time product dummy model discussed in section 5 because now 
isolated prices play a role in the determination of the estimated price levels pt

* for t = 1,...,T. 
However, the hedonic regression models considered in sections 6 and 7 do require information on 
product characteristics, information which may be difficult to collect. The important results 
obtained by de Haan and Krsinich (2018) using this class of hedonic regression models applied to 
electronic products are discussed in section 7. They compare weighted and unweighted versions 
of the same hedonic regression models and show that weighting leads to improved results. 
 
The problems raised by taste change in the two period case are addressed in section 8. The 
treatment of the problem in this section is due to Diewert, Heravi and Silver (2009) and it uses the 
tastes of each period to construct separate bilateral price indexes between the two periods. The 
two indexes, each of which hold tastes constant, are then averaged to form a final index. 
 
Finally, in sections 9 and 10, two alternative methods for constructing reservation prices are 
discussed. In these methods, the underlying utility function is not assumed to be a linear function. 
In section 9, the reservation price model due to Feenstra (1994) is presented. This model assumes 
that the underlying preferences are CES (Constant Elasticity of Substitution). 13  The model 
presented in section 10 assumes that the underlying preferences are a certain flexible functional 
form (that is exact for the Fisher (1922) ideal quantity index). This model is due to Diewert and 
Feenstra (2017).  
 
Section 11 offers some conclusions.    
 
2. A Framework for Evaluating Quality Change In the Scanner Data Context 

 
13 See Arrow, Chenery, Minhas and Solow (1961) for the first use of this functional form in the economics 
literature. Chapter 5 considered alternative estimation methods for this functional form. 
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In this section, we provide a framework for the construction of consumer price and quantity 
indexes in the scanner data context using the economic approach to index number theory. We 
assume that transactions data for the sales or purchases of N products over T time periods are 
available.14 The N products will typically be a group of related products so that the goal is the 
construction of price and quantity indexes at the first stage of aggregation. The transactions data 
are aggregated over time within each period so that the prices for each period are unit value 
prices. Let pt º [pt1,...,ptN] and qt º [qt1,...,qtN] denote the price and quantity vectors for time 
periods t = 1,...,T. The period t quantity for product n, qtn, is equal to total purchases of product n 
by purchasers or it is equal to the sales of product n by the outlet (or group of outlets) for period t, 
while the corresponding period t price for product n, ptn, is equal to the value of sales (or 
purchases) of product n in period t, vtn, divided by the corresponding total quantity sold (or 
purchased), qtn. Thus ptn º vtn/qtn is the unit value price for product n in period t for t = 1,...,T and 
n = 1,...,N. In this section, we assume that all prices, quantities and values are positive; in 
subsequent sections, this assumption will be relaxed.   
 
Let q º [q1,...,qN] be a generic quantity vector. In order to compare various methods for 
comparing the value of alternative combinations of the N products, it is necessary that a valuation 
function or aggregator function or utility function f(q) exist. This function allows us to value 
alternative combinations of products; if f(q2) > f(q1), then purchasers of the products place a 
higher utility value on the vector of purchases q2 than they place on the vector of purchases q1. 
The function f(q) can also act as an aggregate quantity level for the vector of purchases, q. Thus 
f(qt) can be interpreted as an aggregate quantity level for the period t vector of purchases, qt, and 
the ratios, f(qt)/f(q1), t = 1,..,T, can be interpreted as fixed base quantity indexes covering periods 
1 to T.   
 
In the following analysis, we assume that f(q) has the following properties: (i) f(q) > 0 if q >> 
0N;15 (ii) f(q) is nondecreasing in its components; (iii) f(lq) = lf(q) for q ³ 0N and l ³ 0; (iv) f(q) 
is a continuous concave function over the nonnegative orthant. Assumption (iii), linear 
homogeneity of f(q), is a somewhat restrictive assumption. However, this assumption is required 
to ensure that the aggregate price level, P(p,q), that corresponds to f(q) does not depend on the 
scale of q.16 Property (iv) will ensure that the first order necessary conditions for the budget 
constrained maximization of f(q) are also sufficient.      
 
Let p º[p1,...,pN] > 0N and q º[q1,...,qN]  > 0N with p×q º Sn=1

N pnqn > 0. Then the aggregate price 
level, P(p,q) that corresponds to the aggregate quantity level f(q) is defined as follows: 
 
(1) P(p,q) º p×q/f(q). 
 
Thus the implicit price level P(p,q), which is generated by the generic price and quantity vectors, 
p and q, is equal to the value of purchases, p×q, deflated by the aggregate quantity level, f(q). Note 
that using these definitions, the product of the aggregate price and quantity levels equals the value 
of purchases during the period; i.e., we have P(p,q)f(q) = p×q. 

 
14 The data could be price and quantity (or value and quantity) on sales of the N products from a retail 
outlet (or group of outlets in the same region) or it could be price and quantity data for the purchases of the 
N products by a group of similar households.  
15 Notation: q >> 0N means each component of q is positive, q ³ 0N means each component of q is 
nonnegative and q > 0N means q ³ 0N but q ¹ 0N, 
16 P(p,q) º p×q/f(q) where p×q º Sn=1N pnqn. Thus using property (iii) of f(q), we have P(p,lq) = p×lq/f(lq) = 
lp×q/lf(q) = P(p,q).    
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Once the functional form for the aggregator function f(q) is known, then the aggregate quantity 
level for period t, Qt, can be calculated in the obvious manner: 
 
(2) Qt º f(qt);                                                                                                                        t = 1,...,T.  
 
Using definition (1), the corresponding period t aggregate price level, Pt, can be calculated as 
follows: 
 
(3) Pt º pt×qt/f(qt);                                                                                                                 t = 1,...,T.                                                                                                         
 
Note that if f(q) turns out to be a linear aggregator function, so that f(qt) º a×qt = Sn=1

N anqtn, then 
the corresponding period t price level Pt is equal to pt×qt/a×qt, which is a quality adjusted unit 
value price level.17  
 
In order to make further progress, it is necessary to make some additional assumptions. The two 
additional assumptions are: (v) f(q) is once differentiable with respect to the components of q and 
(vi) the observed strictly positive quantity vector for period t, qt >> 0N,18 is a solution to the 
following period t constrained maximization problem: 19 
 
(4) max q {f(q) : pt×q = vt ; q ³ 0N};                                                                                     t = 1,...,T. 
 
The first order conditions for solving (4) for period t are the following conditions:20 
 
(5) Ñqf(qt) = ltpt ;                                                                                                                t = 1,...,T; 
(6)   pt×qt   = vt ;                                                                                                                    t = 1,...,T. 
 
Since f(q) is assumed to be linearly homogeneous with respect to q, Euler’s Theorem on 
homogeneous functions implies that the following equations hold: 
 
(7) qt×Ñqf(qt) = f(qt) ;                                                                                                            t = 1,...,T. 
 
Take the inner product of both sides of equations (5) with qt and use the resulting equations along 
with equations (7) to solve for the Lagrange multipliers, lt: 
 
(8) lt = f(qt)/pt×qt                                                                                             t = 1,...,T 
          =1/Pt                                                                                                      using definitions (3).21 

 
17 See section 10 of Chapter 7 for the properties of quality adjusted unit value indexes. 
18 The assumption that qt >> 0N can be replaced by the assumptions qt > 0N and pt×qt > 0. 
19 The theory that follows dates back to Konüs and Byushgens (1926). This approach blends standard 
consumer demand theory based on the maximization of a linearly homogeneous utility function with index 
number theory. It was further developed by Shephard (1953) (in the context of a producer cost 
minimization framework) and by Samuelson and Swamy (1974) and Diewert (1976) in the consumer 
context. The price indexes which result from this theory are special cases of the Konüs (1924) true cost of 
living index. What is new in the present chapter is the application of this theory to hedonic regression 
models. 
20 Using the assumption of concavity of f(q) and the assumption that qt >> 0N, these conditions are also 
sufficient to solve (4). Notation: Ñqf(q) º [¶f(q)/¶q1,..., ¶f(q)/¶qN]. 
21 Note that equations (8) imply that pt×qt = Ptf(qt). Since f is linearly homogeneous, we also know that pt×qt 
= c(pt)f(qt) where c(p) is the unit cost function that is dual to f(q). Hence Pt = c(pt); i.e., the period t price 
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Thus if we assume utility maximizing behavior on the part of purchasers of the N products using 
the collective utility function f(q) that satisfies the above regularity conditions, then the period t 
quantity aggregate is Qt º f(qt) and the companion period t price level defined as Pt º pt×qt/Qt is 
equal to 1/lt where lt is the Lagrange multiplier for problem t in the constrained utility 
maximization problems (4) and where qt and lt solve equations (5) and (6) for period t. Equations 
(8) also imply that the product of Pt and Qt is exactly equal to observed period t expenditure vt; 
i.e., we have 
 
(9) PtQt = pt×qt = vt ;                                                                                                             t = 1,...,T. 
 
Substitute equations (8) into equations (5) and after a bit of rearrangement, the following 
fundamental equations are obtained:22 
 
(10) pt = PtÑqf(qt) ;                                                                                                              t = 1,...,T.  
 
In the following section, we will assume that the aggregator function, f(q), is a linear function and 
we will show how this assumption along with equations (9) for the case where T = 2 and N = 3 
can lead to a simple well known method for quality adjustment that does not involve any 
econometric estimation of the parameters of the linear function. In subsequent sections, equations 
(10) will be utilized in the hedonic regression context. In the final sections of the chapter, the 
assumption that f(q) is a linear function will be relaxed. 
 
3. A Nonstochastic Method for Quality Adjustment: A Simple Model 
 
A major problem that arises when statistical agencies use scanner data to construct an elementary 
index is that some products are sold or purchased in one period but not in a subsequent period. 
Conversely, new products appear in the present period which were not present in previous 
periods. How should price and quantity indexes be constructed under these circumstances? 
Equations (10) in the previous section can be used to provide an answer to this question. 
 
Consider the special case where the number of periods T is equal to 2 and the number of products 
in scope for the elementary index is N equal to 3. Product 1 is present in both periods, product 2 
is present in period 1 but not in period 2 (a disappearing product) and product 3 is not present in 
period 1 but is present in period 2 (a new product).23 We assume that purchasers of the three 
products behave as if they collectively maximized the following linear aggregator function: 
 
(11) f(q1,q2,q3) º a1q1 + a2q2 + a3q3 

 
level Pt is equal to the unit cost function c that corresponds to the utility function f evaluated at the period t 
price vector pt.   
22 Multiply the right hand side of equation t in (10) by 1 = Qt/f(qt) and use PtQt = vt to obtain the following 
system of equations: pt = vtÑqf(qt)/f(qt) for t = 1,...,T. For each t, this system of equations is the consumer’s 
system of inverse demand functions, that give the period t prices that are consistent with the observed 
period t demands qt as functions of pt and period t expenditure vt. Konüs and Byushgens (1926) obtained a 
system of equations that is equivalent to this system of inverse demand functions. Linear homogeneity of 
the utility function is required in order to obtain these equations and the equivalent equations defined by (9) 
and (10).  
23 The “new” product may not be a truly new product; it may be the case that product 3 was temporarily not 
available in period 1. Similarly, product 2 may not permanently disappear in period 2; it may reappear in a 
subsequent period.  
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where the an are positive constants. Under these assumptions, equations (10) written out in scalar 
form become the following equations:24 
 
(12) ptn = Pt an ;                                                                                                       n = 1,2,3; t = 1,2. 
 
 Equations (12) are 6 equations in the 5 parameters P1 and P2 (which can be interpreted as 
aggregate price levels for periods 1 and 2) and a1, a2 and a3, which can be interpreted as quality 
adjustment factors for the 3 products; i.e., each an measures the relative usefulness of an 
additional unit of product n to purchasers of the 3 products. However, product 3 is not observed 
in the marketplace during period 1 and product 2 is not observed in the marketplace in period 2 
and so there are only 4 equations in (12) to determine 5 parameters. However, the Pt and the an 
cannot all be identified using observable data; i.e., if P1, P2, a1, a2 and a3 satisfy equations (12) 
and l is any positive number, then lP1, lP2, l-1a1, l-1a2 and l-1a3 will also satisfy equations 
(12). Thus it is necessary to place a normalization (like P1 = 1 or a1 = 1) on the 5 parameters 
which appear in equations (12) in order to obtain a unique solution. In the index number context, 
it is natural to set the price level for period 1 equal to unity and so we impose the following 
normalization on the 5 unknown parameters which appear in equations (12): 
 
(13) P1 = 1. 
 
The 4 equations in (12) which involve observed prices and the single equation (13) are 5 
equations in 5 unknowns. The unique solution to these equations is: 
 
(14) P1 = 1; P2 = p21/p11; a1 = p11; a2 = p12; a3 = p23/(p21/p11) = p23/P2. 
 
Note that the resulting price index, P2/P1, is equal to p21/p11, the price ratio for the commodity that 
is present in both periods. Thus the price index for this very simple model turns out to be a 
maximum overlap price index.25                 
 
Once the Pt and an have been determined, equations (12) for the missing products can be used to 
define the following imputed prices ptn

* for commodity 3 in period 1 and product 2 in period 2: 
 
(15) p13

* º P1a3 = p23/(P2/P1) ; p22
* º P2a2 = (p21/p11)p12 = (P2/P1)p12. 

 
These imputed prices can be interpreted as Hicksian (1940; 12) reservation prices;26 i.e., they are 
the lowest possible prices that would still deter purchasers from purchasing the products during 
periods if the unavailable products hypothetically became available.27 

 
24 This is a special case of the Time Product Dummy regression model which was studied in Chapter 7 and 
will be summarized in section 5 below. Thus equations (12), which are the inverse consumer demand 
functions that result from the maximization of a linear utility function, lead directly to a particular hedonic 
regression model. It is this result which allows us to claim that our present approach is a way of reconciling 
hedonic regression models with classical consumer demand theory.   
25 Keynes (1930; 94) was an early author who advocated this method for dealing with new goods by 
restricting attention to the goods that were present in both periods being compared. He called his suggested 
method the highest common factor method. Marshall (1887; 373) implicitly endorsed this method. Triplett 
(2004; 18) called it the overlapping link method. 
26 Hicks (1940 dealt only with the case of new goods; von Hofsten (1952; 95-97) extended his approach to 
cover the case of disappearing goods as well. 
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Note that p13

* = p23/(P2/P1) is an inflation adjusted carry backward price; i.e., the observed price 
for product 3 in period 2, p23, is divided by the maximum overlap price index P2/P1 in order to 
obtain a “reasonable” valuation for a unit of product 3 in period 1. Similarly, p22

* = (P2/P1)p12 is 
an inflation adjusted carry forward price for product 2 in period 2; i.e., the observed price for 
product 2 in period 1, p12, is multiplied by the maximum overlap price index P2/P1 in order to 
obtain a “reasonable” valuation for a unit of product 2 in period 2.28    
 
Note that the above algebra can be implemented without a knowledge of quantities sold or 
purchased. Assuming that quantity information is available, we now consider how companion 
quantity levels, Q1 and Q2, for the price levels, P1 and P2, can be determined. Note that q13 = 0 and 
q22 = 0 since consumers cannot purchase products that are not available. Use the imputed prices 
defined by (15) to obtain complete price vectors for each period; i.e., define the period 1 complete 
price vector by p1 º [p11, p12, p13

*] and the complete period 2 price vector by p2 º [p21, p22
*, p23]. 

The corresponding complete quantity vectors are q1 º [q11, q12, 0] and q2 º [q21, 0, q23]. The period 
t aggregate quantity level Qt can be calculated directly using only information on qt and the vector 
of quality adjustment factors, a º [a1, a2, a3], or indirectly by deflating period t expenditure vt º 
pt×qt by the estimated period t price level, Pt. Thus we have the following two possible methods 
for constructing the Qt: 
 
(16) Qt º a×qt ; or Qt º pt×qt/Pt ;                                                                                                t = 1,2.    
 
However, using the complete price vectors pt with imputed prices filling in for the missing prices, 
equations (12) hold exactly and thus it is straightforward to show that Qt = a×qt = pt×qt/Pt for t = 
1,2. Thus it does not matter whether we use the direct or indirect method for calculating the 
quantity levels; both methods give the same answer in this simple model.29 
 
A problem with this simple model is that there is only one product that is present in both periods. 
In the following section, we generalize the present model to allow for multiple overlapping 
products. 
 
4. A Nonstochastic Method for Quality Adjustment: A More Complex Model 
 
In order to generalize the very simple model for dealing with new and disappearing products that 
was presented in the previous section, it is first necessary to develop another application of the 
fundamental equations (10) in section 2.  
 
Define the aggregator function f(q) as follows: 
 
(17) fKBF(q*) º [q*×Aq*]1/2 º [Si=1

N Sj=1
N aijqi

*qj
*]1/2 

 

 
27 Strictly speaking, it would be necessary to add a tiny amount to these prices to deter consumers from 
purchasing these products if they were made available.  
28 The use of carry forward and backward prices to estimate missing prices is widespread in statistical 
agencies. For additional materials on this method for estimating missing prices, see Triplett (2004), de 
Haan and Krsinich (2012), Diewert, Fox and Schreyer (2017) and section 19 of Chapter 7.  
29 In subsequent sections when we no longer assume that equations (12) hold exactly, then the direct and 
indirect methods for calculating the Qt will in general differ. 
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where q* is defined as the N dimensional quantity vector [q1
*,...,qN

*] and A º [aij] is an N by N 
symmetric matrix of parameters which satisfies certain regularity conditions.30 Suppose further 
that the observed price and quantity vectors for periods 1 and 2 are the positive price and quantity 
vectors, pt* º [pt1

*,...,ptN
*] and qt* º [qt1

*,...,qtN
*] for t = 1,2. We assume that qt* solves max q 

{fKBF(q) : pt*×q = vt* ; q ³ 0N} for t = 1,2 where vt* º pt*×qt* is the observed expenditure on the N 
products for periods t = 1,2. The inverse demand functions (10) that correspond to this particular 
aggregator function are the following ones: 
 
(18) pt* = Pt*ÑqfKBF(qt*) = Pt [qt*×Aqt*]-1/2 Aqt* ;                                                                       t = 1,2. 
 
Using the framework described in section 2 above, the period t aggregate quantity level for the 
present model is Qt* º [qt*×Aqt*]1/2 and the corresponding period t price level is Pt* º pt*×qt*/Qt* for 
t = 1,2. The Fisher (1922) ideal quantity index is a function of the observable price and quantity 
data and is defined as follows: 
 
(19) QF(p1*,p2*,q1*,q2*) º  [p1*×q2* p2*×q2*/p1*×q1* p2*×q1*]1/2. 
 
Use equations (18) to eliminate p1* and p2* from the right hand side of (19). We find that 
 
(20) (p1*×q2*p2*×q2*)/(p1*×q1*p2*×q1*) = q2*×Aq2*/q1*×Aq1*. 
 
Take positive square roots on both sides of (20). Using definitions (17) and (19), the resulting 
equation is: 
 
(21) fKBF(q2*)/fKBF(q1*) = QF(p1*,p2*,q1*,q2*).   
 
Thus Q2*/Q1* = fKBF(q2*)/fKBF(q1*) is equal to the Fisher ideal quantity index QF(p1*,p2*,q1*,q2*), 
which can be calculated using observable price and quantity data for the two periods. We know 
from section 2 that 
 
(22) Pt*Qt* = pt*×qt* ;                                                                                                     t = 1,2.  
 
Now make the normalization P1* = 1. Using this normalization and equations (21) and (22), the 
aggregate price and quantity levels for the two periods can be defined in terms of observable data 
as follows: 
 
(23) P1* º 1; Q1* º p1*×q1*; Q2* º Q1*QF(p1*,p2*,q1*,q2*); P2* º p2*×q2*/Q2*. 
 
The above results can be combined with the 3 product model that was described in the previous 
section: relabel the above aggregate data as a composite product 1 so that the new product 1 that 
corresponds to the first product in section 3 has prices and quantities defined as pt1 º Pt* and qt1 º 
Qt* for t = 1,2. Products 2 and 3 are a disappearing product and a new product respectively as in 
section 3 above. The aggregate price levels for the two periods (which use all N+2 products) are 

 
30 Thus A = AT and A is assumed to have one positive eigenvalue with a corresponding strictly positive 
eigenvector and N-1 negative or zero eigenvalues. This functional form was introduced into the economics 
literature by Konüs and Byushgens (1926), who showed its connection to the Fisher (1922) ideal index. 
This explains why f(q*) is labeled as fKBF(q*). For further discussion of the regularity conditions on fKBF(q*), 
see Diewert (1976) and Diewert and Hill (2010) or section 5 of Chapter 5.    
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P1 and P2 and the new an parameters are defined by the following counterparts to equations (14) 
above: 
 
(24) P1 = 1; P2 = P2*/P1* = PF(p1*,p2*,q1*,q2*); a1 = 1; a2 = p12; a3 = p23/(P2*/P1*) 
    
where P2*/P1* º [v2*/v1*]/[Q2*/Q1*] º PF(p1*,p2*,q1*,q2*) is the Fisher (1922) ideal price index that 
compares the prices of the N products that are present in both periods, p1*, p2*, for the two periods 
under consideration. The imputed prices for the missing products, p13

* and p22
*, are obtained by 

using equations (15) for our present model: 
 
(25) p13

* º p23/PF(p1*,p2*,q1*,q2*) ; p22
* º PF(p1*,p2*,q1*,q2*)p12. 

 
Comparing (24) and (25) with the corresponding equations (14) and (15) for the 3 product model, 
it can be seen that the price ratio for product 1 that was present in both periods, p21/p11, is replaced 
by the Fisher index PF(p1*,p2*,q1*,q2*) which is now defined over the set of products that are 
present in both periods. The type of inflation adjusted carry backward price p13

* and the inflation 
adjusted carry forward price p22

* defined by (25) are widely used by statistical agencies to 
estimate missing prices but agencies usually use either the Lowe, Laspeyres or Paasche index in 
place of the Fisher price index.31  
 
The aggregator function that is consistent with the new model with N continuing products, one 
disappearing product and one new product is defined as follows: 
 
(26) Q(q1

*,...,qN
*,q2,q3) º a1fKBF(q*) + a2q2 + a3q3 

 
where fKBF(q*) is the KBF aggregator function defined by (17) and a1 is set equal to 1.32 Note that 
the model defined by (26) is restrictive from the economic perspective because the additive nature 
of definition (26) implies that the composite first commodity is perfectly substitutable with the 
new and disappearing commodities (which are also perfect substitutes for each other after quality 
adjustment). However, if the products under consideration are highly substitutable for each other, 
the implicit assumption of perfect substitutes for missing products will be acceptable. Moreover, 
the advantage of this form of quality adjustment is that it is relatively easy to explain to the public 
and it is fairly straightforward to implement.     
 
The restriction that there is only one new product and one disappearing product is readily relaxed. 
The overall price index will continue to be PF(p1*,p2*,q1*,q2*) and counterparts to equations (25) 
can be used to generate imputed prices for the missing products. To summarize how the many 
new products and many disappearing products model works, let V0 and V1 be the aggregate value 
of all transactions in periods 0 and 1 respectively. Then the aggregate price levels generated by 
the above model of quality adjustment are given by P0 º 1 and P1 º PF(p1*,p2*,q1*,q2*), which is 
equal to the Fisher index defined over all continuing products. The corresponding aggregate 
quantity levels for periods 0 and 1 are set equal to Q0 º V0 and Q1 º V1/P1 = V1/PF(p1*,p2*,q1*,q2*). 
This is a very simple model to implement.   
 

 
31 Note that the aggregate price index that is generated by this model is PF(p1*,p2*,q1*,q2*) which does not 
use the unmatched prices for the two periods. 
32 It is not necessary to use the KBF aggregator function in the above model; any aggregator function that 
has an exact index number associated with it will work. See Diewert (1976) for examples of exact index 
number formulae.  
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We turn now to applications of the basic framework explained in section 2 where conditions (10) 
only hold approximately rather than exactly. 
 
5. Weighted Time Product Dummy Regressions 
 
In this section, we consider a special case of the model of economic behavior explained in section 
2 above where there are N products in the aggregate and T periods. Let pt º [pt1,...,ptN] and qt º 
[qt1,...,qtN] denote the price and quantity vectors for time periods t = 1,...,T. Initially, it is assumed 
that there are no missing prices or quantities so that all N times T prices and quantities are 
positive. We assume that the quantity aggregator function f(q) is the following linear function: 
 
(27) f(q) = f(q1,q2,...,qN) º Sn=1

N anqn = a×q 
 
where the an are positive parameters, which can be interpreted as quality adjustment factors. 
Under the assumption of maximizing behavior on the part of purchasers of the N commodities, 
assumption (27) applied to equations (10) implies that the following NT equations should hold 
exactly: 
 
(28) ptn = ptan ;                                                                                                  n = 1,...,N; t = 1,...,T 
 
where we have redefined the period t price levels Pt in equations (10) as the parameters pt for t = 
1,...,T.  
 
Note that equations (28) form the basis for the time dummy hedonic regression model which is 
due to Court (1939).33 It can be seen that these equations are a special case of the general model 
of consumer behavior that was explained in section 2 above.  
 
At this point, it is necessary to point out that our consumer theory derivation of equations (28) is 
not accepted by all economists. Rosen (1974), Triplett (1987) (2004) and Pakes (2001)34 have 
argued for a more general approach to the derivation of hedonic regression models that is based 
on supply conditions as well as on demand conditions. The present approach is obviously based 
on only consumer (or purchaser) preferences. This consumer oriented approach was endorsed by 
Griliches (1971; 14-15), Muellbauer (1974; 988) and Diewert (2003a) (2003b).35 Of course, the 

 
33  This was Court’s (1939; 109-111) hedonic suggestion number two. He transformed the underlying 
equations (28) by taking logarithms of both sides of these equations (which will be done below). He chose 
to transform the prices by the log transformation because the resulting regression model fit his data on 
automobiles better. Diewert (2003b) also recommended the log transformation on the grounds that 
multiplicative errors were more plausible than additive errors. 
34 “The derivatives of a hedonic price function should not be interpreted as either willingness to pay 
derivatives or cost derivatives; rather they are formed from a complex equilibrium process.” Ariel Pakes 
(2001; 14). 
35 Diewert (2003b; 97) justified the consumer demand approach as follows: “After all, the purpose of the 
hedonic exercise is to find how demanders (and not suppliers) of the product value alternative models in a 
given period. Thus for the present purpose, it is the preferences of consumers that should be decisive, and 
not the technology and market power of producers. The situation is similar to ordinary general equilibrium 
theory where an equilibrium price and quantity for each commodity is determined by the interaction of 
consumer preferences and producer’s technology sets and market power. However, there is a big branch of 
applied econometrics that ignores this complex interaction and simply uses information on the prices that 
consumers face, the quantities that they demand and perhaps demographic information in order to estimate 
systems of consumer demand functions. Then these estimated demand functions are used to form estimates 
of consumer utility functions and these functions are often used in applied welfare economics. What 
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functional form assumptions which justify the present consumer approach are quite restrictive 
but, nevertheless, it is useful to imbed hedonic regression models in a traditional consumer 
demand setting.     
 
Empirically, equations (28) are unlikely to hold exactly. Thus following Court (1939), we assume 
that the exact model defined by (28) holds only to some degree of approximation and so we could 
add error terms etn to the right hand sides of equations (28). The unknown parameters, p º 
[p1,...,pT] and a º [a1,...,aN], could be estimated as solutions to the following (nonlinear) least 
squares minimization problem: 
 
(29) min a, p Sn=1

N St=1
T [ptn -ptan]2 . 

 
However, in section 13 of Chapter 7, we showed that the estimated price levels pt

* that solve the 
minimization problem (29) had unsatisfactory axiomatic properties. Thus we took logarithms of 
both sides of the exact equations (28) and added error terms to the resulting equations. This led to 
the following least squares minimization problem:36 
 
(30) min r, b Sn=1

N St =1
T [lnptn - rt - bn]2 

 
where the new parameters rt and bn were defined as the logarithms of the pt and an; i.e., define : 
 
(31) rt º lnpt ;                                                                                                                     t = 1,...,T; 
(32) bn º lnan ;                                                                                                                   n = 1,...,N. 
  
However, the least squares minimization problem defined by (30) does not weight the log price 
terms [lnptn - rt - bn]2 by their economic importance and so in section 15 of Chapter 7, we 
considered the following weighted least squares minimization problem:37 

(33) min r, b Sn=1
N St =1

T stn[lnptn - rt - bn]2 

where stn is the expenditure share of product n in period t. The first order necessary conditions for 
r* º [r1

*,...,rT
*] and b* º [b1

*,...,bN
*] to solve (33) simplify to the following T equations (34) and 

N equations (35):38 

(34) rt
* = Sn=1

N stn[lnptn - bn
*] ;                                                                                          t = 1,...,T; 

 
producers are doing is entirely irrelevant to these exercises in applied econometrics with the exception of 
the prices that they are offering to sell at. In other words, we do not need information on producer marginal 
costs and markups in order to estimate consumer preferences: all we need are selling prices.” Footnote 25 
on page 82 of Diewert (2003b) explains how the present hedonic model can be derived from Diewert’s 
(2003a) consumer based model by strengthening the assumptions in the 2003a paper. 
36 This model is an adaptation of Summer’s (1973) country product dummy model to the time series 
context. See Aizcorbe, Corrado and Doms (2000) for an early application of this model in the time series 
context. 
37 Rao (1995) (2004) (2005; 574) was the first to consider this model using expenditure share weights; see 
also Diewert (2004). However, Balk (1980; 70) suggested this class of models much earlier using 
somewhat different weights. For the case of 2 periods, see Diewert (2004) (2005a) and de Haan (2004a). 
38 If information on expenditures or quantities is not available, then the weighted least squares problem is 
replaced by the unweighted least squares problem (30). The first order conditions for the simplified 
problem (30) are given by (34) and (35) where the shares stn are replaced by the numbers 1/N for all t and n. 
In this unweighted case, the price index defined by (37) collapses down to a Jevons index.  
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(35) bn
* = St=1

T stn[lnptn - rt
*]/(St=1

T stn) ;                                                                           n = 1,...,N. 

The solution to (34) and (35) is not unique: if r* º [r1
*,...,rT

*] and b* º [b1
*,...,bN

*] solve (34) and 
(35), then so do [r1

*+l,...,rT
*+l] and [b1

*-l,...,bN
*-l] for all l. Thus we can set r1

* = 0 in 
equations (35) and drop the first equation in (34) and use linear algebra to find a unique solution 
for the resulting equations.39 Once the solution is found, define the estimated price levels pt

* and 
quality adjustment factors an

* as follows: 

(36) pt
* º exp[rt

*] ; t = 1,...,T; an
* º exp[bn

*] ; n = 1,...,N.   

The price levels pt
* defined by (36) are called the Weighted Time Product Dummy price levels.  

Note that the resulting price index between periods t and t is equal to the following expression: 

(37) pt
*/pt* =  Õn=1

N exp[stnln(ptn/an
*)]/Õn=1

N exp[stnln(ptn/an
*)] ;                                   1 £ t, t £ T. 

If stn = stn for n = 1,...,N, then pt
*/pt* will equal a weighted geometric mean of the price ratios 

ptn/ptn where the weight for ptn/ptn is the common expenditure share stn = stn. Thus pt
*/pt* will not 

depend on the an
* in this case. 

 
Once the estimates for the pt and an have been computed, we have two methods for constructing 
period by period price and quantity levels, Pt and Qt for t = 1,...,T. The pt

* estimates can be used 
to form the aggregates using equations (38) or the an

* estimates can be used to form the 
aggregates using equations (39):40 
 
(38)  Pt*  º pt

* ;    Qt*  º pt×qt/pt
* ;                                                                                        t = 1,...,T; 

(39) Qt** º a*×qt ; Pt** º pt×qt/a*×qt ;                                                                                     t =1,...,T. 
 
Define the error terms etn º lnptn - lnpt

* - lnan
* for t = 1,...,T and n = 1,...,N. If all etn = 0, then Pt* 

will equal Pt** and Qt* will equal Qt** for t = 1,...,T.41 However, if the error terms are not all equal 
to zero, then the statistical agency will have to decide on pragmatic grounds which option to use 
to form period t price and quantity levels, (38) or (39).42 
 

 
39 Alternatively, one can set up the linear regression model defined by (stn)1/2lnptn = (stn)1/2rt + (stn)1/2bn + etn 
for t = 1,...,T and n = 1,...,N where we set r1 = 0 to avoid exact multicollinearity. Iterating between 
equations (34) and (35) will also generate a solution to these equations and the solution can be normalized 
so that r1 = 0.  
40 Note that the price level Pt** defined in (39) is a quality adjusted unit value index of the type studied by 
de Haan (2004b).  
41 If all etn = 0, then the unweighted (or more accurately, the equally weighted) least squares minimization 
problem defined by (30) will generate the same solution as is generated by the weighted least squares 
minimization problem defined by (33). This fact gives rise to the following rule of thumb: if the 
unweighted problem (30) fits the data very well, then it is not necessary to work with the more complicated 
weighted problem (33).   
42 In section 21 of Chapter 7, the following multilateral test was considered: Test 2: The fixed basket test for 
prices or the strong identity test for quantities: If qr = qt º q, then the price index for period t relative to 
period r is pMt(P,Q)/pMr(P,Q) = pt×q/pr×q. If the price and quantity aggregates are formed using equations 
(39) rather than (38), then this Test will be satisfied. However, the more usual approach is to define the 
period t price and quantity aggregates using equations (38). If this is done, then in general, the Weighted 
Time Product Dummy price level functions, pWTPDt(P,Q), will not satisfy the basket test, Test 2. 
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It is straightforward to generalize the weighted least squares minimization problem (33) to the 
case where there are missing prices and quantities. As in section 17 of Chapter 7, we assume that 
there are N products and T time periods but not all products are purchased (or sold) in all time 
periods. For each period t, define the set of products n that are present in period t as S(t) º {n: ptn 
> 0} for t = 1,2,...,T. It is assumed that these sets are not empty; i.e., at least one product is 
purchased in each period. For each product n, define the set of periods t where product n is 
present as S*(n) º {t: ptn > 0}. Again, assume that these sets are not empty; i.e., each product is 
sold in at least one time period. The generalization of (33) to the case of missing products is the 
following weighted least squares minimization problem:43 
 
(40) min r,b St=1

T SnÎS(t) stn[lnptn - rt - bn]2 = min r,b Sn=1
N StÎS*(n) stn[lnptn - rt - bn]2. 

 
Note that there are two equivalent ways of writing the least squares minimization problem; the 
first way uses the definition for the set of products n present in period t, S(t), while the second 
way uses the definition for the set of periods t where product n is present, S*(n). The first order 
necessary conditions for r1,...,rT and b1,...,bN to solve (40) are the following counterparts to (34) 
and (35):44 
 
(41) SnÎS(t) stn[rt

* + bn
*] = SnÎS(t) stnlnptn ;                                                                           t = 1,...,T; 

(42) StÎS*(n) stn[rt
* + bn

*] = StÎS*(n) stnlnptn ;                                                                        n = 1,...,N. 
 
As usual, the solution to (41) and (42) is not unique: if r* º [r1

*,...,rT
*] and b* º [b1

*,...,bN
*] solve 

(41) and (42), then so do [r1
*+l,...,rT

*+l] and [b1
*-l,...,bN

*-l] for all l. Thus we can set r1
* = 0 

in equations (42), drop the first equation in (41) and use linear algebra to find a unique solution 
for the resulting equations.45 
 
Define the estimated price levels pt

* and quality adjustment factors an
* by definitions (31) and 

(32). Substitute these definitions into equations (41) and (42). After some rearrangement, 
equations (41) and (42) become the following ones: 
 
(43) pt

*  = exp[SnÎS(t) stnln(ptn/an
*)] ;                                                                                   t = 1,...,T; 

(44) an
* = exp[StÎS*(n) stnln(ptn/pt

*)/StÎS*(n) stn] ;                                                                  n = 1,...,N. 
  
Once the estimates for the pt and an have been computed, we have the usual two methods for 
constructing period by period price and quantity levels, Pt and Qt for t = 1,...,T. The counterparts 
to definitions (38) are the following definitions: 
 
(45) Pt* º pt

* = exp[SnÎS(t) stnln(ptn/an
*)]  ;                                                                           t = 1,...,T; 

(46) Qt* º SnÎS(t) ptnqtn/Pt* ;                                                                                                   t = 1,...,T. 
  
Thus Pt* is a weighted geometric mean of the quality adjusted prices ptn/an

* that are present in 
period t where the weight for ptn/an

* is the corresponding period t expenditure (or sales) share for 
product n in period t, stn. The counterparts to definitions (39) are the following definitions : 

 
43 If only price information is available, then replace the stn in (40) by 1/N(t) where N(t) is the number of 
products that are observed in period t.  
44 The unweighted (i.e., equally weighted) counterpart least squares minimization problem to (40) sets all 
stn = 1 for nÎS(t). The resulting first order conditions are equations (41) and (42) with the positive stn 
replaced with a 1. 
45 The resulting system of T - 1 + N equations needs to be of full rank in order to obtain a unique solution. 
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(47) Qt** º SnÎS(t) an

*qtn ;                                                                                                     t = 1,...,T; 
(48) Pt** º SnÎS(t) ptnqtn/Qt**                                                                                                  t = 1,...,T; 
              = SnÎS(t) ptnqtn/SnÎS(t) an

*qtn                                                                                     using (47) 
              = SnÎS(t) ptnqtn/SnÎS(t) an

*(ptn)-1ptnqtn  
              = [SnÎS(t) stn(ptn/an

*)-1]-1  
              £ exp[SnÎS(t) stnln(ptn/an

*)]  
              = Pt* 
 
where the inequality follows from Schlömilch’s inequality46; i.e., a weighted harmonic mean of 
the quality adjusted prices ptn/an

* that are present in period t, Pt**, will always be less than or equal 
to the corresponding weighted geometric mean of the prices where both averages use the same 
share weights stn when forming the two weighted averages. The inequalities Pt** £  Pt* imply the 
inequalities Qt** ³ Qt* for t = 1,...,T. This algebra is due to de Haan (2004b) (2010) and de Haan 
and Krsinich (2018; 763). The model used by de Haan and Krsinich is a more general hedonic 
regression model which includes the time dummy model used in the present section as a special 
case. Thus their algebra can be applied to all of the subsequent hedonic regression models in the 
following two sections that use time dummies, share weights and log prices. 
 
If the estimated errors etn

* º lnptn - rt
* - bn

* that implicitly appear in the weighted least squares 
minimization problem turn out to equal 0, then the underlying model, ptn = ptan for t = 1,...,T, 
nÎS(t), holds without error and thus provides a good approximation to reality. Moreover, under 
these conditions, Pt* will equal Pt** for all t. If the fit of the model is not good, then it may be 
necessary to look at other models such as those to be considered in subsequent sections.  
 
The solution to the weighted least squares regression problem defined by (40) can be used to 
generate imputed prices for the missing products. Thus if product n in period t is missing, define 
ptn º pt

*an
*. The corresponding missing quantity is defined as qtn º 0. Some statistical agencies 

use hedonic regression models to generate imputed prices for missing prices and then use these 
imputed prices in their chosen index number formula. This imputation procedure is an alternative 
to the inflation adjusted carry forward price procedure explained in sections 3 and 4. From the 
viewpoint of the economic approach to index number theory, the section 4 procedure seems to be 
preferable since the Fisher index used in section 4 is a fully flexible functional form whereas the 
preferences that are exact for the Weighted Time Product Dummy model must be either linear in 
quantities or be Cobb Douglas (in which case the expenditure shares are constant over time and 
there will be no missing products). However, as indicated above, if the error terms in (40) are 
small, the missing product prices generated by the solution to (40) can be used with some 
confidence.   
 
The axiomatic properties of the price level functions pt

* generated by the solution to (40) were 
studied in section 21 of Chapter 7 and will be noted in the following section. One unsatisfactory 
property of the WTPD price levels pt

* is the following one:  a product that is available in only one 
period out of the T periods has no influence on the aggregate price levels pt

*. This means that the 
price of a new product that appears in period T has no influence on the price levels. The hedonic 
regression models in the next section that make use of information on the characteristics of the 
products do not have this unsatisfactory property of the weighted time dummy hedonic regression 
models studied in this section. 
        

 
46 See Hardy, Littlewood and Pólya (1934; 26). 
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6. The Time Dummy Hedonic Regression Model with Characteristics Information 
 
In this section, it is again assumed that there are N products that are available over a window of T 
periods. As in the previous sections, we again assume that the quantity aggregator function for the 
N products is the linear function, f(q) º a×q = Sn=1

N anqn where qn is the quantity of product n 
purchased or sold in the period under consideration and an is the quality adjustment factor for 
product n. What is new is the assumption that the quality adjustment factors are functions of a 
vector of K characteristics of the products. Thus it is assumed that product n has the vector of 
characteristics zn º [zn1,zn2,...,znK] for n = 1,...,N. We assume that this information on the 
characteristics of each product has been collected.47 The new assumption in this section is that the 
quality adjustment factors an are functions of the vector of characteristics zn for each product and 
the same function, g(z) can be used for each quality adjustment factor; i.e., we have the following 
assumptions: 
 
(49) an º g(zn) = g(zn1,zn2,...,znK) ;                                                                                     n = 1,...,N. 
 
Thus each product n has its own unique mix of characteristics zn but the same function g can be 
used to determine the relative utility to purchasers of the products.48 Define the period t quantity 
vector as qt = [qt1,...,qtN] for t = 1,...,T. If product n is missing in period t, then define qtn º 0. 
Using the above assumptions, the aggregate quantity level Qt for period t is defined as: 
 
(50) Qt º f(qt) º Sn=1

N anqtn = Sn=1
N g(zn)qtn ;                                                                      t = 1,...,T. 

 
Using our assumption of (exact) utility maximizing behavior with the linear utility function 
defined by (50), equations (10) become the following equations: 
 
(51) ptn = ptg(zn) ;                                                                                                   t = 1,...,T; nÎS(t). 
 
The assumption of approximate utility maximizing behavior is more realistic, so error terms need 
to be appended to equations (51). We also need to choose a functional form for the quality 
adjustment function or hedonic valuation function g(z). Consider the following functional form 
for the hedonic valuation function: 
 
(52) g(z) = g(z1,...,zK) º . 
 
Define the logarithms of the quality adjustment factors an as follows: 
 
(53) bn º lnan = lng(zn) = g0 + Sk=1

K gklnznk ;                                                                      n = 1,...,N 
 
where we have used assumptions (50) and (53). Now take logarithms of both sides of equations 
(51) and add error terms etn to the resulting equations. Using equations (53), we obtain the 
following system of estimating equations:49 

 
47 Basically, we want to collect information on the most important price determining characteristics of each 
product; see Triplett (2004) and Aizcorbe (2014) for many examples of this type of hedonic regression and 
references to the applied literature on this topic.   
48 In this section, we require that each of the N products possess a positive amount of each characteristic; 
i.e., we require that zn >> 0K for n = 1,...,N. This assumption will be relaxed in the following section.  
49  If both sides of equation tn in equations (54) are differentiated with respect to lnznk, we find that 
¶lnptn/¶lnznk = gk for nÎS(t). Thus gk is the percentage change in the price of a product with respect to a one 
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(54) lnptn = rt + g0 + Sk=1

K gklnznk + etn ;                                                                  t = 1,...,T; nÎS(t) 
   
where as usual, we have defined rt as lnpt for t = 1,...,T. Equations (54) are the equations which 
characterize the classic log linear time dummy hedonic regression model. 50  Note that our 
derivation of this model rests on the assumption of approximate utility maximizing behavior on 
the part of purchasers of the N products. Note also that our underlying economic model, which 
sets the error terms equal to zero, assumes that the N products are perfect substitutes once they 
have been quality adjusted, where the logarithms of the quality adjustment factors are defined by 
(53).51 
 
Estimates for r º [r1,...,rT] and g º [g0,g1,...,gK] can be obtained by minimizing the sum of  the 
squared errors etn which appear in equations (54). This leads to the following least squares 
minimization problem: 
 
(55) min r, g St=1

T SnÎS(t) [lnptn - rt - g0 - Sk=1
K gklnznk]2. 

 
A solution r, g to the minimization problem (55) will satisfy the following first order conditions: 
 
(56) SnÎS(t) [lnptn - rt - g0 - Sk=1

K gklnznk] = 0 ;                                                                  t = 1,...,T; 
(57) St=1

T SnÎS(t) [lnptn - rt - g0 - Sk=1
K gklnznk] = 0 ; 

(58) St=1
T SnÎS(t) [lnptn - rt - g0 - Sk=1

K gklnznk]lnznk = 0 ;                                                  k = 1,...,K. 
 
Equations (56)-(58) are T+1+K equations in the T+1+K unknown parameters in the vectors r and 
g. However, solutions to these equations are not unique; if rt for t = 1,...,T and gk for k = 0,1,...,K 
is a solution to (56)-(58), then rt + l for t = 1,...,T, g0 - l and gk for k = 1,...,K is also a solution 
for any number l. Thus a normalization on these parameters is required for a unique solution to 
(56)-(58).52 Choose the normalization r1

* = 0 which is equivalent to p1
* = 1. Thus set r1

* = 0 in 
equations (56)-(58), drop the first equation in equations (56) and solve the remaining T+K 
equations for r2

*,..., rT
* and g0

*, g1
*,..., gK

*.53 Once these parameters have been determined, the 
estimated bn

* º lnan
* can be defined as follows using definitions (53):  

 
(59) bn

* º lnan
* = lng(zn) = g0

* + Sk=1
K gk

*lnznk ;                                                                n = 1,...,N. 
 
Using equations (56) evaluated at r* and g* and definitions (59), we see that lnpt

* º rt
* is equal to 

the following expression: 
 

percent increase in the amount of characteristic k in a product. In general, this (constant) elasticity will be 
positive; i.e., a small increase in the amount of characteristic k that is present in a generic product will 
increase the price of the product.  
50 This model was first introduced by Court (1939) as his hedonic suggestion number 2. It was popularized 
by Griliches (1971; 7) and others. See Triplett (2004) and Aizcorbe (2014) for hundreds of references to the 
literature on the use of this model.  
51 Thus smaller in magnitude errors etn in the hedonic regression imply that the underlying economic model 
provides a closer approximation to actual behavior; i.e., a higher R2 for the linear regression model defined 
by (54) means that the underlying economic model provides a closer approximation to actual behavior.  
52 We also need the modified equations (56)-(58) to satisfy a full rank condition so that the matrix of 
coefficients associated with these equations can be inverted. Thus in particular, K, the number of 
characteristics, cannot be too big relative to N, the number of products.  
53 Alternatively, set r1 = 0 in equations (54) and run a simple linear regression to obtain estimates for the 
remaining parameters.  
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(60) lnpt

* = [1/N(t)] SnÎS(t) ln(ptn/an
*) ;                                                                                t = 1,...,T 

 
where an

* º exp[bn
*] for n = 1,...,N and where N(t) is equal to the number of products that are 

available in period t. Thus the estimated period t price level, pt
*, is an equally weighted geometric 

average of the quality adjusted prices ptn/an
* for the products that are present in period t.54 Once 

the pt
* have been calculated, the price index between periods t and t is defined as pt

*/pt* for 1 £ t, 
t £ T. If quantity data are available, then we have the usual two methods for constructing period 
by period price and quantity levels, Pt and Qt for t = 1,...,T; see (45)-(48) above. 
 
It is useful to compare the present time dummy hedonic regression that uses characteristics 
information with the time dummy product regression in the previous section where the only 
characteristic of each product was the product itself; i.e., recall the least squares minimization 
problem defined by (30). It seems that this earlier model is more general than the present model. 
To see this, define bn

* by definitions (59) for n = 1,...,N. Substitute these bn
* into the objective 

function for the minimization problem defined by (30) in section 5. Thus these bn
* are feasible bn 

that could be inserted into (30) but they may not be optimal; i.e., in general, we can expect the 
time dummy product least squares minimization problem defined by (30) to deliver a lower sum 
of squared residuals than the solution to (55) delivers. Thus we might ask at this point why 
consider the least squares problem (55) when, in general, the least squares problem (30) will 
deliver a better outcome in terms of fitting the data? The problem with (30) is that there may be 
no unique solution to the least squares minimization problem (even after setting r1 = 0) if product 
turnover is rapid; i.e., if there are very few matched models in the window of observations, then 
the regression associated with (30) may not have enough degrees of freedom to provide a solution 
to the first order condition equations that are associated with this model. An extreme case where 
there is no unique solution to (30) is the case where every product is a new one which appears in 
only one period.55 In this case, there are T + N - 1 unknown rt and bn parameters (after making 
one normalization) and only T observed prices. Thus the use of hedonic regressions with 
characteristics information is particularly useful in situations where there is rapid product 
turnover and there are relatively few matched models.  
 
The price levels pt

* defined by (60) are not satisfactory for the following reason: suppose periods 
t and t have exactly the same set of products that are available for those two periods. Then the 
price index between those two periods is equal to the following expression: 
 
(61) pt

*/pt* = ÕnÎS(t) (ptn/ptn)1/N(t). 
 
Thus the price index between the two periods is equal to a simple (equally weighted) geometric 
average of the price ratios ptn/ptn for the products that are present in both periods; i.e., the 
economic importance of the products is not taken into account.56     

 
54 An equivalent result was derived in Triplett and McDonald (1977; 150). 
55 Housing is an example of such a unique product. Every dwelling unit is uniquely determined by its 
location and over time, the structure associated with the housing unit depreciates in value with age (or it 
may appreciate in value due to renovations and improvements). Thus hedonic regressions with housing 
characteristics information must be used in order to obtain useful price indexes for housing. For 
applications of hedonic regressions to property prices, see Eurostat (2013), Diewert, Haan and Hendricks 
(2015), Hill (2013), Diewert and Shimizu (2015) (2016) (2020), Diewert, Huang and Burnett-Issacs (2017) 
and Silver (2018). 
56 As in section 5, we note that if the estimated squared residuals for this model are small, then the 
estimated pt* defined by (60) will be satisfactory since in this case, pt » pt*a* so that prices vary 
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In the previous section, we noted that weighting prices by their economic importance was 
generally recommended (but not necessary if the fit of the corresponding unweighted hedonic 
regression was good). The same conclusion applies in the present context. Thus if quantity 
information is available (in addition to price and product characteristic information), then it is 
preferable to generate r and g estimates by solving the following weighted least squares 
minimization problem:57 
 
(62) min r, g St=1

T SnÎS(t) stn[lnptn - rt - g0 - Sk=1
K gklnznk]2 

 
where the expenditure or sales shares stn are defined as stn º ptnqtn/SiÎS(t) ptiqti for t = 1,...,T and 
nÎS(t). A solution r, g to the minimization problem (62) will satisfy the following first order 
conditions: 
 
(63) SnÎS(t) stn[lnptn - rt - g0 - Sk=1

K gklnznk] = 0 ;                                                               t = 1,...,T; 
(64) St=1

T SnÎS(t) stn[lnptn - rt - g0 - Sk=1
K gklnznk] = 0 ; 

(65) St=1
T SnÎS(t) stn[lnptn - rt - g0 - Sk=1

K gklnznk]lnznk = 0 ;                                              k = 1,...,K. 
 
Equations (63)-(65) are T+1+K equations in the T+1+K unknown parameters in the vectors r and 
g. However, solutions to these equations are not unique; if rt for t = 1,...,T and gk for k = 0,1,...,K 
is a solution to (63)-(65), then rt + l for t = 1,...,T, g0 - l and gk for k = 1,...,K is also a solution 
for any number l. Thus a normalization on these parameters is required for a unique solution to 
(63)-(65).58 Choose the normalization r1

* = 0 which is equivalent to p1
* = 1. Thus set r1

* = 0 in 
equations (63)-(65), drop the first equation in equations (63) and solve the remaining T+K 
equations for r2

*,..., rT
* and g0

*, g1
*,..., gK

*. Once these parameters have been determined, the 
estimated bn

* can be defined as bn
* º g0

* + Sk=1
K gk

*lnznk for n = 1,...,N. Once the bn
* have been 

defined, the corresponding quality adjustment factors are defined as an
* º exp[bn

*] > 0 for n = 
1,...,N.  
   
Using equations (63) evaluated at r* and g*, we see that pt

* º exp[rt
*] is equal to the following 

expression:59 
 
(66) pt

* = exp[SnÎS(t) stnln(ptn/an
*)] ;                                                                                     t = 1,...,T 

 
with p1

* º 1. Thus the period t estimated price level, pt
*, is an expenditure share weighted 

geometric mean of the quality adjusted period t prices, ptn/an
*, for the products n that are present 

in period t. Once the pt
* have been calculated, the price index between periods t and t is defined 

as pt
*/pt* for 1 £ t, t £ T. Note that (62) depends on the availability of expenditure share 

information. If, in addition, quantity data are available, then we have the usual two methods for 

 
(approximately) proportionally over time and thus Õn=1N (ptn/an*)1/N » pt* for t = 1,...,T. Any missing price 
for period t and product n is defined as ptn º pt*an* in the products Õn=1N (ptn/an*)1/N. The idea of using the 
R2 or the fit of a hedonic regression model to judge its adequacy can be traced back to Silver (2010; S220) 
(2011; 561). He implicitly suggested that hedonic regressions should only be used when the products under 
consideration are highly substitutable and hence when the R2 for the relevant hedonic regression is high.  
57 Diewert (2003b) (2005b) considered this model for the bilateral case where T = 2. Silver and Heravi 
(2005) and de Haan and Krsinich (2014) (2018) considered the general model. 
58 As usual, we need a full rank condition to be satisfied so that the matrix of coefficients in the system of 
linear equations involving r and g can be inverted. 
59 These equations are equivalent to equations (8) in de Haan and Krsinich (2018; 760).  
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constructing period by period price and quantity levels, Pt and Qt for t = 1,...,T; see (45)-(48) 
above. 
 
The new price indexes are a clear improvement over their unweighted counterparts defined earlier 
by equations (60). In the present situation, using equations (66), we see that pt

*/pt* is a share 
weighted geometric mean of the quality adjusted period t prices, ptn/an

*, for the products n that 
are present in period t with weights stn in the numerator divided by the share weighted geometric 
mean of the quality adjusted period t prices, ptn/an

*, for the products n that are present in period t 
with weights stn in the denominator. Thus economic importance of each product counts in the 
present model whereas it did not in the corresponding unweighted model. 
 
Note that equations (66) are the same as equations (43) in the previous section. The new quality 
adjustment parameters an

* are defined by the following counterparts to equations (44): 
 
(67) an

* º exp[g0
* + Sk=1

K gk
*lnznk] ;                                                                                   n = 1,...,N.    

 
Now use definitions (45)-(48) to define Pt*, Qt*, Pt** and Qt** where the new pt

* and  an
* are 

defined by (66) and (67). We can again deduce the inequality in (48) using these new definitions; 
i.e., we get the following inequalities due to de Haan (2004b) (2010) and de Haan and Krsinich 
(2018; 763): 
 
(68) Pt** º SnÎS(t) ptnqtn/SnÎS(t) an

*qtn £ pt
* º Pt* ;                                                                t = 1,...,T.    

 
As in the previous section, Pt* is a weighted geometric mean of the quality adjusted prices ptn/an

* 

that are present in period t where the weight for ptn/an
* is the period t expenditure (or sales) share 

for product n in period t, stn, and Pt** is the corresponding weighted harmonic mean of the quality 
adjusted prices ptn/an

* using the same weights.   
 
The solution to the weighted least squares minimization problem defined by (62) along with the 
normalization r1 = 0 can also be obtained by running the following linear regression with r1 set 
equal to zero : 
 
(69) (stn)1/2lnptn = (stn)1/2rt + (stn)1/2g0 + (stn)1/2Sk=1

K gklnznk + etn ;                          t = 1,...,T; nÎS(t). 
 
The solution to the weighted least squares regression problem defined by (62) can be used to 
generate imputed prices for the missing products. Thus if product n in period t is missing, define 
ptn º pt

*an
*. The corresponding missing quantity is defined as qtn º 0. As was mentioned in the 

previous section, some statistical agencies use hedonic regression models to generate imputed 
prices for missing prices and then use these imputed prices in their chosen index number formula. 
If the weighted sum of squared errors, St=1

T SnÎS(t) stn[lnptn - rt - g0 - Sk=1
K gklnznk]2, is small or 

equivalently if the R2 for the linear regression defined by (69) is large, then using the imputed 
prices generated by this model to fill in for missing prices is justified. 
 
Using the solution functions for the price levels pt

* given by (66) plus the definition of the 
weighted least squares minimization problem (62), it can be shown that pt

* regarded as a function 
of P º [p1,...,pT], Q º [q1,...,qT] and Z º [z1,...,zK] satisfies the following eight tests:60 
 

 
60  See Diewert (2004) (2005b) for materials on the test approach applied to time product hedonic 
regressions with and without characteristics information. 
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Test 1: The weak identity test for prices. If pt = pt and qt = qt, then pt
*(P,Q,Z) = pt*(P,Q,Z).  

 
Test 2: The weak fixed basket test for prices or the weak identity test for quantities. If qt = qt º q 
and pt = pt then the price index for period t relative to period t is pt

*(P,Q,Z)/pt*(P,Q,Z) = pt×q/pt×q.  
 
Test 3: Linear homogeneity test for prices. Let l > 0. Then pt

*(p1,...,pt-1,lpt,pt+1,...,pT,Q,Z) = 
lpt

*(P,Q,Z) for t = 1,...,T. Thus if all prices in period t are multiplied by a common scalar factor 
l, then the price level of period t relative to the price level of any other period r will increase by 
the multiplicative factor l. 61 
 
Test 4: Homogeneity test for quantities. Let l > 0. Then pt

*(P,q1,...,qt-1,lqt,qt+1,...,qT,Z) = 
pt

*(P,Q,Z) for t = 1,...,T. Thus if all quantities in period t are multiplied by a common scalar factor 
l, then the price level of any period r remains unchanged. 
 
Test 5: Invariance to changes in the units of measurement of the characteristics. The price level 
functions pt

*(P,Q,Z) for t = 1,...,T remain unchanged if the K characteristics are measured in 
different units. 
 
Test 6: Invariance to changes in the ordering of the commodities. The price level functions 
pt

*(P,Q,Z) for t = 1,...,T remain unchanged if the ordering of the N commodities is changed. 
 
Test 7: Invariance to changes in the ordering of the time periods. If the T time periods are 
reordered by some permutation of the first T integers, then the new price level functions are equal 
to the same permutation of the initial price level functions.  
 
Test 8: Responsiveness to Isolated Products Test: If a product is available in only one period in 
the window of T periods, this test asks that the price level functions pt

*(P,Q,Z) respond to 
changes in the prices of these isolated products; i.e., the test asks that the price level functions are 
not constant as the prices for isolated products change. This test is a variation of Test 5 suggested 
by Zhang, Johansen and Nygaard (2019), who suggested a bilateral version of this test.62 
 
The weighted hedonic regression price levels using characteristics information, the pt

*(P,Q.Z), 
that solve (62), do not satisfy the following Tests 9-12. 
 
Test 9: The strong identity test for prices. If pt = pt, then pt*(P,Q,Z) = pt

*(P,Q,Z).  
 
Thus Test 9 is similar to Test 1 but Test 9 asks that the price levels for two periods be equal if the 
price vectors for the two periods are identical  even if the quantity vectors for the two periods are 
different whereas Test 1 asks that the price levels for two periods be equal if the price and 
quantity vectors for the two periods are identical. 
 
Test 10: The strong  fixed basket test for prices or the strong identity test for quantities. If qt = qt 
º q, then the price index for period t relative to period t is pt

*(P,Q,Z)/pt*(P,Q,Z) = pt×q/pt×q.63 
 

61 Furthermore, the price levels pt*(P,Q,Z) for t ¹ t are homogeneous of degree 0 in the components 
of pt; i.e., we have pt*(p1,...,pt-1,lpt,pt+1,...,pT,Q,Z) = pt*(P,Q,Z) for all t ¹ t.    
62 This test was explicitly suggested by Claude Lamboray.  
63 The price levels pt

*(P,Q,Z) that are directly defined from the solution to (62) using equations (66) will 
not in general satisfy Test 10. However, if we use the solution to (62) to define the an* and then use 
definitions (47) and (48) to define the period t price and quantity levels, Pt** and Qt**, then the Pt** will 
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Test 11: Invariance to changes in the units of measurement for the quantities. The price level 
functions pt

*(P,Q,Z) for t = 1,...,T remain unchanged if the N commodities are measured in 
different units of measurement.     
 
Test 12: Responsiveness to Changes in Imputed Prices for Missing Products Test: If there are 
missing products in one or more periods, then one can define imputed prices for these missing 
products. This test asks that the price level functions pt*(P,Q,Z) respond to changes in these 
imputed prices; i.e., the test asks that the price level functions are not constant as the imputed 
prices change. This test allows a price level to decline if new products enter the marketplace 
during the period and for consumer utility to increase as the number of available products 
increases. If this test is not satisfied, then the price levels will be subject to new products bias. 
This is an important source of bias in a dynamic product universe. 
 
Many multilateral index number methods do not satisfy the strong identity Tests 9 and 10 and the 
responsiveness Test 12, so the failure of the hedonic regression price levels to pass these tests is 
not catastrophic. At first sight, the failure of the pt*(P,Q,Z) to pass the invariance to changes in 
the units of measurement for the N quantities qn is more worrisome. The failure of this test 
suggests that the use of hedonic regressions to adjust for quality changes should be restricted to 
classes of products that are similar and have a dominant characteristic that all of the products 
possess. The quantity qn of each product should be measured in units of this dominant 
characteristic. Thus if the product class is candy bars, the quantity of each product should be 
measured by its weight. If the product class is a beverage, each product’s quantity should be 
measured by its volume. If this advice is followed, then the unit of measurement for all quantities 
in the aggregate will be the same. Thus if the units of measurement change, the change of units 
should affect all quantities in the same way. It can be shown that the hedonic regression price 
levels using characteristics information, pt*(P,Q,Z), satisfy the following test: 
 
Test 13: Restricted Change of Units Test. If the units of measurement for all products are changed 
by the same factor, the price levels pt

*(P,Q,Z) remain invariant; i.e., the price levels satisfy 
pt

*(d-1P,dQ,Z) = pt
*(P,Q,Z) for all scalars d > 0 for t = 1,...,T.64  

 
Thus the failure of the hedonic regression price levels to pass the unrestricted change of units test, 
Test 6, is not catastrophic because for closely related products, these price levels will pass the 
restricted change of units test, Test 13.         
 
Recall that the weighted time product dummy price levels defined in the previous section had the 
undesirable property that a product that is available in only one period out of the T periods had no 
influence on the aggregate price levels pt

*. This meant that the price of a new product that appears 
in period T had no influence on the resulting price levels. The weighted time dummy hedonic 
price levels pt

*(P,Q,Z) defined in this section no longer have this undesirable property since they 
satisfy Test 8 above. 
 
It is possible to apply the tests listed above to the weighted time dummy price levels defined in 
the previous section. However, in order to do this, the g(z) function defined by (52) needs to be 

 
satisfy Test 2. However, the present set of tests applies to the price levels pt

*(P,Q,Z) that are directly 
defined by the solution to (62).  
64 Notation: dQ = [dq1,dq2,..., dqT]; i.e., if the N by T matrix Q is multiplied by the scalar d, then all NT 
elements in the matrix Q are multiplied by this scalar.  
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replaced by the linear function g(z) º a×z where z is now an N dimensional vector of 
characteristics (instead of a K dimensional vector). Assume that there are N models and the 
characteristics vector for product n is zn º en for n = 1,...,N where en is the nth unit vector; i.e., en 
is an N dimensional vector which has a 1 in component n and zeros elsewhere. Thus in this case, 
the Z matrix is the N by N matrix Z º [z1,z2,...,zN] = IN where IN is the N by N identity matrix. 
With this new definition for g(z) and for the matrix Z, we have g(zn) = g(en) = a×en = an for n = 
1,...,N, which are equations (49). Equations (51) become ptn = ptg(zn) = ptan for t = 1,...,T and 
nÎS(t). From these equations, we can follow the steps in the previous section and the counterpart 
to the weighted least squares minimization problem (62) is (40), the final model in the previous 
section. Thus we can apply the above tests to the price levels that result from solving (40). We 
find that the weighted time dummy hedonic price levels without characteristics satisfies Tests 1-7, 
11 and 13; they fail Tests 8-10 and 12. Thus the test performance of both methods is identical 
except that the price levels from the weighted hedonic time product dummy model that result 
from solving (40) pass Test 11 (invariance to changes in the units of measurement for quantities) 
and fail Test 8 (responsiveness to isolated products test) and the weighted hedonic time product 
dummy model that uses characteristics information that result from solving (62) pass Test 8 and 
fail Test 11.65          
 
It is possible to derive some approximate equalities for the an

* that are counterparts to the exact 
equalities (44) for the an

* that were satisfied for the weighted time product dummy quality 
adjustment parameters for the model defined by (40) in the previous section. Recall that the 
estimated quality adjustment factors for the N products in the present model are the an

* defined 
by (67) for n = 1,...,N.  The logarithms of these estimated quality adjustment factors are bn

* º 
lnan

* = g0
* + Sk=1

K gk
*lnznk for n = 1,..,N. Once the r* º [r1

*,r2
*,...,rT

*] and g* º [g0
*,g1

*,...,gK
*] 

solution to (62) has been determined (with r1
* = 1), the sample residuals etn

* can be defined by 
equations (70) below:  
 
(70) etn

* º lnptn - rt
* - g0

* - Sk=1
K gk

*lnznk ;                                                             t = 1,...,T; nÎS(t) 
              = lnptn - rt

* - bn
*                                                                  

              = ln(ptn/pt
*) - bn

*                                                                                        since rt
* º lnpt

*. 
 
Rearranging equations (70), it can be seen that the bn

* satisfy the following equations: 
 
(71) bn

* = ln(ptn/pt
*) - etn

* ;                                                                                  n = 1,...,N; tÎS*(n). 
 
For each n, multiply both sides of (71) by the share stn for each tÎS*(n) and sum the resulting 
equations over all t that belong to the set S*(n). The following system of N equations is obtained:  
 
(72) StÎS*(n) stnbn

* = StÎS*(n) stn[ln(ptn/pt
*) - etn

*] ;                                                                 n = 1,...,N 
                             » StÎS*(n) stnln(ptn/pt

*) 
 

 
65 However, as indicated earlier, often statistical agencies have to choose the hedonic regression model with 
characteristics over the time product dummy model explained in the previous section due to frequent model 
changes or to the fact that some products are unique (like housing). In the case of unique products, the time 
dummy approach fails and the characteristics approach is the only viable approach.  
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where the approximate equalities in (72) will follow since the minimization problem defined by 
(62) will make the squared errors (etn

*)2 small within the constraints of the hedonic model. Thus 
we have the following approximation for the bn

*:66 
 
(73) bn

* » [StÎS*(n) stnln(ptn/pt
*)]/StÎS*(n) stn ;                                                                       n = 1,...,N. 

 
Thus the logarithm of the product n quality adjustment factor, bn

*, is approximately equal to a 
share weighted average of the logarithms of the inflation adjusted prices ptn/pt

* for product n over 
the periods t when this product was sold (or purchased) on the marketplace. Note that the 
averages on the right hand sides of the approximate equalities (73) are taken over the entire 
sample period.  
 
The next few paragraphs will be devoted to addressing a problem that was first posed by de Haan 
and Krsinich (2018; 760): are hedonic regression models consistent with the use of unit values to 
aggregate over narrowly defined products at the first stage of aggregation?   
 
Equations (70) and the definitions bn

* º lnan
* for n = 1,...,N can be used to establish the following 

equalities: 
 
(74) ptn = an

*pt
*

 exp[etn
*] ;                                                                                                   t = 1,...,T. 

 
Suppose that the underlying hedonic model holds exactly so that each error term etn

* is equal to 0. 
Finally, suppose that all of the products are perfect substitutes so that all of the quality adjustment 
factors an

* are equal. Thus the following equations hold: 
 
(75) a1

* = a2
* = ... = aN

*. 
 
Thus all of the estimated an

* will equal a1
* for n = 2,...,N. Since the etn

* = 0 by assumption, 
exp[etn

*] = 1 for t = 1,...,T; nÎS(t). Substitute these relationships into equations (74). Now 
multiple both sides of equation tn in equations (74) by qtn for t = 1,...,T; nÎS(t). We obtain the 
following system of equations after a certain amount of summation within each period: 
 
(76) SnÎS(t) ptnqtn = a1

*pt
* SnÎS(t) qtn ;                                                                                    t = 1,...,T. 

 
Now take ratios of equations (76) for t = 1 and a general t. After a bit of rearrangement, we obtain 
the following expression for the price index between periods 1 and t: 
 
(77) pt

*/p1
* = {SnÎS(t) ptnqtn/SnÎS(t) qtn}/{SnÎS(1) p1nq1n/SnÎS(1) q1n};                                       t = 1,...,T.                           

 
The right hand side of (77) for period t can be recognized as the unit value price index between 
periods 1 and t. 
 
The above algebra resolves the index number discontinuity problem recognized by de Haan and 
Krsinich (2018; 760). These authors noted that the weighted geometric mean representation for 
pt

* = exp[SnÎS(t) stnln(ptn/an
*)] (recall equations (66)) did not seem to collapse down to a unit value 

index if all of the estimated an
* were equal, which is disconcerting because if the products are 

perfect substitutes (without quality adjustment), then the appropriate index should collapse down 
 

66 These equations provide approximate counterparts to equations (44) which were exact for the weighted 
time product dummy model discussed in section 5 above.   
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to a unit value index (because each additional unit of any product gives the purchaser the same 
utility). However, if the products are perfect substitutes and markets are functioning properly, the 
price of every product in the group under consideration should be the same in each period. Under 
these conditions, the estimated an

* will all be equal and equations (74) will become ptn = a1
*pt

* 
and equations (77) will hold. Thus under these conditions, there is no discontinuity problem.          
  
As was noted above, once the estimated coefficients p* º [p1

*,...,pT
*] and a* º [a1

*,...,aN
*] have 

been determined, these estimates can be used to determine imputed prices for the missing 
observations; i.e., if product n in period t is missing, define ptn º pt

*an
*. The corresponding 

missing quantities and shares are defined as qtn º 0 and stn º 0. Using these imputed prices and 
quantities, we can form complete price, quantity and share vectors for all N products for each 
period t. Denote these vectors as pt, qt and st for t = 1,...,T. Using the fact that the share for a 
missing product is equal to zero, we can rewrite equations (66) as follows: 
 
(78) pt

* = Pn=1
N (ptn/an

*) ;                                                                                                t = 1,...,T. 
 
Define the sequence of hedonic price indexes, PH

t, as PH
t º pt

*/p1
* for t = 1,...,T.67 Using equations 

(66) and  bn
* º lnan

* for n = 1,...,N, we have the following expressions for the logarithms of the 
hedonic price indexes:  
  
(79) lnPH

t = Sn=1
N stn(lnptn - bn

*) - Sn=1
N s1n(lnp1n - bn

*) ;                                                   t = 1,...,T. 
 
It is now possible to compare the sequence of price indexes to the corresponding Törnqvist Theil 
fixed base indexes that make use of the imputed prices generated by the present model for the 
missing products. The logarithm of the fixed base Törnqvist Theil price index between periods 1 
and t, PT

t, is defined as follows:68 
 
(80) lnPT

t º Sn=1
N ½(stn + s1n)(lnptn - lnp1n)                                                                          t = 1,...,T 

                = Sn=1
N ½(stn + s1n)[(lnptn - bn

*) - (lnp1n - bn
*)]. 

 
Taking the difference between (79) and (80), we can derive the following expressions for t = 
1,2,...,T: 
 
(81) lnPH

t - lnPT
t = Sn=1

N ½(stn - s1n)(lnptn - bn
*) + Sn=1

N ½(stn - s1n)(lnp1n - bn
*). 

 
Since Sn=1

N (stn - s1n) = 0 for each t, the two sets of terms on the right hand side of equation t in 
(81) can be interpreted as normalizations of the covariances between st - s1 and lnpt - b* for the 
first set of terms and between st - s1 and lnp1 - b* for the second set of terms. If the products are 
highly substitutable with each other, then a low ptn will usually imply that lnptn is less than the 
average log price bn

* and it is also likely that stn is greater than s1n so that (stn - s1n)(lnptn - bn
*) is 

likely to be negative. Hence the covariance between st - s1 and lnpt - b* will tend to be negative. 
On the other hand, if p1n is unusually low, then lnp1n will be less than the average log price bn

* 
 

67 Recall that we set r1* = 0 when solving equations (63)-(65) and hence p1* = 1. This fact and the first 
equation in (66) implies that p1* = 1 =  exp[SnÎS(1) s1nln(p1n/an*)] = exp[Sn=1N s1nln(p1n/an*)] and thus PHt º 
pt*/p1* = pt* for t = 1,...,T. However, when we compare PHt to the corresponding fixed base Törnqvist index 
PTt, it proves to be more convenient to define PHt  as pt*/p1* for t = 1,...,T where p1* is defined by the first 
equation in (66).   
68 The imputed prices and shares defined above equations (78) are used to fill in any missing prices and 
shares in the Törnqvist formula.  

tns
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and it is likely that s1n is greater than stn so that (stn - s1n)(lnp1n - bn
*) is likely to be positive. 

Hence the covariance between st - s1 and lnp1 - b* will tend to be positive. Thus the first set of 
terms on the right hand side of (81) will tend to be negative while the second set will tend to be 
positive. If there are no divergent trends in log prices and sales shares, then it is likely that these 
two terms will largely offset each other and under these conditions, PH

t is likely to approximate 
PT

t reasonably well. However, with divergent trends and highly substitutable products, it is likely 
that the first set of negative terms will be larger in magnitude than the second set of terms and 
thus PH

t is likely to be below PT
t under these conditions. On the other hand, if there are missing 

products in period 1, then the second set of covariance terms can become very large and positive 
and outweigh the first set of generally negative terms.69 The bottom line is that PH

t and PT
t can 

diverge substantially. In such a case, it may be preferable to use the hedonic regression to simply 
fill in the missing prices and use a superlative index to generate price indexes rather than use the 
price levels pt

* generated by the hedonic time dummy regression as the price indexes.70        
 
The hedonic valuation function g(z) defined by (49) has a useful property: one can impose 
constant returns to scale in the characteristics( the property g(lz) = lg(z) for all l > 0) if the gk 
satisfy the restriction Sk=1

K gk = 1. However, if we want to apply equations (63)-(65) or equations 
(69) as estimating equations for the unknown parameters in g(z), we need positive amounts of all 
characteristics in all models so that lnznk is well defined; i.e., we need znk > 0 for all n = 1,...,N 
and k = 1,...,K. The alternative hedonic regression model to be considered at the beginning of the 
following section relaxes this positivity restriction. 
 
7. Alternative Hedonic Regression Models with Characteristics Information 
 
As noted in the previous section, the hedonic valuation function g(z) defined by (52) requires that 
positive amounts of all characteristics be present in all N models. It would be useful to have a 
hedonic regression model that could in principle deal with the introduction of new characteristics 
over the sample period. This can be done if we replace the g(z) defined by (52) by the following 
functional form for g(z): 
 
(82) g(z1,z2,...,zK) º exp[g0 + Sk=1

K gkzk]. 
 
Using this new hedonic valuation function and making the same assumptions (49)-(51) as were 
made in the previous section along with the new assumption (82), we obtain a new weighted least 
squares minimization problem that is a counterpart to (62). The new system of estimating 
equations which are counterparts to equations (69) are the following ones: 
 
(83) (stn)1/2lnptn = (stn)1/2[rt + g0 + Sk=1

K gkznk] + etn ;                                               t = 1,...,T; nÎS(t) 
 
where as usual, rt º lnpt for t = 1,...,T. We can find estimators for the unknown parameters in 
equations (83) by running the linear regression defined by (83) (with r1 set equal to zero) or by 
minimizing the following sum of weighted squared residuals etn with respect to the components of 
the parameter vectors r and g:71 
 
(84) min r, g St=1

T SnÎS(t) stn[lnptn - rt - g0 - Sk=1
K gkznk]2. 

 
69 See Diewert (2018; 39) for just such an example. 
70 However, if the fit in the hedonic regression is good, then prices are close to being proportional over time 
and the price levels generated by the hedonic regression will generate satisfactory results.  
71 This is precisely the model studied by de Haan and Krsinich (2018). The results we derive below are 
identical to their results. 
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A solution r, g to the minimization problem (84) will satisfy the first order conditions (63)-(65) in 
the previous section, except that znk replaces lnznk for all n and k. The rest of the analysis of the 
hedonic regression model defined by (84) follows along the same lines as the share weighted 
model (62) defined in the previous section. In particular, in order to obtain a unique solution to 
the modified equations (63)-(65), we impose the normalization r1 = 0 and drop the first equation 
in the modified equations (63).72 The new product n quality adjustment parameters bn

* and an
* are 

defined by equations (85) and the new sample residuals are defined by equations (86):   
 
(85) bn

* º lnan
* = lng(zn) = g0

* + Sk=1
K gk

*znk ;                                                       n = 1,...,N; 
(86) etn

* º lnptn - rt
* - g0

* - Sk=1
K gk

*znk ;                                                               t = 1,...,T; nÎS(t); 
             = lnptn - rt

* - bn
*. 

 
The new period t price levels, pt

*, are still defined by equations (66). The remaining equations 
(72)-(81) in section 6 apply to the hedonic regression model defined by (84). Once the pt

* have 
been calculated, the price index between periods t and t is defined as pt

*/pt* for 1 £ t, t £ T. 
 
As usual, we can use definitions (45)-(48) to define Pt*, Qt*, Pt** and Qt** where the new pt

* and  
an

* are used in these definitions. We can again deduce the de Haan inequalities Pt** £ Pt* for t = 
1,...,T. defined by (66) and (67). The axiomatic properties of the new price levels pt

*(P,Q,Z) are 
the same as the properties for the weighted time product dummy model that was defined by (62) 
in the previous section.    
 
The hedonic regression models defined by (84) and its equally weighted counterpart which set all 
stn = 1 were implemented by de Haan and Krsinich (2018) using monthly New Zealand data over 
3 years (so that T = 36) for the following 7 classes of electronic products: desktop computers, 
laptop computers, portable media players, DVD players, digital cameras, camcorders and 
televisions. For each product class, they had data on approximately 40 characteristics. The data 
were aggregated across outlets and basically covered the New Zealand market. New products 
entered each of the 7 markets at monthly rates that ranged from 24% to 29% and old products 
disappeared at rates that ranged from 23% to 29%. Thus there was a tremendous amount of 
product churn in each of the 7 categories. Once the weighted and unweighted regressions defined 
by (84) were run for each category, the alternative price levels, Pt* and Pt**, were computed for 
each of the 7 categories and compared.73 They found that Pt* was very close to Pt** for each 
category when the weighted regressions were used. This suggests that it may not matter that much 
which method for computing the Pt is used, since the direct hedonic regression price level 
estimates pt

* were always very close to the indirect estimates based on deflating period t values 
by SnÎS(t) an

*qtn. This is a very encouraging result. However, it was a different story for the 
unweighted hedonic regressions: they were much more volatile than their weighted counterparts 

 
72 As usual, we need a full rank condition to be satisfied so that the matrix of coefficients in the system of 
linear equations involving r and g can be inverted. 
73 The average unadjusted R2 for the 7 weighted models was 0.981. The corresponding R2 for the equally 
weighted models was 0.885. This suggests that the popular products were close substitutes with each other 
while the unpopular models were not as close substitutes. The fact that the R squares for the 7 classes of 
products were so high means that the underlying assumption of a linear aggregator function (after quality 
adjustment) is adequate to describe the data and thus it is not necessary to explore the alternative models 
for estimating reservation prices that will be explained in subsequent sections. Of course, the drawback to 
the hedonic regression models with characteristics is that it is necessary to collect information on 
characteristics whereas the reservation price models which will be explained in subsequent sections do not 
require information on characteristics.  



 30 

and the direct and indirect price levels that they generated were frequently noticeably different. 
Moreover the unweighted regressions generated a sequence of price levels that had substantially 
different trends than the corresponding trends for the weighted regressions. Our conclusion is that 
the results obtained by de Haan and Krsinich support the use of weighted hedonic regressions 
over their unweighted counterparts. 
 
The above results were for regressions that covered the entire sample period. Statistical agencies 
that produce consumer price indexes need to produce monthly indexes that do not revise the data 
for the previous months. In order to deal with these constraints, Ivancic, Diewert and Fox (2009) 
suggested the use of a rolling window time dummy regression approach with a window length of 
13 months (so that strongly seasonal commodities could play a role in the resulting indexes). De 
Haan and Krsinich (2018; 773) implemented this rolling window approach for their seven product 
categories with a window length of 13 consecutive months for each weighted hedonic regression. 
The month to month change in the estimated price levels (using the Pt** option) for the last two 
months in the new window was used to update the results of the previous regression. Thus in the 
end, they could compare this rolling window approach to the generation of a price level series for 
each of the 7 categories with the corresponding one big weighted regression approach. For three 
of the seven categories, they found that the rolling window series ended up well below the 
corresponding single regression series and for one category, the rolling window series ended up 
well above the corresponding single regression series. This is evidence of chain drift in these four 
rolling window series. For these four series, it may be best to lengthen the window length for the 
rolling window hedonic regressions. This will usually cure the chain drift problem.   
 
For our next hedonic model, we introduce a discrete characteristic category; i.e., each product n 
has a characteristic where there are M separate states for this characteristic. For example, the 
product may come in 3 distinct package sizes: small, medium and large. In this case, M = 3. In 
addition, there are K continuous price determining characteristics and each product n has varying 
amounts of these characteristics. As usual, denote the vector of continuous characteristics for 
product n by zn º [zn1,...,znK] for n = 1,...,N. If product n belongs to discrete category m, define the 
M dimensional vector xn for this product as xn º [xn1,...,xnM] = em where em is a unit vector with a 
1 in component m and zeros elsewhere. We assume that there is at least one product that belongs 
to each of the M discrete categories. We assume the existence of a hedonic product valuation 
function, g(zn,xn), that gives us the relative values for the N products where the logarithm of 
g(zn,xn) is defined as follows: 
 
(87) lng(zn,xn) º g0 + Sk=1

K gkznk + Sm=1
M dmxnm ;                                                               n = 1,...,N. 

 
As usual, the exact hedonic model for the prices is ptn = ptg(zn,xn) for t = 1,...,T and nÎS(t). Upon 
taking logarithms of both sides of these price equations, using rt º lnpt for t = 1,...,T and using 
definitions (87) for the N products in the sample, we obtain the following weighted hedonic 
regression model: 
 
(88) (stn)1/2 lnptn = (stn)1/2 [rt + g0 + Sk=1

K gkznk + Sm=1
M dmxnm] + etn ;                     t = 1,...,T; nÎS(t). 

 
Rather than running the above linear regression (after imposing the normalizations r1 = 0 and d1 
= 0), we could instead minimize the following weighted sum of squared residuals: 
 
(89) min r, g, d St=1

T SnÎS(t) stn[lnptn - rt - g0 - Sk=1
K gkznk - Sm=1

M dmxnm]2 
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where r º [r1,...,rT], g º [g0,g1,...,gK] and d º [d1,...,dM]. A solution r, g, d to the minimization 
problem (89) will satisfy the following first order conditions: 
 
(90) SnÎS(t) stn[lnptn - rt - g0 - Sk=1

K gkznk - Sm=1
M dmxnm] = 0 ;                                        t = 1,...,T; 

(91) St=1
T SnÎS(t) stn[lnptn - rt - g0 - Sk=1

K gkznk - Sm=1
M dmxnm] = 0 ; 

(92) St=1
T SnÎS(t) stn[lnptn - rt - g0 - Sk=1

K gkznk - Sm=1
M dmxnm]znk = 0 ;                           k = 1,...,K; 

(93) St=1
T SnÎS(t) stn[lnptn - rt - g0 - Sk=1

K gkznk - Sm=1
M dmxnm]xnm = 0 ;                          m = 1,...,M. 

 
Equations (90)-(93) are T+1+K+M equations in the T+1+K+M unknown parameters in the 
vectors r, g and d. However, solutions to these equations are not unique: the variables associated 
with the rt, g0 and the dm parameters are collinear. In order to obtain a unique solution to 
equations (90)-(93), it is necessary to impose two normalizations on these parameters. Choose the 
normalizations r1

* = 0 (which is equivalent to p1
* = 1) and d1

* = 0. Thus set r1
* = 0 and d1

* = 0 in 
equations (90)-(93), drop the first equation in equations (90), drop the first equation in (93) and 
solve the remaining T+K+M-1 equations for r2

*,..., rT
*, g0

*, g1
*,..., gK

*, d2
*,..., dM

*.74 Once these 
parameters have been determined, define the estimated logarithm of the quality adjustment factor 
for product n  as: 
 
(94) bn

* º g0
* + Sk=1

K gk
*znk + Sm=1

M dm
*xnm = lnan

* ;                                                         n = 1,...,N. 
 
 Once the bn

* have been defined, the corresponding quality adjustment factors are defined as an
* 

º exp[bn
*] > 0 for n = 1,...,N. Evaluate equations (90)-(93) at the solution r*, g*, d* where r1

* = 0 
and d1

* = 0.75 Using definitions (94), equations (90) evaluated at the above solution become the 
following equations: 
 
(95) rt

* = SnÎS(t) stn[lnptn - bn
*] = lnpt

*;                                                                               t = 1,...,T. 
 
Thus the period t estimated price level pt

* º exp[rt
*] is a period t share weighted geometric 

average of the period t quality adjusted prices, ptn/an
*, for nÎS(t). 

 
With some new definitions, it is possible to provide fairly transparent interpretations for the 
discrete variable parameters, the dm

*. Define the set of observations t,n that are in the discrete 
product group m as S**(m) for m = 1,...,M. For each model n, define the partial log adjustment 
factor µn

* for the continuous characteristics as follows: 
 
(96) µn

* º g0
* + Sk=1

K gk
*lnznk ;                                                                                           n = 1,...,N. 

 
Using these new definitions, it can be seen that equations (93), evaluated at the normalized 
solution to the weighted least squares minimization problem (89), can be rewritten as follows: 
 
(97) dm

* = St,nÎS**(m) stn[lnptn - rt
* - µn

*]/St,nÎS**(m) stn ;                                                    m = 1,...,M. 
 
Define qn

* = exp[µn
*] for n = 1,...,N. Then exp[dm

*] is equal to a share weighted geometric 
average of the partially quality adjusted prices ptn/pt

*qn
* for all t,n that belong to the set S**(m); 

 
74 The number of observations in the window of observations must be equal to or greater than T+K+M-1. 
More generally, the rank of the coefficient matrix that is associated with the T+K+M-1 remaining 
equations in the system of equations defined by (90)-(93) is assumed to be full so that the coefficient matrix 
has an inverse.  
75 All T+K+M+1 of the equations (90)-(93) will be satisfied at this solution. 
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i.e., for all observations over all periods on products that are in group m for the discrete 
characteristic. Thus the characterizations of the dm

* given by equations (97) are intuitively 
plausible. 
 
The analysis in the previous section can be adapted to the model defined by (89). Once the pt

* 
have been calculated using definitions (95), the price index between periods t and t is defined as 
pt

*/pt* for 1 £ t, t £ T. Once the an
* and pt

* have been calculated using (94) and (95), we have the 
usual two alternative methods for constructing period by period price and quantity levels, Pt and 
Qt for t = 1,...,T. The first uses the pt

* estimates as follows:   
 
(98) Pt* º pt

* ;                                                                                                                      t = 1,...,T; 
(99) Qt* º SnÎS(t) ptnqtn/Pt* ;                                                                                                   t = 1,...,T. 
  
The second method uses the an

* estimates as follows: 
 
(100) Qt** º SnÎS(t) an

*qtn ;                                                                                                   t = 1,...,T; 
(101) Pt** º SnÎS(t) ptnqtn/Qt** ;                                                                                              t = 1,...,T; 
               
As usual, we have the inequalities Pt** £  Pt* for t = 1,...,T. 
 
As was the case for the previous hedonic regression models, the present model can be used to 
generate estimates for missing prices using the equations ptn º pt

*an
* if product n is missing in 

period t. Using these estimates for missing prices, the analysis below equation (81) can be used to 
analyse the difference between Pt* = pt

*/p1
* and the Törnqvist Theil index PT

t for period t. 
 
We conclude this section by providing one more extension of the basic hedonic regression model 
using characteristics defined by (84).  
  
In many cases, the continuous characteristics which describe a product or model range from very 
low values to very high values. In such cases, it is unlikely that a single parameter gk could 
provide an adequate approximation to the value of additional amounts of the characteristic over 
the entire range of feasible characteristic values. To deal with this difficulty, piecewise linear 
spline functions can be introduced into the hedonic model. Thus let y be the amount of a 
continuous characteristic that takes on a wide range of values. We again assume that there are N 
models or products and T time periods and we can observe the amounts z1,...,zK of K continuous 
characteristics (where a single parameter gk can capture the value of an additional unit of zk for k 
= 1,...,K) and the highly variable characteristic y that each product n has.  
 
In order to obtain more flexibility with respect to the y characteristic, the observed products could 
be grouped into say 3 groups with respect to the amounts of y that they possess: low, medium and 
high amounts of y. In order to parameterize this grouping, pick y* and y** such that approximately 
one third of the sample observations have y £ y*, one third have y* < y £ y** and one third have 
y** < y. Define the following dummy variable functions, Di(y) for i = 1,2,3, which depend on y: 
 
(102) D1(y) º 1 if y £ y* and is equal to 0 elsewhere; 
(103) D2(y) º 1 if y* < y £ y** and is equal to 0 elsewhere; 
(104) D3(y) º 1 if y** < y and is equal to 0 elsewhere. 
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The above functions can be used to define the logarithm of the following partial hedonic 
valuation function h(y): 
 
(105) lnh(y) º D1(y)f1y + D2(y)[f1y* + f2(y -y*)] + D3(y)[f1y* + f2(y** -y*) + f3(y -y**)]. 
 
Note that the logarithm of h(y) is a piecewise linear function of y.76 If f1 = f2 =  f3, then lnh(y) = 
f1y; i.e., under these conditions, lnh(y) becomes a linear function of y.  
 
We assume the existence of an overall hedonic valuation function, g(zn,yn), that defines the 
relative utility for the N products where product n has characteristics defined by the vector zn º 
[zn1,...,znK] and the scalar yn. The logarithm of g(zn,yn) is defined as follows: 
 
(106) lng(zn,yn) º g0 + Sk=1

K gkznk + lnh(yn)  ;                                                                    n = 1,...,N. 
 
As usual, the exact hedonic model for the sample prices is ptn = ptg(zn,yn) for t = 1,...,T and 
nÎS(t). Upon taking logarithms of both sides of these price equations, using rt º lnpt for t = 
1,...,T and using definitions (105) and (106), we obtain the following hedonic regression model: 
 
(107) lnptn = rt + g0 + Sk=1

K gkznk + lnh(yn) + etn ;                                                    t = 1,...,T; nÎS(t) 
 
where lnh(yn) is defined by evaluating (105) at y = yn. It can be seen that the unknown 
parameters, r º [r1,...,rT], g º [g0,g1,...,gK] and f º [f1,f2,f3], appear on the right hand sides of 
equations (107) in a linear fashion so the unknown parameters can be estimated using linear 
regression techniques.     
 
In order to take into account the economic importance of each model, estimates for the unknown 
parameters in equations (107) can be obtained by minimizing the following weighted sum of 
squared residuals: 
 
(108) min r, g, f St=1

T SnÎS(t) stn[lnptn - rt - g0 - Sk=1
K gkznk - lnh(yn)]2. 

 
We leave the further analysis of this model to the reader after noting that in order to obtain a 
unique solution to (108), we require a normalization on the rt and g0 such as r1 = 0. 
 
It is not necessary to restrict ourselves to hedonic regression models where the hedonic valuation 
function g(z,y) is such that lng(z,y) is linear in the unknown parameters. One can choose 
functions g(z,y) such that lng(z,y) is a nonlinear function of the unknown parameters and use 
nonlinear estimation techniques to estimate the parameters. However, when estimating nonlinear 
regression models that are fairly complex, it is not wise to attempt to estimate the final model 
right away. It is best if there are very simple models that can be nested in the final model so that 
one starts by estimating the simplest model and gradually, more bells and whistles are added until 
one arrives at the final model. The final parameter values for a simpler model should be used as 
starting parameter values in the next stage model if possible.77 

 
76 This function is known as a linear spline function in the literature on nonparametric approximations. The 
points y* and y** are called break points or knots. With a sufficient number of break points, any continuous 
function can be arbitrarily well approximated by a linear spline function. See Poirier (1976) for applications 
of regression models using splines. 
77 For examples of nonlinear hedonic models that make use of this nesting technique, see Chapter 10 or 
Diewert, Haan and Hendricks (2015), Diewert and Shimizu (2015) (2016) (2020) or Diewert, Huang and 
Burnett-Issacs (2017). 
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All of the models for quality adjustment that we have considered thus far have assumed constant 
tastes; i.e., the functional form for the aggregator function f(q) and for the hedonic valuation 
functions g(zn,yn,xn) have remained constant over the sample period. In the following section, this 
assumption will be relaxed.  
 
8. Hedonics and the Problem of Taste Change: Hedonic Imputation Indexes 
 
A problem with hedonic regression models that are applied over many periods is that consumer 
tastes may change over time. In this section, we will outline three possible methods for dealing 
with the problem of taste change.  
 
The first method that could be used to deal with taste change is to restrict the time dummy 
hedonic regression models to the case of two adjacent periods. Each pair of periods allows for a 
different set of tastes.78 As each adjacent period time dummy regression model is run for say 
periods t-1 and t, the estimated price level ratio, say pt

*/pt-1
*, is used as an update factor for the 

price level of period t-1. Each bilateral regression will generate a set of quality adjustment factors 
which can be used to fill in missing prices. Over time, these quality adjustment factors will 
change. It can be seen that this model of taste change is somewhat inconsistent over time but it 
does allow for taste change. 
 
The second method for dealing with taste change is similar to the first method, except instead of 
holding tastes constant for 2 consecutive periods, we hold tastes constant for T consecutive 
periods. When the data for a subsequent period becomes available, the data for the first period is 
dropped, the data for the new period is added to form a new window of T observations and a new 
time dummy hedonic regression is run. This method assumes that tastes change more slowly than 
the first method. This rolling window time dummy hedonic regression model 79  has a new 
problem which did not arise with the adjacent period model: how should the results of the new 
regression be linked to the results of the previous regression? Thus suppose the first window of 
observations generates the sequence of price levels, p1

1, p2
1,..., pT

1 and these levels are labelled as 
official indexes for the first T periods. Suppose the time dummy hedonic regression for the 
second window generates the sequence of price levels p2

2, p3
2,..., pT+1

2. How exactly should the 
official index for period T+1 be constructed?  Ivancic, Diewert and Fox (2009) (2011) suggested 
using period T as the linking observation. Krsinich (2016; 383) called this the movement splice 
method for linking the two windows. Krsinich (2016; 383) also suggested that a better choice of 
the linking observation in the context of her multilateral model was t = 2 and she called this the 
window splice method. De Haan (2015; 26) suggested that the link period t should be chosen to 
be in the middle of the first window time span; i.e., choose t = T/2 if T is an even integer or t = 
(T+1)/2 if T is an odd integer. The Australian Bureau of Statistics (2016; 12) called this the half 
splice method for linking the results of the two windows. Ivancic, Diewert and Fox (2011; 33) 
and Diewert and Fox (2017; 18) argued that each choice of a linking period t running from t = 2 
to t = T is an equally valid choice of a period to link the two sets of price levels. Thus they 
suggested the mean splice, defined as the geometric mean of all of the possible estimates for pT+1 
using each of the T-1 possible link periods. The first 3 methods of linking one window to the 
next window are easy to explain to the public but the mean splice seems to be the least “risky” 
and follows standard statistical practice; i.e., if one has many estimators for the same thing that 

 
78 This method is due to Court (1939) and popularized by Griliches (1971). It is called the adjacent period 
time dummy hedonic regression model. 
79 This rolling window time dummy hedonic model was implemented by Ivancic, Diewert and Fox (2009) 
and Shimizu, Nishimura and Watanabe (2010).  
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are equally plausible, then taking an average of these estimators is recommended. It can be seen 
that this model of taste change is again slightly inconsistent; the models are internally consistent 
within each window of observations but when we move from one window to another, this internal 
consistency is lost.  
 
The third method for dealing with taste change is to simply estimate a separate hedonic regression 
for each time period. This method is called the hedonic imputation method. In order to explain 
this method and its connection to the adjacent period time dummy model, it is necessary to 
develop the algebra for both methods for the case of two time periods.  
 
We first develop the algebra for the adjacent period time dummy hedonic regression model. 
Recall the model defined in the previous section by solving the weighted least squares 
minimization problem defined by (84). Consider the special case of this model with only two 
periods so that T = 2. We reparameterize this problem defined by (84) for the case T = 2 and 
consider the following equivalent problem: 
 
(109) min q, g St=1

2 SnÎS(t) stn[lnptn - qt - Sk=1
K gkznk]2 

 
where q º [q1,q2] and g º [g1,...,gK]. Comparing (109) with (84) for T = 2, it can be seen that q1 = 
r1 + g0 = g0 (since we set r1 = 0 when using the model defined by (84)) and q2 = r2 + g0. Thus the 
two problems are completely equivalent once we impose the normalization r1 = 0 on (84) for the 
case where T = 2. The first order conditions which determine a unique solution to (109)80 are the 
following 2 + K equations: 
 
(110) SnÎS(t) stn[lnptn - qt

* - Sk=1
K gk

*znk] = 0 ;                                                                    t = 1,2; 
(111) St=1

2 SnÎS(t) stn[lnptn - qt
* - Sk=1

K gk
*

 znk]znk = 0 ;                                                       k = 1,...,K. 
       
Denote the solution to (110) and (111) by q* º [q1

*,q2
*] and g* º [g1

*,...,gK
*]. Estimates for the 

parameters g0 and r2 which were used in our initial parameterization of the model defined by (84) 
for the case where T = 2 can be recovered from the solution to (110) and (111) as follows:81 
 
(112) g0

* º q1
*; r1

* º 0; r2
* º q2

* - q1
*.  

 
The estimated quality adjustment parameters, bn

* and an
*, for the model defined by (84) can be 

recovered from the estimated qt
* and gk

* by using the equations bn
* º q1

*+ Sk=1
K gk

*znk ; an
* º 

exp[bn
*] for n = 1,...,N. 

 
However, for the remainder of this section, it will prove to be more convenient to define new 
quality adjustment parameters, bn

** and an
**, as follows: 

 
(113) bn

** º Sk=1
K gk

*znk ; an
** º exp[bn

**] ;                                                                        n = 1,...,N. 
 
Equations (110), definitions (113) and the equations SnÎS(t) stn = 1 for each t imply that the 
estimated q1

* and q2
* satisfy the following equations: 

 

 
80 As usual, the coefficient matrix for the unknown parameters in equations (110) and (111) must be of full 
rank (which is K + 2), in order to obtain a unique solution. This means that the number of observations 
must be equal to or greater than K + 2.  
81 The new gk* are equal to the old gk* for k = 1,...,K. 
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(114) qt
* = SnÎS(t) stn[lnptn - Sk=1

K gk
*znk]                                                                                  t = 1,2; 

              = SnÎS(t) stnln(ptn/an
**). 

 
Using equations (112) and (113), we obtain the following expressions for r2

* which is the 
logarithm of the price index p2

*/p1
* generated by the time dummy adjacent period hedonic 

regression model:82 
 
(115) ; r2

* º q2
* - q1

* 
                  = SnÎS(2) s2nln(p2n/an

**) - SnÎS(1) s1nln(p1n/an
**) 

                  = SnÎS(2) s2n[lnp2n - Sk=1
K gk

*znk] - SnÎS(1) s1n[lnp1n - Sk=1
K gk

*znk]. 
    
This completes the algebra for the reparameterization of the time dummy adjacent period hedonic 
regression model. In what follows, we will develop the algebra for entirely separate hedonic 
regression models for each period. In the above model, the hedonic surfaces for the two periods,  
q1

* + Sk=1
K gk

*znk and q2
* + Sk=1

K gk
*znk, differed only in their constant terms. In the following 

model, the hedonic surfaces can shift in a non-parallel fashion. 
 
Consider the following two weighted least squares minimization problems: 
 
(116) min q, g SnÎS(1) s1n[lnp1n - q1 - Sk=1

K gk
1znk]2 ; 

(117) min q, g SnÎS(2) s2n[lnp2n - q2 - Sk=1
K gk

2znk]2  
 
where the unknown parameters in (116) are q1, g1 º [g1

1,...,gK
1] and the unknown parameters in 

(117) are q2, g2 º [g1
2,...,gK

2]. In the previous model defined by (109), there was only one vector of 
g parameters to model prices in both periods while the new models defined by (116) and (117) 
have separate quality adjustment parameter vectors, g1 and g2.  
 
The first order conditions for (116) are equations (118) and (119), while the first order conditions 
for (117) are equations (120) and (121) below: 
 
(118) SnÎS(1) s1n[lnp1n - q1* - Sk=1

K gk
1*znk] = 0 ;      

(119) SnÎS(1) s1n[lnp1n - q1* - Sk=1
K gk

1*znk]znk = 0 ;                                                            k = 1,...,K;    
(120) SnÎS(2) s2n[lnp2n - q2* - Sk=1

K gk
2*znk] = 0 ;      

(121) SnÎS(2) s2n[lnp2n - q2* - Sk=1
K gk

2*znk]znk = 0 ;                                                            k = 1,...,K.    
 
Let q1*, g1

1*,..., gK
1* solve (118) and (119) and let q2*, g1

2*,..., gK
2* solve (120) and (121). There are 

now two sets of quality adjustment factors: a1
1*,..., aN

1* for period 1 and a1
2*,..., aN

2* for period 2. 
The logarithms of these parameters are defined as follows: 
 
(122) lnan

1* º Sk=1
K gk

1*znk ; lnan
2* º Sk=1

K gk
2*znk ;                                                           n = 1,...,N.                              

 
Using (118), (120) and definitions (122), we obtain the following expressions for q1* and q2* as 
quality adjusted log prices for periods 1 and 2:  
 

 
82 If the model defined by (109) held exactly so that all error terms were equal to 0, then lnp1n = q1* + lnan** 
for nÎS(1) and lnp2n = q2* + lnan** for nÎS(2). Thus p1n/an** = exp[q1*] for each nÎS(1) and p2n/an** = 
exp[q2*] for each nÎS(2). Thus each quality adjusted period t price, ptn/an** for nÎS(t), is an estimator for 
exp[qt*] and thus a weighted geometric mean of these quality adjusted prices (where the weights sum to 1) 
is also an estimator for exp[qt*].       
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(123) q1* = SnÎS(1) s1nln(p1n/an
1*) = SnÎS(1) s1n[lnp1n - Sk=1

K gk
1*znk] ; 

(124) q2* = SnÎS(2) s2nln(p2n/an
2*) = SnÎS(2) s2n[lnp2n - Sk=1

K gk
2*znk] . 

 
The average measure of log price change going from period 1 to 2 using the adjacent period time 
dummy hedonic model was r2

* = q2
* - q1

*; see (115) above. Note that the same quality 
adjustment factors, the an

*, were used to quality adjust prices in both periods. At first glance, we 
might think that an analogous measure of average constant quality log price in our new model 
could be defined as q2* - q1*. However, looking at (123) and (124), we see that the quality 
adjustment factors are not held constant in constructing this measure. The underlying exact 
models are now p1n = exp[q1*]an

1* for nÎS(1) and p2n = exp[q2*]an
2* for nÎS(2). Thus the period 

1 quality adjusted prices, p1n/an
1*, are not comparable to their period 2 counterparts, p2n/an

2*, 
unless an

1* = an
2*. Hence p2

*/p1
* is not a useful price index that compares like with like.  

 
At this point, the analysis could go in at least 3 different directions: 
 

• Use the two hedonic regressions to fill in the missing prices; i.e., if nÎS(1) but 
nÏS(2), define p2n º exp[q2*]an

2* and q2n = 0. If nÎS(2) but nÏS(1), define p1n º 
exp[q1*]an

1* and q1n = 0. Using these estimated prices, we would have complete 
overlapping price and quantity data for the two periods. Now use the actual data 
along with the imputed data to calculate a favourite price index and define the 
companion quantity index residually by deflating the value ratio by the price index. 
The problem with this strategy is that the quantity index that emerges using this 
strategy cannot be given a welfare interpretation because preferences are allowed to 
change over the two periods.   

• A product or model with characteristics vector z* º [z1
*,...,zK

*] should have a log 
price which is approximately equal to q1* + Sk=1

K gk
1*zk

* º lnp1* in period 1 and a log 
price which is approximately equal to q2* + Sk=1

K gk
2*zk

* º lnp2* in period 2. Choose 
z* to be a characteristics vector that is representative for the set of products that exist 
in periods 1 and 2. Then the exponential of ln(p2*/p1*) = q2* - q1* + Sk=1

K (gk
2* - 

gk
1*)zk

* can serve as a measure of average logarithmic inflation over the period. The 
problem with this method is that there are many possible choices for the reference 
vector z*.83  

• Use each set of quality adjustment factors to generate two consistent measures of 
inflation over the two periods and then take the average of the two measures. 

 
In what follows, we will work out the algebra for the third alternative.84 Let d1* be the share 
weighted average of the quality adjusted log prices for period 1, p1n/an

2*, using the period 2 
quality adjustment factors an

2* defined in definitions (122) and let d2* be the share weighted 
average of the quality adjusted log prices for period 2, p2n/an

1*, using the period 1 quality 
adjustment factors an

1* defined in definitions (122): 
 
(125) d1* º SnÎS(1) s1nln(p1n/an

2*) ; d2* º SnÎS(2) s2nln(p2n/an
1*) . 

 

 
83 Note that if g1* happens to equal g2*, then ln(p2*/p1*) = q2* - q1* and q2* - q1* turns out to equal r2* 
defined by (115). 
84 The analysis which follows is due to Silver and Heravi (2007), Diewert, Heravi and Silver (2009) and de 
Haan (2009). For additional materials on hedonic imputation methods, see Aizcorbe (2014). 
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It can be seen that q2* - d1* is a constant quality measure of overall log price change which uses 
the quality adjustment factors an

2* for period 2 to deflate prices in both periods. Similarly, d2* - 
q1* is a constant quality measure of overall log price change which uses the quality adjustment 
factors an

1* for period 1 to deflate prices in both periods. It is natural to take the arithmetic mean 
of these two measures of constant quality log price change in order to obtain the following 
counterpart, r2

**, to the adjacent period time dummy measure of constant quality log price 
change, r2

* defined by (115) above.    
 
(126) r2

** º ½[q2* - d1*] + ½[d2* - q1*] 
                 = ½[SnÎS(2) s2nln(p2n/an

2*) - SnÎS(1) s1nln(p1n/an
2*)]  

                    + ½[SnÎS(2) s2nln(p2n/an
1*) - SnÎS(1) s1nln(p1n/an

1*)]                     using (123)-(125) 
                 = SnÎS(2) s2n[lnp2n - ½(lnan

1* + lnan
2*)] 

                     - SnÎS(1) s1n[lnp1n -  ½(lnan
1* + lnan

2*)]  
                 = SnÎS(2) s2n[lnp2n - Sk=1

K (½gk
1* + ½gk

2*)znk] 
                     - SnÎS(1) s1n[lnp1n -Sk=1

K (½gk
1* + ½gk

2*)znk]                             using definitions (122).  
 
Using (115), r2

* can be expressed as follows: 
 
(127) r2

* = SnÎS(2) s2n[lnp2n - Sk=1
K gk

*znk] - SnÎS(1) s1n[lnp1n -Sk=1
K gk

*znk]. 
 
The time dummy hedonic regression model defined by the minimization problem (109) uses the 
hedonic coefficients, gk

* for k = 1,..,K to form the quality adjustment factors an
* for n = 1,...,N. 

The single period hedonic regressions are defined by the minimization problems defined by (116) 
and (117), which in turn generate the two sets of hedonic coefficients, the gk

1* and the gk
2* for k = 

1,..,K. But in the end, these two sets of hedonic coefficients are averaged when the overall 
measure of log price change defined by r2

** is calculated. Thus the only difference between r2
* 

defined by (115) or (127) and r2
** defined by (126) is that the average hedonic coefficients ½gk

1* 
+ ½gk

2* are used in (126) while r2
* uses the single set of coefficients gk

*. Thus (127) lets the single 
regression do the job of constructing a set of hedonic coefficients that covers both periods while 
(126) averages the results of the two single period regressions.   
 
Which approach is “better”? The hedonic imputation approach requires the estimation of 2 + 2K 
parameters, while the adjacent period time dummy hedonic approach requires only 2 + K 
parameters. Thus if the number of price observations in the two periods is plentiful, then the 
hedonic imputation approach will fit the data better and thus, in general, will be the preferred 
approach. However, if the number of observations is small and K is relatively large, then the 
adjacent period time dummy approach may be less vulnerable to multicollinearity and outlier 
problems and hence may be the preferred approach.85 In particular, if the number of observations 
for the two periods is less than 2 + 2K, then the hedonic imputation approach cannot be used. On 
the other hand, if the fit is very good in the two weighted least squares minimization problems 
defined by (115) and (116) (and there are ample degrees of freedom) and not good in the single 
weighted least squares minimization problem defined by (109), then it is preferable to estimate 
price change between the two periods using the hedonic imputation estimates for logarithmic 

 
85 “In practice, while one may want to use the most recent cross section to derive the relevant price weights, 
such estimates may fluctuate too much for comfort as the result of multicollinearity and sampling 
fluctuations. They should be smoothed in some way, either by choosing wi = (1/2)[wi(t) + wi(t+1)], or by 
using adjacent year regressions in estimating these weights.” Zvi Griliches (1971; 7). Thus Griliches 
suggested the time dummy approach if the separate hedonic regressions led to substantial fluctuation in the 
parameter estimates.   
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price change defined by (126), since this difference in fit for the two models is evidence of taste 
change and thus it will be safer to use (126) over (127) to measure price change.                         
 
A problem with all of the hedonic regression models that we have considered thus far is that the 
underlying economic model is quite restrictive; i.e., the underlying exact model is ptn = ptan 
which implies that purchasers of the products have linear preferences over the N products under 
consideration.86 Linear preferences mean that the quality adjusted products are perfect substitutes 
for each other. In the following two sections, we will consider economic models which relax this 
assumption of perfect substitutes. 
 
9. Estimating Reservation Prices: The Case of CES Preferences 
 
In this section, we will explain Feenstra’s (1994) Constant Elasticity of Substitution (CES) 
methodology that he proposed to measure the benefits and costs to consumers due to the 
appearance of new products and the disappearance of existing products.87  
 
The Feenstra methodology starts out by making the same assumptions as were made in section 2; 
i.e., it is assumed that purchasers of a group of N products collectively maximize the linearly 
homogeneous, concave and nondecreasing aggregator or utility function f(q) subject to a budget 
constraint. Given that purchasers face the positive vector of prices p º (p1,...,pN), the unit cost 
function c(p) that is dual to the utility function f is defined as the minimum cost of attaining the 
utility level that is equal to one: 
 
(128) c(p) º min q{f(q) ³ 1; q ³ 0N}. 
 
If the unit cost function c(p) is known, then using duality theory, it is possible to recover the 
underlying utility function f(q).88 Feenstra assumed that the unit cost function has the following 
CES functional form: 
 
(129) c(p) º a0 [ån=1

N anpn
1-s]1/(1-s)          if s ¹ 1; 

                  º a0 Õn=1
N                        if s = 1 

 
where the ai and s are nonnegative parameters with åi=1

N ai = 1.  The unit cost function defined 
by (129) is a Constant Elasticity of Substitution (CES) utility function which was introduced into 
the economics literature by Arrow, Chenery, Minhas and Solow (1961)89.  
 

 
86 This criticism of hedonic regression models is similar to that of Hausman (2003; 32): “In the presence of 
the introduction of new goods and quality improvement of existing goods, both prices and quantities (or 
alternatively, prices and expenditures) must be used to calculate a correct cost of living index. Using only 
prices and ignoring information in quantity data will never allow for a correct estimate of a cost of living 
index in the presence of new goods and improvements in existing goods.” However, if the fit of a hedonic 
regression model is good, then the hedonic regression model is justified and there is no need to move to a 
more complicated consumer demand framework.    
87 The exposition in this section follows that of Diewert and Feenstra (2017). 
88 It can be shown that for q >> 0N, f(q) = 1/max p {c(p): Sn=1N pnqn £ 1 ; p ³ 0N}; see Chapter 5 or Diewert 
(1974; 110-112)  on the duality between linearly homogeneous aggregator functions f(q) and unit cost 
functions c(p). 
89 In the mathematics literature, this aggregator function or utility function is known as a mean of order r º 
1 - s; see Hardy, Littlewood and Pólya (1934; 12-13). For more on estimating CES utility functions, see 
Chapter 5. 

n
np
a
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The parameter s is the elasticity of substitution;90 when s = 0, the unit cost function defined by 
(129) becomes linear in prices and hence corresponds to a fixed coefficients aggregator function 
which exhibits 0 substitutability between all commodities. When s = 1, the corresponding 
aggregator or utility function is a Cobb-Douglas function. When s approaches +¥, the 
corresponding aggregator function f approaches a linear aggregator function which exhibits 
infinite substitutability between each pair of inputs. The CES unit cost function defined by (129) 
is of course not a fully flexible functional form (unless the number of commodities being 
aggregated is N = 2) but it is considerably more flexible than the zero substitutability aggregator 
function (this is the special case of (129) where s is set equal to zero) or the linear aggregator 
function (which corresponds to s = +¥).  
 
In order to simplify the notation, we set r º 1 - s. Under the assumption of cost minimizing 
behavior on the part of purchasers of the N products for periods t = 1,...,T, Shephard’s (1953; 11) 
Lemma tells us that the observed period t consumption of commodity i, qi

t, will be equal to 
ut¶c(pt)/¶pi where ¶c(pt)/¶pi is the first order partial derivative of the unit cost function with 
respect to the ith commodity price evaluated at the period t prices and ut = f(qt) is the aggregate 
(unobservable) level of period t utility. As usual, denote the share of product i in total sales of the 
N products during period t as sti º ptiqti/pt×qt for i = 1,...,N and t = 1,...,T where pt×qt º Sn=1

N ptnqtn. 
We initially assume that there are no missing products. Note that the assumption of cost 
minimizing behavior during each period implies that the following equations will hold: 
 
(130) pt×qt = utc(pt) ;                                                                                                             t = 1,...,T 
 
where c is the CES unit cost function defined by (129).   
 
Using the CES functional form defined by (129) and assuming that s ¹ 1 (or r ¹ 0),91 the 
following equations are obtained using Shephard’s Lemma: 
 
(131) qti = uta0 [ån=1

N an (ptn) 
r](1/r)-1ai (pti)r-1;                                                     i = 1,…,N; t =1,...,T 

              = utc(pt) ai (pti)r-1/ån=1
N an (ptn) 

r .                     
 
Premultiply equation i for period t in (131) by pti/pt×qt. Using (129) and (131), the resulting 
equations can be rewritten as follows: 
 
(132)  sti = ai (pti)r/ån=1

N an (ptn)r ;                                                                     i = 1,…,N; t = 1,...,T.  
 
The NT share equations defined by (132) can be used as estimating equations using a nonlinear 
regression approach. Note that the positive scale parameter a0 cannot be identified using 
equations (132), which of course is normal: utility can only be estimated up to an arbitrary scaling 
factor. Henceforth, we will assume a0 = 1. The share equations (132) are homogeneous of degree 

 
90 Let c(p) be an arbitrary unit cost function that is twice continuously differentiable. The Allen (1938; 504) 
Uzawa (1962) elasticity of substitution snk(p) between products n and k is defined as c(p)cnk(p)/cn(p)ck(p) 
for n ¹ k where the first and second order partial derivatives of c(p) are defined as cn(p) º ¶c(p)/¶pn and 
cnk(p) º ¶2c(p)/¶pn¶pk. For the CES unit cost function defined by (129), snk(p) = s for all pairs of products; 
i.e., the elasticity of substitution between all pairs of products is a constant for the CES unit cost function.        
91 When s = 1, we have the case of Cobb-Douglas preferences. In the remainder of this section, we will 
assume that s > 1 (or equivalently, that r < 0). This assumption means that the products under consideration 
are either highly substitutable (s is considerably greater than one) or moderately substitutable (s is greater 
than one but fairly close to one). 
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one in the parameters a1,...,aN and thus the identifying restriction on these parameters, åi=1
N ai = 

1, can be replaced with an equivalent restriction such as aN = 1. 
 
The sequence of period t CES price indexes (relative to the level of prices for period 1), PCES

t, can 
be defined as the following ratios of unit costs in period t relative to period 1: 
 
(133) PCES

t º [ån=1
N an (ptn) 

r](1/r) / [ån=1
N an (p1n) 

r](1/r) ;                                                       t = 1,...,T. 
 
Suppose further that the observed price and quantity data vectors, pt and qt for t = 1,...,T, satisfy 
equations (130) where c(p) is defined by (129) and the quantity data vectors qt satisfy the 
Shephard’s Lemma equations (131). This means that the observed price and quantity data are 
consistent with cost minimizing behavior on the part of purchasers where all purchasers have 
CES preferences that are dual to the CES unit cost function defined by (129). Then Sato (1976) 
and Vartia (1976) showed that the sequence of CES price indexes defined by (133) could be 
numerically calculated just using the observed price and quantity data; i.e., it is not necessary to 
estimate the unknown an and s (or r) parameters in equations (132).92 The logarithm of the period 
t fixed base Sato-Vartia Index PSV

t is defined by the following  equation: 
 
(134) lnPSV

t º Sn=1
N wn

t ln(ptn/p1n) ;                                                                                     t = 1,...,T. 
 
The weights wn

t that appear in equations (134) are calculated in two stages. The first stage set of 
weights is defined as wn

t* º (stn - s1n)/(lnstn - lns1n) for n = 1,...,N and t = 1,...,T provided that stn ¹ 
s1n. If stn = s1n, then define wn

t* º stn = s1n. The second stage weights are defined as wn
t º wn

t*/Si=1
N 

wi
t*  for n = 1,...,N and t = 1,...,T. Note that in order for lnPSV

t to be well defined, we require that 
stn > 0, s1n > 0, ptn > 0 and p1n > 0 for all n = 1,...,N and t = 1,...,T; i.e., all prices and quantities 
must be positive for all products and for all periods.       
 
With this background information in hand, we can explain Feenstra’s (1994) model where “new” 
commodities can appear and “old” commodities can disappear from period to period.   
 
Feenstra (1994) assumed CES preferences with s > 1 (or equivalently, r < 0). He applied the 
reservation price methodology first introduced by Hicks (1940); i.e., as mentioned earlier, Hicks 
assumed that the consumer had preferences over all goods, but for the goods which had not yet 
appeared, there was a reservation price that would be just high enough that consumers would not 
want to purchase the good in the period under consideration.93 This assumption works rather well 
with CES preferences, because we do not have to estimate these reservation prices; they will all 
be equal to +¥ when s > 1.  
 
Feenstra allowed for new products to appear and for existing products to disappear from period to 
period.94 Feenstra assumed that the set of commodities that are available in period t is S(t) for t = 
1,...,T. The (imputed) prices for the unavailable commodities in each period are set equal to +¥ 
and thus if r < 0, an infinite price ptn raised to a negative power generates a 0; i.e., if product n is 
unavailable in period t, then (ptn)r = (¥)r = (1/¥)-r = 0 if r is negative. 

 
92 See Chapter 5 for a proof of this result. 
93 The same logic is applied to disappearing products. 
94 In many cases, a “new” product is not a genuinely new product; it is just a product that was not in stock 
in the previous period. Similarly, in many cases, a disappearing product is not necessarily a truly 
disappearing product; it is simple a product that was not in stock for the period under consideration. Many 
retail chains rotate products, temporarily discontinuing some products in favour of competing products in 
order to take advantage of manufacturer discounted prices for selected products.    
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The CES period t true price level under these conditions when r < 0 turns out to be the following 
CES unit cost function that is defined over only products that are available during period t: 
 
(135) c(pt) º [ån=1

N an (ptn) 
r](1/r)  = [ånÎS(t) an (ptn)r]1/r . 

 
Using equations (131) for this new model with some missing products and multiplying the period 
t demand qti if product i is present in period t by the corresponding price pti leads to the following 
equations which describe the purchasers’ nonzero expenditures on product i in period t:   
 
(136) ptiqti = ut

 [ånÎS(t) an (ptn) 
r](1/r)-1ai (pti)r ;                                                            t = 1,...,T; iÎS(t)                                         

                  = utc(pt) ai (pti)r/ånÎS(t) an (ptn)r .  
 
In each period t, the sum of observed expenditures, SnÎS(t) ptnqtn, equals the period t utility level, 
ut, times the CES unit cost c(pt) defined by (135): 
 
(137) SnÎS(t) ptn

 qtn = utc(pt) = ut[åiÎS(t) ai (pti)r]1/r ;                                                              t = 1,...,T. 
 
Recall that the ith sales share of product i in period t was defined as sti º ptiqti/SnÎS(t) ptnqtn for t = 
1,...,T and iÎS(t). Using these share definitions and equations (137), we can rewrite equations 
(136) in the following form: 
 
(138) sti = ai (pti)r/ånÎS(t) an (ptn)r ;                                                                            t = 1,...,T; iÎS(t) 
              = ai (pti)r/c(pt)r 
 
where the second set of equations follows using definitions (135).                                                                                                                               
 
Now we can work out Feenstra’s (1994) model for measuring the benefits and costs of new and 
disappearing commodities. Start out with the period t CES exact price level defined by (135) and 
define the CES fixed base price index for period t, PCES

t, as the ratio of the period t CES price 
level to the corresponding period 1 price level:95 
 
(139) PCES

t º c(pt)/c(p1) ;                                                                                                   t = 2,3,...,T  
                 = [åiÎS(t) ai (pti)r]1/r / [åiÎS(1) ai (p1i) 

r]1/r  
                 = [ Index 1]´[Index 2]´[Index 3] 
 
where the three indexes in equations (139) are defined as follows:96 
 
(140) Index 1 º [åiÎS(t)ÇS(1) ai (pti)r]1/r / [åiÎS(1)ÇS(t) ai (p1i) 

r]1/r ;                                        t = 2,3,...,T; 
(141) Index 2 º [åiÎS(t) ai (pti)r]1/r / [åiÎS(1)ÇS(t) ai (pti) 

r]1/r ;                                               t = 2,3,...,T 
(142) Index 3 º [åiÎS(1)ÇS(t) ai (p1i)r]1/r / [åiÎS(1) ai (p1i) 

r]1/r ;                                             t = 2,3,...,T. 
 
Note that Index 1 defines a CES price index over the set of commodities that are available in both 
periods t and 1. Denote the CES cost function ct* that has the same an parameters as before but is 
now defined over only products that are available in periods 1 and t: 

 
95 In the algebra which follows, the prices and quantities of period 1 can be replaced with the prices and 
quantities of any period. Feenstra (1994) developed his algebra for c(pt)/c(pt-1). 
96 The Indexes 1-3 depend on period t but we suppressed the index t from the left hand side of definitions 
(140)-(142). 



 43 

 
(143) ct*(p) º [åiÎS(t)ÇS(1) ai (pi)r]1/r ;                                                                                 t = 1,2,...,T. 
 
The period t expenditure share equations defined by equations (138) using the unit cost functions 
defined by (143) are the following ones: 
 
(144) si

t* º ptiqti/SnÎS(t) ÇS(1) ptnqtn                                                                    t = 1,...,T; iÎS(1)ÇS(t) 
             = ai (pti)r/ånÎS(t) ÇS(1) an (ptn) 

r 
             = ai (pti)r/ct*(pt)r  
 
where the third equality follows using definitions (143). 
 
Note that Index 1 is equal to ct*(pt)/ct*(p1) and the Sato-Vartia formula (134) (restricted to 
commodities n that are present in periods 1 and t) can be used to calculate this index using the 
observed price and quantity data for the products that are available in both periods 1 and t. 
 
We turn now to the evaluation of Indexes 2 and 3. It turns out that we will need an estimate for 
the elasticity of substitution s (or equivalently of r º 1-s) in order to find empirical expressions 
for these indexes.97  It is convenient to define the following observable expenditure or sales 
ratios: 
 
(145) lt º ånÎS(t) ptnqtn/ånÎS(1)ÇS(t) ptnqtn ;                                                                          t = 2,3,...,T;  
(146) µt º ånÎS(1)ÇS(t) p1nq1n/ånÎS(1) p1n

 q1n ;                                                                       t =2,3,... T. 
 
We assume that there is at least one product that is present in periods 1 and t for each t ³ 2. Let 
product i be any one of these common products for a given t ³ 2. Then the share equations (138) 
and (144) hold for this product. These share equations can be rearranged to give us the following 
two sets of equations: 
 
(147) ai(pti)r = [ånÎS(t) an (ptn)r]ptiqti/[ånÎS(t) ptnqtn] ;                                                         t = 2,3,...,T; 
(148) ai(pti)r = [ånÎS(1)ÇS(t) an (ptn)r]ptiqti/[ånÎS(1)ÇS(t) ptnqtn] ;                                            t = 2,3,...,T. 
 
For each t ³ 2, equating (147) to (148) for the common product i leads to the following equations: 
 
(149) ånÎS(t) an (ptn)r/ånÎS(1)ÇS(t) an (ptn)r = ånÎS(t) ptnqtn/ånÎS(1)ÇS(t) ptnqtn ;                        t = 2,3,...,T; 
                                                                = lt 
 
where the second set of equalities follows using definitions (145). Now take the 1/r root of both 
sides of (149) and use definitions (141) in order to obtain the following equalities:   
 
(150) Index 2 = [lt]1/r = [åiÎS(t) pti

 qti/åiÎS(1)ÇS(t) ptiqti]1/r ;98                                               t = 2,3,...,T.                           

 
97 See Chapter 5 or Diewert and Feenstra (2017) for a variety of methods for estimating the elasticity of 
substitution. 
98 If new products become available in period t that were not available in period 1, then  lt > 1. Recall that r 
= 1 - s and r < 0. Index 2 evaluated at period t prices equals (lt)1/r = (lt)1/(1-s) and thus is an increasing 
function of s for 1 < s < +¥. With lt > 1, the limit of (lt)1/(1-s) as s approaches 1 from above is 0 and the 
limit of (lt)1/(1-s) as s approaches +¥ is 1. Thus the gains in utility from increased product variety are huge 
if s is slightly greater than 1 and diminish to tiny gains as s becomes very large. Suppose that lt =1.05 and 
s = 1.01, 1.1, 1.5, 2, 3, 5, 10 and 100. Then Index 2 will equal 0.0076, 0.614, 0.907, 0.952, 0.976, 0.988, 
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Again assume that product i is available in periods 1 and t ³ 2. Rearrange the share equations 
(138) and (144) for t = 1 and product i and we obtain the following two equations: 
 
(151) ai(p1i)r = [ånÎS(1) an (p1n)r] p1iq1i/[ånÎS(1) p1nq1n] ;                                                   t = 2,3,...,T; 

(152) ai(p1i)r = [ånÎS(1)ÇS(t) an (p1n)r] p1iq1i/[ånÎS(1)ÇS(t) p1nq1n] ;                                       t = 2,3,...,T. 
 
Equating (151) to (152) leads to the following equations: 
 
(153) ånÎS(1)ÇS(t) an (p1n)r/ånÎS(1) an (p1n)r = ånÎS(1)ÇS(t) p1nq1n/ånÎS(1) p1nq1n ;                   t = 2,3,...,T; 
                                                                 = µt 
 
where the last set of equalities follows using definitions (146). Now take the 1/r root of both sides 
of (153) and use definitions (143) in order to obtain the following equalities:99   
 
(154) Index 3 = [µt]1/r = [ånÎS(1)ÇS(t) p1nq1n/ånÎS(1) p1nq1n]1/r ;                                           t = 2,3,...,T. 
 
Thus if r is known or has been estimated, then Index 2 and Index 3 can readily be calculated as 
simple ratios of sums of observable expenditures raised to the power 1/r. Note that [åiÎS(t) 
ptiqti/åiÎS(1)ÇS(t) ptiqti] ³ 1. If period t has products that were not available in period 1, then the 
strict inequality will hold and since 1/r < 0, it can be seen that Index 2 will be less than unity. 
Thus Index 2 is a measure of how much the true cost of living index is reduced in period t due to 
the introduction of products that were not available in period 1. Similarly, [åiÎS(1)ÇS(t) p1iq1i/åiÎS(1) 
p1iq1i] £ 1. If period 1 has products that are not available in period t, then the strict inequality will 
hold and since 1/r < 0, it can be seen that Index 3 will be greater than unity, Thus Index 3 is a 
measure of how much the true cost of living index has increased in period t due to the 
disappearance of products that were available in period 1 but are not available in period t.  
 
Turning briefly to the problems associated with estimating r (and the an) when not all products 
are available in all periods, it can be seen that the initial estimating share equations (132) need to 
be replaced by the estimating equations (138). However, there are many methods that have been 
suggested in the literature to estimate r (or the elasticity of substitution s) when there are missing 
products; see for example Diewert and Feenstra (2017) or the extensive discussion of estimation 
issues in Chapter 5. 
 
The Feenstra methodology is easy to implement once an estimate for s is available and so it has 
been widely used in the macroeconomic literature. However, if the elasticity of substitution is low 
and new products outnumber disappearing products, then this methodology will lead to quality 
adjusted price indexes which will decrease by amounts that are not plausible and this point should 

 
0.995 and 0.9995 respectively. Thus the gains from increased product variety are very sensitive to the 
estimate for the elasticity of substitution. The gains are gigantic if s is close to 1.  
99 If some products that were available in period 1 become unavailable in period t, then  µt < 1. Index 3 
evaluated at period 1 prices equals (µt)1/r = (µt)1/(1-s) and is a decreasing function of s for 1 < s < +¥. With 
µt < 1, the limit of (µt)1/(1-s) as s approaches 1 is +¥ and the limit of (µt)1/(1-s) as s approaches +¥ is 1. 
Thus the losses in utility from decreased product variety are huge if s is slightly greater than 1 and 
diminish to tiny gains as s becomes very large. Suppose that µt =0.95 and s takes on the same values as in 
the previous footnote. Then Index 3 will equal 168.9, 1.670, 1.108, 1.053, 1.026, 1.013, 1.0057 and 
1.00052 respectively. Thus the losses are gigantic if s is close to 1 and negligible if s is very large. 
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be kept in mind.100 The Feenstra methodology will tend to be biased for elasticities of substitution 
which are close to one and should not be used in this case.101 Thus in the next section, we will 
study a model which is similar to Feenstra’s model but the reservation prices generated by the 
model are finite and a flexible functional form for f(q) is used in place of the CES functional 
form.  
 
10. Estimating Reservation Prices: The Case of KBF Preferences 
 
The functional form for the aggregator function f(q) that we will use in this section is the KBF 
function form, fKBF(q) º [q×Aq]1/2 defined by (17) in section 4.102 The system of inverse demand 
functions for this functional form for our data set with no missing observations is given by the 
following system of equations:  
 
(155) pt = Pt ÑqfKBF(qt) = Pt [qt×Aqt]-1/2 Aqt ;                                                                      t = 1,...,T 
 
where the N by N matrix A º [ank] is symmetric (so that AT = A) and thus has N(N+1)/2 unknown 
ank elements. As in section 4, we also assume that A has one positive eigenvalue with a 
corresponding strictly positive eigenvector and the remaining N-1 eigenvalues are negative or 
zero. These conditions will ensure that the aggregator function has indifference surfaces with the 
correct curvature. 
 
The period t aggregate price level is Pt and the corresponding aggregate quantity level is Qt º 
[qt×Aqt]1/2 for t = 1,...,T. Multiply the right hand side of equation t in (155) by 1 = Qt/[qt×Aqt]1/2 for 
t = 1,...,T and we obtain the following system of estimating equations: 
 
(156) pt = PtQtAqt/qt×Aqt = vtAqt/qt×Aqt ;                                                                              t = 1,...,T 
 
where we have used equations (9), PtQt = pt×qt = vt for t = 1,...,T, to derive the second set of 
equations in (156). Now convert equations (156) into a set of share equations by taking 
component n in the vector pt, ptn, and multiplying both sides of this equation by qtn and dividing 
by vt = pt×qt. We obtain the following system of estimating equations: 
 
(157) stn = Sm=1

N qtnanmqtm/Sn=1
N Sm=1

N  qtmanmqtm ;                                            t = 1,...,T; n = 1,...,N. 
 
When estimating systems of consumer demand equations, it is common to use share equations 
such as equations (157) as the estimating equations. However, in our particular situation, it may 
be preferable to use the system of inverse demand functions defined by equations (156) as 
estimating equations as we shall see below.103  
 

 
100 Also keep in mind that the Feenstra methodology does not work at all if the elasticity of substitution is 
equal to or less than one. 
101 Another feature of the Feenstra methodology is that the reservation prices are infinite. Typically, it does 
not take an infinitely high price to deter consumers from buying the product under consideration. 
102  The analysis in this section follows that of Diewert and Feenstra (2017). The same theoretical 
framework was suggested by Diewert (1980; 498-503) but a different flexible functional form was used to 
illustrate the methodology. The Diewert and Feenstra functional form is a better choice since the correct 
curvature conditions can be imposed on the KBF functional form without destroying its flexibility. 
103 When there are missing prices, estimating systems of inverse demand functions with prices as the 
dependent variables is econometrically convenient. The advantages and disadvantages of alternative 
methods for estimating consumer preferences is discussed at some length in section 10 of Chapter 5. 
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Now introduce missing products into the model. Let S(t) be the set of products n that are present 
in period t for t = 1,...,T. If product n is missing in period t, define qtn º 0 and stn = 0. Define qt 
and st as the period t vectors of quantities and shares where qtn º 0 and stn º 0 if product n is 
missing in period t. It can be seen that equations (156) and (157) are still valid when there are 
missing products, except that instead of t = 1,...,T; n = 1,...,N, we have t = 1,...,T and nÎS(t). Thus 
we use equation t,n in (157) as an estimating equation only if the corresponding product n is 
present in period t.  
 
The N(N+1)/2 unknown parameters anm in the symmetric A º [anm] matrix can be determined by 
solving the following nonlinear least squares minimization problem:104 
 
(158) min A St=1

T SnÎS(t) [stn - {Sm=1
N qtnanmqtm/Si=1

N Sj=1
N  qtiaijqtj}]2. 

  
Note that the minimization problem defined by (158) is run as a single nonlinear regression rather 
than as a system of N share equations, which is the more traditional approach when estimating 
systems of consumer demand functions. The unusual specification is due to the fact that there are 
missing products in the T time periods and so the traditional systems approach cannot be applied. 
A second point to note is that not all of the parameters anm can be identified: if anm

* solves (158), 
then so does lanm

* for 1 £ n £ m £ N for all l ¹ 0. Thus a normalization on the matrix of 
parameters is required for a unique solution to (158). A final point to note is that the error terms 
in (158) are not weighted by their economic importance. There is no need to do this because the 
dependent variables in (158), the shares, are already weighted by their economic importance and 
so there is no need for further weighting. Put another way, each share is equally important (and is 
measured in comparable units) and hence it makes sense to fit the observed shares by model 
predicted shares using a least squares approach.      
 
Once the parameters anm

* have been determined, we can use the price equations defined by (156) 
above to determine the Hicksian reservation prices ptn

* for the missing products for t = 1,...,T and 
n does not belong to S(t): 
 
(159) ptn

* º vtSm=1
N anm

*qtm/{Si=1
N Sj=1

N  qtiaij
*qtj};                                                  t = 1,...,T; nÏS(t). 

 
Note that the reservation prices defined by (159) will be finite. Using the observed prices and 
quantities for each period t along with the imputed prices ptn

*, complete price and quantity vectors 
for each period can be formed. These complete price and quantity vectors can be used to form 
price and quantity levels for each period using a preferred index number formula. Alternatively, 
the estimated parameters anm

* can be used to form the matrix of parameters, A* º [anm
*]. Use the 

estimated A* matrix to form the period t quantity levels, Qt* º [qt×A*qt]1/2 for t = 1,...,T and the 
corresponding period t price levels, Pt* º vt/Qt* for t = 1,...,T.  
 
There are two problems with the above methodology that need to be addressed: (i) how can we be 
sure that the estimated A matrix satisfies the eigenvalue restrictions listed above and (ii) how can 
we estimate the parameters of the A matrix when N is large? 
 

 
104 Alternative estimating equations are considered in Diewert and Feenstra (2017), which has a worked 
example. Diewert and Feenstra found that it was preferable to use the system of estimating equations (156) 
rather than (157) since the goal of the regressions was to find the best fitting system of inverse demand 
functions rather than to find the best fitting system of share equations. More research on the econometrics 
associated with estimating reservation prices is necessary.    
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The number of unknown parameters in the A matrix is N(N+1)/2 if there are N products in the 
window of observations. If N = 10, N(N+1)/2 = 55; if N = 100, N(N+1)/2 = 5050. Thus it will be 
impossible to estimate all of the parameters in the A matrix if N is large. 
 
The above two difficulties with this methodology can be addressed if we make use of the 
following reparameterization of the A matrix. Thus we set A equal to the following expression:105 
 
(160) A = bbT + B; b >> 0N ; B = BT ; B is negative semidefinite; Bq* = 0N. 
 
The vector bT º [b1,...,bN] is a row vector of positive constants and so bbT is a rank one positive 
semidefinite N by N matrix. The symmetric matrix B has N(N+1)/2 independent elements bnk but 
the N constraints Bq* = 0N reduce this number by N. Thus there are N independent parameters in 
the b vector and N(N-1)/2 independent parameters in the B matrix so that bbT + B has the same 
number of independent parameters as the A matrix.  
 
The reparameterization of A by bbT + B is useful in the present context because this 
reparameterization can be used to estimate the unknown parameters in stages. Thus initially set B 
= ON´N, a matrix of 0’s. The resulting aggregator function becomes f(q) = (qTbbTq)1/2 = (bTqbTq)1/2 
= bTq, a linear utility function. Thus this special case of (160) boils down to the linear utility 
function model that has been used repeatedly in this chapter. 
 
The matrix B is required to be negative semidefinite. The procedure used by Wiley, Schmidt and 
Bramble (1973) and Diewert and Wales (1987) can be used to impose negative semidefiniteness 
on B by setting B equal to -CCT where C is a lower triangular matrix.106 Write C as [c1,c2,...,cN] 
where ck is a column vector for k = 1,...,K. If C is lower triangular, then the first k-1 elements of 
ck are equal to 0 for k = 2,3,...,N. The following representation for B will hold:  
 
(161) B = - CCT 
             = - Sn=1

N cncnT 
 
where the following restrictions on the vectors cn are imposed in order to impose the restrictions 
Bq* = 0N on B:107 
 
(162) cn×q* = 0 ;                                                                                                                 n = 1,....,N. 
 
As mentioned above, if N is not small, then usually, it will not be possible to estimate all of the 
parameters in the C matrix. Furthermore, frequently nonlinear estimation is not successful if one 
attempts to estimate all of the parameters at once. Thus it is necessary to estimate the parameters 
in the utility function f(q) = (qTAq)1/2 in stages. In the first stage, estimate the linear utility 
function f(q) = bTq.108 In the second stage, estimate f(q) = (qT[bbT - c1c1T]q)1/2 where c1T º 
[c1

1,c2
1,...,cN

1] and c1Tq* = 0. For starting coefficient values in the second nonlinear regression, use 
 

105 Notation: b is regarded as a column vector and bT is its transpose, which is a row vector.  
106 C = [cnk] is a lower triangular matrix if cnk = 0 for k > n; i.e., there are 0’s in the upper triangle. Wiley, 
Schmidt and Bramble showed that setting B = - CCT where C was lower triangular was sufficient to 
impose negative semidefiniteness while Diewert and Wales showed that any negative semidefinite matrix 
could be represented in this fashion.    
107 The restriction that C be upper triangular means that cN will have at most one nonzero element, namely 
cNN. However, the positivity of q* and the restriction cNTq* = 0 will imply that cN = 0N. Thus the maximal 
rank of B is N-1. 
108 In order to identify all of the parameters, set one component of the b vector to equal 1. 
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the final estimates for b from the first nonlinear regression and set the starting c1 º 0N.109 In the 
third stage, estimate f(q) = (qT[bbT - c1c1T - c2c2T]q)1/2 where c1T º [c1

1,c2
1,...,cN

1], c1Tq* = 0, c2T º 
[0,c2

2,...,cN
2] and c2Tq* = 0. The starting coefficient values are the final values from the second 

stage with c2 º 0N. At each stage, the log likelihood will generally increase.110  Stop adding 
columns to the C matrix when the increase in the log likelihood becomes small (or the number of 
degrees of freedom becomes small). At stage k of this procedure, it turns out that a substitution 
matrix of rank k-1 is estimated that is the most negative semidefinite substitution matrix that the 
data will support.111 This is the same type of procedure that Diewert and Wales (1987) (1988) 
used in order to estimate normalized quadratic preferences and they termed the final functional 
form a semiflexible functional form. The above treatment of the KBF functional form also 
generates a semiflexible functional form. 
 
The above functional form for the aggregator function is more general than the linear utility 
function that has been used throughout most of this paper and it is conceptually more general than 
the CES aggregator function that was used in the previous section. Moreover, the reservation 
prices that the method generates are finite. Finally, the present model can deal with situations 
where a new product has a low elasticity of substitution with all existing products; i.e., it provides 
a more satisfactory solution to the new goods problem and the problem of adjusting for quality 
change. However, it has the drawback of being rather complex and hence it may be resistant to 
large scale applications of the method. More research is required in order to develop methods that 
are simpler to implement. 
 
This completes our selective review of quality adjustment methods that are based on an economic 
approach to index numbers applied to purchasers of consumer goods and services.112   
 
11. Conclusion 
 
This chapter has taken a consumer demand perspective to addressing the problem of adjusting 
price and quantity indexes to take into account the benefits and costs of the introduction of new 
goods and services and the disappearance of existing commodities. This perspective allows all of 
the major methods that address the new and disappearing goods problem to be compared in a 
common framework.  
 
There are three main methods that have been suggested in the literature to address the new goods 
problem: (i) the use of inflation adjusted carry forward and backward prices; (ii) hedonic 
regression methods and (iii) the estimation of consumer preferences and Hicksian reservation 
prices using both price and quantity data. The first two methods will work well if the new and 
disappearing products are highly substitutable with continuing products. However, if substitution 
is low, then the use of the first two methods can lead to substantial biases in price and quantity 
indexes for the class of products under consideration. In the low elasticity of substitution case, the 
third class of methods should be used; i.e., one should use either the cost or expenditure function 

 
109 We also use the constraint c1Tq* = 0 to eliminate one of the cn1 from the nonlinear regression. 
110 If it does not increase, then the data do not support the estimation of a higher rank substitution matrix 
and we stop adding columns to the C matrix. The log likelihood cannot decrease since the successive 
models are nested.  
111 For a worked example of this methodology, see Diewert and Feenstra (2017). 
112 There is one additional method that could be used to estimate reservation prices. This method uses 
experimental economics to determine the price consumers would have to be paid in order to terminate their 
consumption of a product or service. These estimates can be converted into reservation prices; see 
Brynjolfsson, E., A. Collis, W.E. Diewert, F. Eggers and K.J. Fox (2019) (2020). 



 49 

methods suggested by Hausman113 or the direct utility function estimation methods suggested by 
Diewert and Feenstra in section 10 above. Unfortunately, these methods are not easy to 
implement. Thus more research on these methods is required before statistical agencies can 
implement these methods on large scale.    
 
Some of the more important points made in the paper are summarized below. 
 

• Using the theoretical framework explained in section 2 and applying it to hedonic 
regressions in section 5 (when price and quantity data are available) shows that the 
hedonic regression approach generates two distinct estimates for the resulting price and 
quantity levels generated by the regression (unless the regression fits the data perfectly, in 
which case the two methods generate identical estimates). Thus statistical agencies will 
have to choose between these two alternative index number estimates. 

• The use of weights that reflect economic importance is recommended when running 
hedonic regressions; see the summary of the work by de Haan and Krsinich (2018) in 
section 7. 

• The usefulness of the weighted time product dummy hedonic regressions (without 
characteristics information) that was studied in section 5 is questionable; i.e., in place of 
this model, it may be preferable to use the model explained in section 4 that used 
inflation adjusted carry forward and backward prices along with the use of a superlative 
index number formula for matched products. 

• Weighted time dummy hedonic regression models that use characteristics information are 
recommended for dealing with quality adjustment problems provided that the products 
are moderately or highly substitutable; see sections 6 and 7. 

• Section 7 developed a test approach for evaluating the properties of hedonic regressions.  
• Section 8 dealt with hedonic regressions in the context of taste change. Two useful 

methods for estimating price levels when there is considerable product churn were 
suggested: adjacent period time product hedonic regressions and the hedonic imputation 
method. The latter method runs separate hedonic regressions for each period and 
averages the results of these separate regressions to obtain estimated price levels. If 
degrees of freedom are ample, the hedonic imputation method is recommended.  

• Hedonic regression models viewed from the Hicksian approach to the treatment of new 
products have a fundamental problem: the underlying economic model assumes that the 
products are perfect substitutes after the implied quality adjustment. This is not a problem 
if, in fact, the quality adjusted products are close to being perfect substitutes but it can be 
a problem if this is not the case. 

 
113  “Ultimately, data on price and product attributes alone will not allow correct estimation of the 
compensating variation adjustment to a cost of living index. Quantity data are also needed, so that estimates 
of the demand functions (or equivalently, the expenditure or utility functions) can occur. For this reason, I 
disagree with the panel’s conclusion that hedonic methods are ‘probably the best hope’ for improving 
quality adjustments (Schultze and Mackie (2002; 64 and 122)) since hedonic methods do not use quantity 
data to estimate consumer valuation of a product, and consumer demand must be the basis of a cost of 
living index.” Jerry Hausman (2003; 37). We agree with Hausman’s criticisms of hedonic regression 
techniques to deal with the quality change problem except that we note that hedonic regressions can work 
well if the class of products under consideration are close substitutes for each other. Also, in some 
situations, we have no choice but to work with hedonic regressions rather than estimate consumer demand 
systems. For example, when constructing property price indexes, each property is a unique good, both over 
time and space. A property has a unique location and over time the structure on the property changes due to 
renovations and depreciation. Thus as noted above, hedonic regressions with characteristics information 
must be used in this situation.  
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• The CES methodology for accounting for the benefits of new products due to Feenstra 
explained in section 9 can work well if the elasticity of substitution between the products 
under consideration is high. If it is not high, the method will tend to lead to price indexes 
that have a downward bias. 

• The econometric method explained in section 10 for dealing with new and disappearing 
products in the context of the Hicksian reservation price methodology avoids the 
problems associated with the Feenstra methodology but at the cost of a great deal of 
econometric complexity. A robust simplified version of this methodology is required 
before it can be applied by statistical agencies on a routine basis. 

 
This chapter has taken an economic approach to the problem of quality adjustment that is based 
on the basic model of household behavior explained in section 2. This economic model is not 
without its problems but it does lead to a unified approach to the treatment of quality change from 
an economic perspective. 
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