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Abstract

Economic models rely on private signals to capture individual uncertainty.
Although these signal are called “private,” they may still carry information about
each other. Our paper introduces the concept of private private signals, which
contain information about the state but not about other signals. To achieve
privacy, signal quality may need to be sacrificed. We study the informativeness
of private private signals and characterize those that are optimal in the sense
that they cannot be made more informative without violating privacy. We
discuss implications for privacy in recommendation systems, information design,
causal inference, and mechanism design.

∗The paper benefited from numerous suggestions and comments from our colleagues. We are
grateful to Marina Agranov, Nageeb Ali, Itai Arieli, Eric Auerbach, Yakov Babichenko, Dirk Berge-
mann, Alexander Bloedel, Aislinn Bohren, Simina Brânzei, Benjamin Brooks, David Dillenberger,
Piotr Dworczak, Federico Echenique, Jeffrey Ely, Drew Fudenberg, Hanming Fang, Wayne Gao,
Kai Hao Yang, David Kempe, Toygar Kerman, Andreas Kleiner, Victoria Kostina, Annie Liang,
Jonathan Libgober, Elliot Lipnowski, Alessandro Lizzeri, George Mailath, Moritz Meyer-ter-Vehn,
Xiaosheng Mu, Pietro Ortoleva, Luciano Pomatto, Andy Postlewaite, Doron Ravid, Ran Shorrer,
Ran Spiegler, Bruno Strulovici, Ina Taneva, Caroline Thomas, Tristan Tomala, Nicolas Vieille, Leeat
Yariv, and seminar participants at Caltech, University College London, UC Riverside, USC, Hong
Kong Joint Theory Seminar, HSE Moscow and St. Petersburg, University of Maryland, Northwest-
ern University, University of Pennsylvania, Purdue University, Stanford, 2021 LA Theory Confer-
ence, Pennsylvania Economic Theory Conference, Retreat on Information, Networks, and Social
Economics, and Stony Brook Workshop on Strategic Communication and Learning.

†University of Pennsylvania. Email: hesichao@gmail.com.
‡Princeton University. Email: fsandomi@princeton.edu. Fedor Sandomirskiy was supported by

the Linde Institute at Caltech and the National Science Foundation (grant CNS 1518941).
§Caltech. Email: tamuz@caltech.edu. Omer Tamuz was supported by a grant from the Si-

mons Foundation (#419427), a Sloan fellowship, a BSF award (#2018397), and a National Science
Foundation CAREER award (DMS-1944153).



1 Introduction

Privacy has emerged as an important concern in contemporary markets, characterized
by the pervasive collection and exchange of information. In consequence, privacy has
been the focus of a large literature in computer science (Dwork and Roth, 2014)
and a more recent literature in economics (Eilat, Eliaz, and Mu, 2021; Acemoglu,
Makhdoumi, Malekian, and Ozdaglar, 2022; Bergemann, Bonatti, and Gan, 2022;
Liang and Madsen, 2023). In this paper, we introduce the perspective and tools of
Blackwell informativeness to the study of privacy.

As a motivating example, consider an employer who is interested in an unknown
state: whether or not an applicant is qualified for a job. A recommender (e.g., an
automated recommendation system or a human letter writer) knows the applicant’s
qualification but also knows a sensitive attribute, such as the applicant’s age. The
recommender wishes to give as much information as possible to the employer about
the applicant’s qualification, but does not want to reveal any information about the
sensitive attribute.

If the state and the attribute are independent, then the recommender can simply
report the state. However, if the state and the attribute are correlated, reporting
the state also inadvertently reveals some information about the attribute. The rec-
ommender faces a privacy-constrained information-design problem: how to optimally
give information about the state, while keeping the recommendation independent of
the sensitive attribute? Intuitively, as the correlation between the sensitive attribute
and the state increases, the privacy constraint becomes more restrictive and further
limits how much information the recommender can provide.

Generalizing this example, we view the attribute and the recommendation as two
signals about the state. Requiring independence between these two signals imposes
a joint restriction on their informativeness. This paper studies the maximal informa-
tiveness of signals independent of each other and applies the results to settings like
the recommender’s problem above.

In a private private information structure, signals about the state are statistically
independent of each other. For example, suppose three agents each receive indepen-
dent binary signals, and the unknown state is the majority of these three signals.
Because of independence, each agent holds the same belief about the others’ signal
realizations when her own signal is high and when it is low. Thus each signal contains
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no information about the other signals and yet is informative about the state.
Privacy imposes a restriction on the informativeness. For example, it is clearly

impossible for two agents to both have signals that perfectly reveal the state while
maintaining privacy. What is the maximum amount of information that can be
conveyed through private private signals? We formalize this question using the notion
of Pareto optimality with respect to the Blackwell order: a private private information
structure is Blackwell-Pareto optimal if it is impossible to make any of the signals
more informative in the Blackwell sense without violating privacy.1 The main goal
of this paper is to understand the Blackwell-Pareto frontier, allowing a designer to
produce optimal private private structures. This includes, for example, producing the
most informative recommendation that does not reveal information about a sensitive
attribute.

Main Results. In the case of two signals and a binary state, we obtain a simple
description of the Blackwell-Pareto frontier: given a private private structure, denote
by F1, F2 : r0, 1s Ñ r0, 1s the cumulative distribution functions of the induced beliefs
about the state. Then the structure is Blackwell-Pareto optimal if and only if F1pxq “

1 ´ F´1
2 p1 ´ xq, where F´1

2 is the inverse of F2. This characterization allows for a
straightforward test of optimality and a constructive procedure for finding optimal
structures.

In the general case with any number of signals and states, we uncover a surprising
connection to the field of mathematical tomography and the study of sets of unique-
ness. A subset of r0, 1sn is called a set of uniqueness if it is uniquely determined
by the densities of its projections to the coordinate axes. Understanding such sets
has been an active area of research since the 1940s (Lorentz, 1949). This problem
gained more prominence with the advent of tomography, a technology to reconstruct
three-dimensional objects from their projections (Gardner, 1995).

In the case of a binary state, we show that private private information structures
with n signals can be identified with subsets of r0, 1sn, and that the Blackwell-Pareto
optimal ones correspond exactly to sets of uniqueness. In the two-dimensional case—
which corresponds to the case of two signals—the complete characterization of the

1The term Pareto optimality is usually used in the context of allocating goods to agents who
have preferences over them. One can similarly think of an information structure as an allocation of
information to agents who prefer signals that are more Blackwell informative.
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sets of uniqueness is known (Lorentz, 1949) and leads to the above-mentioned char-
acterization of the Blackwell-Pareto frontier. With three or more states and any
number of signals, we establish an equivalence between Blackwell-Pareto optimality
and a generalization of sets of uniqueness that we term partitions of uniqueness.

Applications. We consider a number of applications of our main results. The main
application is to privacy-preserving recommendations, a particular case of which is the
motivating example presented above.

In the problem of optimal privacy-preserving recommendation, the goal is to de-
sign a maximally informative signal (a recommendation) about the state under the
constraint that this recommendation is independent of a given random variable cor-
related with the state. For example, the state can be a job applicant’s productivity
type or a loan applicant’s creditworthiness, and a recommendation must be as infor-
mative about the state as possible but carry no information about sensitive attributes
such as the applicant’s age or health condition. The state, together with the sensitive
attribute and the designed recommendation, form a private private structure, thus
connecting the problem of optimal privacy-preserving recommendation to Blackwell-
Pareto optimality of private private structures.

When the state is binary (i.e., the applicant’s productivity type takes two possi-
ble values), our results on Blackwell-Pareto optimality provide a complete solution
to the problem of optimal privacy-preserving recommendation. As we show, there is
a dominant recommendation: a privacy-preserving recommendation that Blackwell
dominates any other. The result is constructive and gives a simple recipe for gener-
ating this recommendation. We also quantify the information loss due to the privacy
constraint and discuss its comparative statics.

Curiously, the existence of a dominant recommendation for binary states means
that knowledge of the decision-maker’s objective is unnecessary. Hence, decisions
and recommendations can be decoupled, e.g., by creating an agency assessing job
applicants for all prospective employers. By contrast, for three or more states, we
give an example where the optimal recommendation depends on the decision-maker’s
objective, and so delegation to an agency could lead to efficiency losses.

Our next application is to information design with privacy across receivers. As a
motivating example, consider a platform market connecting buyers and sellers. Buyers
are uncertain about the quality of a good, which plays the role of the state variable.
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The platform, informed of the state, wishes to reveal some information about it to
the buyers in order to increase their welfare. By classical results in mechanism design
(Milgrom and Weber, 1982; McAfee and Reny, 1992), even minuscule correlation of
information across buyers can be leveraged by the seller to extract full surplus.2

In such settings, the designer is endogenously constrained to choose private private
information structures.3 This motivates our study of information design under privacy
constraints, in which we abstract away from the origin of the constraint and impose
it exogenously. We leverage our insights into private private structures to study
the designer’s problem. We provide necessary conditions for the optimal structure
to be on the Blackwell-Pareto frontier, and describe the optimum explicitly for a
class of separable objectives in the binary-state, two-receiver case. In this case, it
suffices to use signals with at most three possible realizations, as opposed to infinitely
many without the privacy constraint (Arieli, Babichenko, Sandomirskiy, and Tamuz,
2021; Cichomski and Osękowski, 2023) and two realizations in the single-receiver case
(Kamenica and Gentzkow, 2011).

Private private information structures can also be used to measure the extent to
which independent inputs affect a state of interest. We consider two such applications
in the context of causal inference and Bayesian mechanism design. One of the basic
causal networks is a collider, which represents a collection of independent causes gen-
erating an effect. We observe that the collider structure is a private private structure
in which the effect takes the role of the state and the causes are the signals. Likewise,
in mechanism design, the joint distribution of the individual types and the public
outcome defines a private private structure.

With these applications in mind, we use information-theoretic techniques to quan-
tify and bound signal informativeness in private private structures. Specifically, we
show that the sum across signals of the mutual information is bounded by the entropy
of the state. This bound has a simple interpretation: one can think of private private
structures as a way to divide an “information pie” so that the sum of pieces is smaller
than the whole pie. These results immediately translate to bounds on the causal
strength in collider structures and on the responsiveness of mechanism outcomes to

2These results are dual to those by Bergemann, Brooks, and Morris (2017) and Brooks and Du
(2021), who show that private private structures are the worst from the seller’s perspective.

3In Appendix A, we explore another multi-agent information design setting—influencing players
in zero-sum games—where private private structures arise endogenously.
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individual types.

The connection between private private structures and Bayesian mechanism de-
sign outlined above has additional structural implications. We consider mechanisms
for public decision making, i.e., social choice rules. Each such rule defines a joint dis-
tribution of individual types and the public outcome. The one-agent marginals of such
a rule are studied in the reduced-form approach to mechanism design that replaces
the original multi-agent design problem with auxiliary one-agent problems under ad-
ditional feasibility constraints (Matthews, 1984; Border, 1991; Kleiner, Moldovanu,
and Strack, 2021). The feasible one-agent rules turn out to be tightly connected to
the belief distributions that can be induced by private private information structures.
Consequently, our results on private private structures imply new characterizations
of feasible one-agent rules. In particular, we extend a version of the characterization
of Hart and Reny (2015) to asymmetric rules, show that the result of Che, Kim,
and Mierendorff (2013) admits a majorization form, and uncover a potential origin of
computational intractability of the public-decision setting from Gopalan, Nisan, and
Roughgarden (2018). Our results also imply an alternative simple proof of the main
derandomization result of Chen, He, Li, and Sun (2019).

More Related Literature. The question of which belief distributions can arise
in private private information structures was addressed in Gutmann, Kemperman,
Reeds, and Shepp (1991) and Arieli et al. (2021). They provide a characterization for
two signals under additional symmetry assumptions; we discuss the relation to our
work below. Hong and Page (2009) consider the feasibility of private private signals
in a stylized setting with binary signals and binary states of nature. Concurrently and
independently, Cichomski (2020) studies private private structures that maximize the
expected divergence between the induced posterior beliefs. His approach relies on a
connection to the Gale-Ryser Theorem—a classical result on the existence of bipartite
graphs with given degree distributions. The analysis suggests that this theorem can
be used to derive the same two-signal, binary state feasibility result as our Corollary 3
in Appendix 6.3. Cichomski and Petrov (2022) rely on the connection to bipartite
graphs to prove a tight upper bound on the probability that two beliefs induced by
private private signals differ by more than some given δ. For the question of feasibility
without the privacy constraint, see, e.g., Dawid et al. (1995); Burdzy and Pal (2019);
Burdzy and Pitman (2020); Arieli et al. (2021); Cichomski and Osękowski (2021).
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Particular examples of private private signals have appeared in the social learning
literature (Gale, 1996; Çelen and Kariv, 2004a,b) and in political economy (Ely, 2023).
These signals arise as the worst-case information structure for the auctioneer in some
problems of robust mechanism design: see Bergemann, Brooks, and Morris (2017)
and Brooks and Du (2021). Private private signals also appear as counterexamples of
information aggregation in financial markets: see the discussion in Ostrovsky (2012)
and similar observations in the computer science literature (Feigenbaum, Fortnow,
Pennock, and Sami, 2003).

In a follow-up paper, Strack and Yang (2023) consider our problem of optimal
privacy-preserving recommendation and generalize the analysis in a number of direc-
tions. Most importantly, they show that the result on the existence of a dominant
recommendation—obtained in our paper for the case of a binary state—extends to a
real-valued state if the decision-maker’s objective is a function of the posterior mean.
The realistic scenario where a recommender gets a noisy signal about a binary state
reduces to this setting by treating the recommender’s belief as a new state variable.
We further discuss the relation to their paper after presenting our results; see Foot-
note 11. A detailed discussion can also be found in §6.1 in their paper. An alternative
to the Blackwell perspective developed in Strack and Yang (2023) and in our paper
is to fix a particular objective, which is a common approach in the computer science
literature. For example, Li and El Gamal (2018) consider maximizing mutual infor-
mation between the recommendation and the state and construct recommendations
that are approximately optimal within a logarithmic factor.

Our problem of optimal privacy-preserving recommendation admits an alterna-
tive fairness interpretation within the field of algorithmic fairness, an active area of
research at the interface of economics and computer science; see, e.g., Liang et al.
(2022); Kleinberg et al. (2018); Rambachan et al. (2020); Mehrabi et al. (2021); Baro-
cas et al. (2019) and references therein. This literature is concerned with designing
AI-powered recommendation systems that avoid discrimination when handling legally
protected attributes (e.g., loan applicants’ gender or race). Our privacy requirement
is equivalent to the fairness constraint of statistical parity, one of the most popu-
lar fairness principles (Kleinberg et al., 2016; Aswani and Olfat, 2022; Dwork et al.,
2012). It requires that the distribution of the recommendations (e.g., the fraction
of the population with a given level of credit score) has to be the same across sub-
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populations with different values of protected attributes.4 In other words, the recom-
mendation and the collection of protected attributes have to be independent of each
other, forming a private private information structure. Thus, our results on optimal
privacy-preserving recommendation provide a characterization of optimal recommen-
dation systems satisfying statistical parity. Moreover, our framework allows one to
quantify the efficiency loss due to the fairness constraint.

A popular notion of differential privacy from computer science formalizes privacy
in another context; see (Dwork and Roth, 2014) for a survey. Each member of a
population already possesses private information, and a social planner aims to com-
pute an objective depending on this information. Differential privacy ensures that
this computation does not expose individual private information too much. So, dif-
ferential privacy is an approximate “vertical” privacy notion. By contrast, our paper
introduces an exact “horizontal” privacy notion, capturing a social planner who pos-
sesses information and aims to distribute it in a private way across the population.
Concepts resembling differential privacy appeared earlier in the economic literature
in the context of exchange economies (Gul and Postlewaite, 1992) and have been
recently brought to mechanism design (Eilat, Eliaz, and Mu, 2021) and information
design (Schmutte and Yoder, 2022).

As mentioned above, our work is related to the mathematics of sets of uniqueness
and mathematical tomography (Lorentz, 1949; Fishburn, Lagarias, Reeds, and Shepp,
1990; Kellerer, 1993). These techniques have been applied in economics, for example,
by Gershkov, Goeree, Kushnir, Moldovanu, and Shi (2013) to show the equivalence
of Bayesian and dominant strategy implementation in an environment with linear
utilities and one-dimensional types.

2 Model

A state of nature ω is a random element of Ω “ t0, 1, . . . ,m´ 1u with a full-support
prior distribution. Consider a collection of n ě 2 signals s1, . . . , sn about ω. We
call the tuple I “ pω, s1, . . . , snq an information structure. Formally, fix a standard
nonatomic Borel probability space pX,Σ,Pq, and let ω, s1, . . . , sn be random variables

4The requirement of statistical parity is close in spirit to the concept of disparate impact from
the US law, which forbids substantial statistical differences in outcomes for groups with different
values of protected attributes.
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defined on this space that take values in ΩˆS1ˆ¨ ¨ ¨ˆSn, where each Si is a measurable
space.5 The marginal distribution of ω is the prior over the state.

Denote by ppsiq the posterior belief about ω induced by observing si. Formally,
ppsiq is the random variable taking value in ∆pΩq given by ppsiqpkq “ Prω “ k | sis.
In the case of a binary state (i.e., when Ω “ t0, 1u), we let ppsiq take value in r0, 1s
by setting ppsiq “ Prω “ 1 | sis.

Definition 1. We say that I “ pω, s1, . . . , snq is a private private information struc-
ture if ps1, . . . , snq are independent random variables.

Private private signals should not be confused with conditionally independent sig-
nals, where ps1, . . . , snq are independent given ω.6 As a simple example of a private
private information structure with two signals and a binary state, let s1, s2 be inde-
pendently and uniformly distributed on r0, 1s, and let ω be the indicator of the event
that s1 ` s2 ą 1, as illustrated in Figure 1. The distribution of ps1, s2q conditioned
on ω “ 1 is the uniform distribution on the upper right triangle of the unit square.
Conditioned on ω “ 0, ps1, s2q have the uniform distribution on the bottom left tri-
angle. Note that the posterior beliefs are ppsiq “ si in this information structure, so
both signals are strictly informative. While the two signals are independent, they are
not conditionally independent given the state ω.

This paper focuses on characterizing the private private signals that are maximally
informative, formalized through the concept of Blackwell-Pareto optimality of private
private information structures. For the case of one signal (n “ 1), recall that an
information structure pω, sq Blackwell dominates pω, ŝq if for every convex ϕ : ∆pΩq Ñ

R it holds that Erϕpppsqqs ě Erϕpppŝqqs.
This notion captures a uniform sense in which s contains more information about ω

than ŝ does: in any decision problem, an agent maximizing expected utility performs
weakly better when observing s than observing ŝ.

5An equivalent and more common approach would be to define an information structure as a
joint distribution over Ω ˆ S1 ˆ ¨ ¨ ¨ ˆ Sn. In our paper, it is notationally convenient to assume
that all information structures are defined on the same probability space pX,Σ,Pq so that the joint
distributions of signals from different structures can be considered naturally.

6For instance, consider a binary state ω, distributed uniformly over t0, 1u, and two agents ob-
serving conditionally independent binary signals s1, s2 P t0, 1u that match the state with probability
3/4, i.e., Prω “ si | sis “ 3{4. Then, each signal contains information about the other signal: when
an agent observes a high signal, she becomes more confident that her peer also got a high signal.
Indeed, by Bayes formula, Ppsj “ 1 | si “ 1q “ 5{8 for i ‰ j.
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s1

s2

1

1

0

Figure 1: The pair of signals ps1, s2q is uniformly distributed on the unit square,
with ω “ 1 in the black area and ω “ 0 in the white area. The induced posteriors
pps1q, pps2q coincide with the signals.

For more than one signal, our next definition introduces a partial order on private
private information structures that captures Blackwell dominance for each signal.

Definition 2. Let I “ pω, s1, . . . , snq and Î “ pω, ŝ1, . . . , ŝnq be private private in-
formation structures. We say that I dominates Î, and write I ľ Î, if for every i it
holds that pω, siq Blackwell dominates pω, ŝiq. We say that I and Î are equivalent if
I ľ Î and Î ľ I.

It follows from this definition that I is equivalent to Î if and only if, for each i,
the distributions of ppsiq and ppŝiq coincide. Thus we can partition the set of private
private information structures into equivalence classes, with each class represented
by n distributions pµ1, . . . , µnq on ∆pΩq.

Figure 2 illustrates another example of a private private information structure,
where the signals are again uniform on r0, 1s, but each signal induces beliefs 1{4 or
3{4 equally likely. Thus this structure is equivalent to a structure with binary sig-
nals. More generally, a structure pω, s1, . . . , snq is always equivalent to the “direct
revelation” structure pω, pps1q, . . . , ppsnqq in which each signal si is replaced with the
posterior belief it induces.

We use the concept of dominance to define Blackwell-Pareto optimality: which
private private information structures provide a maximal amount of information, so
that more information cannot be supplied without violating privacy?

Definition 3. We say that a private private information structure I is Blackwell-
Pareto optimal if, for every private private information structure Î such that Î ľ I,
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0

Figure 2: The pair of signals ps1, s2q is uniformly distributed on the unit square,
with ω “ 1 in the black area and ω “ 0 in the white area. The induced posteriors
pps1q, pps2q are binary, and equally likely to be either 1/4 or 3{4. The posterior pps2q is
equal to 3{4 on the top half on the square and to 1{4 on the bottom half. Hence, pps2q

has the same distribution even conditioned on s1, and so the induced second-order
and higher-order beliefs are trivial.

the structure Î is equivalent to I.

In other words, I is Blackwell-Pareto optimal if there is no private private infor-
mation structure Î where each signal is as informative (in the Blackwell sense) as
in I and at least one is strictly more informative. Consider n decision makers each
observing one of the signals. In this interpretation, Blackwell-Pareto optimality cap-
tures a notion of Pareto optimality that is robust across decision problems. Indeed,
a private private structure is Blackwell-Pareto optimal if, regardless of the decision
problems agents face, their utilities cannot be Pareto improved within the class of
private private structures.

A priori, one could worry that there are very few Blackwell-Pareto optimal struc-
tures, in the sense that for any structure, one can always find a structure that is
dominating, perhaps by very little. Lemma 5 in the Appendix is a compactness
result showing that, for every private private information structure, there exists a
weakly dominating Blackwell-Pareto optimal one. In particular, this lemma indicates
that the set of Blackwell-Pareto optimal structures is rich.

As we explain in the introduction, there is some tension between the privacy of
an information structure and its informativeness. For example, consider two agents
observing a pair of signals. The most informative structure from the point of view of
agent 1 is the one where s1 completely reveals the state, i.e., pps1q “ δω. Likewise,
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agent 2 would benefit most from a structure where s2 perfectly reveals the state. But
then pps1q “ pps2q, and so s1 and s2 are not independent. The question is thus: what
are the ways to maximally inform the agents, while still maintaining privacy?

3 Blackwell-Pareto Optimality and Conjugate Distributions

The question of Blackwell-Pareto optimality of private private information structures
is already non-trivial in the case of two signals and a binary state. For example, is the
structure given in Figure 1 Blackwell-Pareto optimal? What about the structure in
Figure 2? In this section, we give a simple description of the Blackwell-Pareto frontier,
making it easy to check if a structure is Blackwell-Pareto optimal. In particular, our
results imply that the structure in Figure 1 is Blackwell-Pareto optimal while the one
in Figure 2 is not.

To state this result, we introduce conjugate distributions on r0, 1s. Let F : r0, 1s Ñ

r0, 1s be the cumulative distribution function of a probability measure in ∆pr0, 1sq.
The associated quantile function, which we denote by F´1, is given by

F´1
pxq “ minty : F pyq ě xu. (1)

Since cumulative distribution functions are right-continuous, this minimum indeed
exists, and so F´1 is well defined. When F is the cumulative distribution function of a
full support and nonatomic measure, then F is a bijection and F´1 is its inverse. More
generally, F´1pxq is the smallest number y such that an x-fraction of the population
has values less than or equal to y.

Definition 4. The conjugate of a cumulative distribution function F : r0, 1s Ñ r0, 1s

is the function F̂ : r0, 1s Ñ r0, 1s, which is given by

F̂ pxq “ 1´ F´1
p1´ xq.

Graphically, px, yq is on the graph of F if and only if p1´ y, 1´xq is on the graph
of F̂ : in other words, F̂ is the reflection of F around the anti-diagonal of the unit
square. An example is depicted in Figure 3.

As we show in the Appendix (Claim 3), F̂ is also a cumulative distribution func-
tion. Thus, given a measure µ P ∆pr0, 1sq, we can define its conjugate measure
µ̂ P ∆pr0, 1sq as the unique measure whose cumulative distribution function is the
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1

1

0

F

1

1

0

F̂

Figure 3: An example of a cumulative distribution function F and its conjugate F̂ .
The shapes under the curves are congruent: the transformation that maps one to
the other is reflection around the anti-diagonal. Qualitatively, F corresponds to the
belief distribution of a more informative signal, and F̂ corresponds to that of a less
informative signal (because the former assigns less mass to posterior beliefs near 0.5).

conjugate of the cumulative distribution function of µ. It is easy to verify that the
conjugate of µ̂ is again µ.

The main result of this section is that Blackwell-Pareto optimality can be charac-
terized in terms of conjugates.

Theorem 1. For a binary state ω and two signals, a private private information
structure I “ pω, s1, s2q is Blackwell-Pareto optimal if and only if the distributions of
beliefs pps1q and pps2q are conjugates.

The essence of the proof is to show that every Blackwell-Pareto optimal struc-
ture is equivalent to a structure of the form described in Figures 1 and 4: signals
are independent and distributed uniformly on r0, 1s2, and there is an upward-closed7

subset A Ď r0, 1s2 such that ω “ 1 whenever ps1, s2q P A. Since A is upward-closed,
the graphs of the cumulative distribution functions of the beliefs induced by the two
signals are both given by the boundary of A (up to reflections) and are easily seen
to be conjugates. The formal proof of Theorem 1 combines our more general charac-
terization of Blackwell-Pareto optimality in the n-signal case (Theorem 3) together

7By upward-closed sets, we mean sets that, with each point, also contain all points with higher
or equal coordinates.
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with Theorem 4, a classical result of Lorentz (1949) about so-called “sets of unique-
ness,” which we discuss in detail in §5; these are subsets of r0, 1sn that are uniquely
determined by their projections to each of the n axes.

A consequence of Theorem 1 is that there are many private private structures
on the Blackwell-Pareto frontier; indeed there is such a structure for each pair of
conjugate distributions. To see this, we apply an argument that is similar to the one
used in the proof sketch above. Given a pair of conjugate cumulative distribution
functions F and F̂ , choose ps1, s2q uniformly from the unit square, and let ω “ 1 be
the event that s2 ě F̂ p1´ s1q. A simple calculation shows that F̂ p1´ s1q is equal to
the posterior pps1q and has the distribution F , and pps2q has the distribution F̂ . By
Theorem 1, this private private structure is Pareto optimal. Figure 4 illustrates this
construction.

Note that for every pair of conjugate distributions µ and µ̂, there exists a private
private information structure I “ pω, s1, s2q where the prior probability of ω “ 1

equals the common mean of µ and µ̂, the posterior pps1q has the distribution µ,
and pps2q has the distribution µ̂. By Theorem 1, this structure will be Blackwell-
Pareto optimal. To explicitly construct such a structure, calculate the cumulative
distribution function F of µ and its conjugate F̂ , choose ps1, s2q uniformly from the
unit square (so that they are independent and each distributed uniformly on r0, 1s),
and let ω “ 1 be the event that s2 ě F̂ p1 ´ s1q. A simple calculation shows that
F̂ p1´ s1q is equal to the posterior pps1q and has the distribution µ, and pps2q has the
distribution µ̂. Figure 4 illustrates this construction.

Figure 3 suggests that on the Blackwell-Pareto frontier, when s1 is very informa-
tive, s2 must be very uninformative. We formalize this in the following claim, which
is proved in the Appendix:

Corollary 1. Suppose that ω is binary and that pω, s1, s2q and pω, t1, t2q are Blackwell-
Pareto optimal private private information structures. If t1 dominates s1, then t2 is
dominated by s2.

We can use Theorem 1 to understand whether the structures of Figures 1 and 2 are
optimal. The uniform distribution on r0, 1s is its own conjugate. Hence, using Theo-
rem 1’s belief conjugacy test, we can conclude that Figure 1’s information structure
is Blackwell-Pareto optimal.
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1

1
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s2

Figure 4: A private private information structure, where the beliefs pps1q and pps2q are
distributed according to the pair of conjugate distributions F and F̂ from Figure 3:
the signals are uniform on r0, 1s2, and ω “ 1 if and only if s2 ě F̂ p1 ´ s1q (black
region).

To understand the structure of Figure 2, consider, more generally, a discrete dis-
tribution µ on r0, 1s with k atoms. Its conjugate µ̂ is also atomic: each atom of µ with
weight w corresponds to an interval of zero mass with length w for µ̂ and, symmet-
rically, each interval of length l carrying no atoms in µ becomes an atom of weight l
in µ̂ (see Figure 5). In particular, µ̂ has either k´ 1, k or k` 1 atoms, corresponding
to the cases that (1) µ places positive mass on both 0 and 1, (2) µ places positive
mass on exactly one of t0, 1u, or (3) µ places zero mass on t0, 1u.

We conclude that the information structure of Figure 2, where both signals induce
beliefs 1{4 or 3{4 is not Blackwell-Pareto optimal, since two discrete distributions with
the same number of atoms can only be conjugates if each of them assigns a non-zero
weight to exactly one of t0, 1u.

4 Privacy-Preserving Recommendations

An informed party wishes to disclose to an uninformed party as much information as
possible about the state ω using a message s2, but must not reveal any information
about a given random variable s1 that is correlated with ω. In this application,
we should interpret s1 as an additional component of the state that must be kept
secret for legal or security reasons, and where the joint distribution of pω, s1q is given
exogenously.

As a concrete example, suppose an uninformed company wants to learn about a
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Figure 5: The conjugate of a discrete distribution F with three atoms at 0.1, 0.4,
and 0.6. Each atom becomes an interval of zero measure with the length equal to
the atom’s weight, and vice versa. Since F does not have atoms at the endpoints of
r0, 1s, the number of intervals of zero measure exceeds the number of atoms by one,
so its conjugate F̂ has four atoms at 0, 0.5, 0.8, and 1.

decision-relevant type ω of an applicant (e.g., whether she is a good fit for a job or
whether she will pay her rent on time), and an informed party (e.g., a recommender
or a credit-rating company) knows both this type and a sensitive or legally protected
attribute s1 of the applicant that correlates with the type: this could be the applicant’s
private medical information, gender, or race. The informed party faces the problem of
optimal privacy-preserving recommendation: convey as much information as possible
about the applicant without revealing any information about her protected attribute,
so that the company’s downstream decision based solely on the recommendation will
be independent of the protected attribute and therefore not cause disparate impact.
Note that even a recommendation that does not explicitly contain the protected
attribute may cause disparate impact, if it contains correlates of the attribute. Our
analysis makes two simplifying assumptions: first, the recommender can infer the
state exactly from the data8; second, we impose an exact—rather than approximate—
privacy requirement, as common in algorithmic fairness literature (Barocas, Hardt,
and Narayanan, 2019).

A less economic (but more colorful) story is that of a government that would like
to reveal a piece of intelligence ω, but without revealing any information about the

8Strack and Yang (2023) generalize our results dropping this assumption.
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identity of its source s1. These could be naturally correlated: for example, if ω is
the location of an enemy’s weapons facility and the source s1 is likely to live close to
it. So the government’s disclosure s2 should contain as much information as possible
about ω, while not revealing any information about s1.

Motivated by these examples, we give the following definition.

Definition 5. Given an information structure pω, s1q, a signal s2 independent of s1

is an optimal privacy-preserving recommendation if there is no s12 that is independent
of s1 and Blackwell dominates s2.

Note that in this definition, we take an approach that is agnostic to any decision
problem faced by the receiver or, indeed, any other goal the receiver might have, such
as selling this information, using it in a game, etc. Instead, we study signals that are
maximal in their information content, and can be used by the receiver towards any
of these goals.

The notion of an optimal privacy-preserving recommendation is closely related to
Blackwell-Pareto optimality, namely, it is equivalent to requiring that I “ pω, s1, s2q is
a Blackwell-Pareto optimal private private information structure. Indeed, if pω, s1, s2q

is Blackwell-Pareto optimal, none of the signals can be made more informative under
the privacy constraint, and so s2 is an optimal privacy-preserving recommendation.
The converse is established in Appendix B.6 (Corollary 9).9

A natural question is whether there are many optimal signals—each appropriate
for a different decision problem—or if there is one optimal signal that dominates all
others.

Definition 6. Given an information structure pω, s1q, a signal s2 independent of s1

is a dominant privacy-preserving recommendation if s2 Blackwell dominates every s12
that is independent of s1.

When ω and s1 are uncorrelated, a completely revealing s2 is dominant. When
there is correlation, a completely revealing s2 is no longer feasible, and so one could
expect that no dominant signal exists, i.e., decision-makers with different objectives

9This corollary is non-trivial as it relies on the following result: given a sub-optimal structure
pω, s1, s2q, there is always a dominating structure pω, t1, t2q where s1 “ t1. A priori, one could
imagine that, in some cases, only s1 can be improved, or that the improvement of s2 requires
replacing s1 with an equivalent (but not equal) signal.
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prefer different optimal signals. Our characterization of the Blackwell-Pareto optimal
private private signals (Theorem 1) implies that a dominant signal exists and can be
easily constructed, when the state is binary.10

Theorem 2. For any pω, s1q with a binary state ω, there exists a dominant privacy-
preserving recommendation s‹2. The distribution of pps‹2q is the conjugate of the dis-
tribution of pps1q.

Theorem 2 implies that every decision maker would choose the same signal s‹2,
regardless of the decision problem at hand. For example, the posterior pps‹2q simul-
taneously maximizes the mutual information with ω, as well as minimizes the mean
squared distance from it. This uniqueness of the optimal privacy-preserving recom-
mendation is a rather surprising property as the Blackwell order is a partial order,
and so one could expect that there are non-equivalent optimal recommendations that
are all maximal and incomparable. Indeed, in Appendix D, we demonstrate that
uniqueness is a feature of the binary state case by considering an example with three
states, binary s1, and a continuum of non-equivalent optimal privacy-preserving rec-
ommendations.11

Figure 6 shows the dominant privacy-preserving recommendation when the two
states are equally likely and s1 is a symmetric binary signal that matches the state
with probability 3{4. The dominant recommendation s‹2 is trinary: it completely re-
veals the state with probability 1{2, and gives no information with the remaining
probability. More generally, when the states are equally likely and s1 is a symmet-
ric binary signal that matches the state with probability r P r1{2, 1s, the dominant

10We call this result a theorem to highlight its importance. The fact that the signal s‹2 inducing the
conjugate distribution dominates any other s2 independent of s1 is a direct corollary of Theorem 1.
However, the possibility to construct such a signal s‹2 for given s1 requires a proof that can be found
in Appendix B.6.

11Strack and Yang (2023) study a similar but subtly different optimality notion: they consider s2
as a signal not just about ω, but about pω, s1q, and so s2 is optimal, in their notion, if there is no s12
independent of s1 that contains more information about pω, s1q. In their setting, a dominant s2 may
fail to exist even for binary ω. For example, if pω, s1q are independent and distributed uniformly on
t´1,`1u, then both s2 “ ω and s12 “ ω ¨s1 are optimal, according to their notion, but such s12 carries
no information about ω and thus is not optimal in our terms. Their Theorem 3, which considers yet
another optimality notion, generalizes our Theorem 2: it can be used to show that the recommender
has a dominant privacy-preserving recommendation in our sense even when only observing a noisy
signal about ω. See §6.1 in Strack and Yang (2023) for a detailed comparison of the papers.
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Figure 6: Dominant privacy-preserving recommendation when a 3{4-binary signal s1

must be kept secret. The left panel depicts the cumulative distribution function F of
posteriors induced by the symmetric binary signal s1 matching the state with proba-
bility 3{4. The dominant recommendation s‹2 corresponds to the conjugate distribution
F̂ depicted in the right panel. We see that s‹2 is trinary: it is completely uninforma-
tive with probability 1{2 and fully reveals the state with the complementary chance,
inducing the posteriors 0 or 1 with equal probabilities.

recommendation will be trinary. It completely reveals the state with probability
2p1´ rq, and gives no information with the complementary probability. Thus, as the
correlation between s1 and ω increases, the dominant recommendation becomes less
informative.

We provide a simple practical procedure for generating a dominant privacy-preserving
recommendation s‹2, given realizations of pω, s1q. We know that s1 and s‹2 induce
conjugate belief distributions, and so we can use the general procedure outlined in
Figure 4 to construct s‹2 as follows:

• Calculate pps1q, the conditional probability of ω “ 1 given s1.

• If ω “ 1, sample s‹2 uniformly from the interval r1´ pps1q, 1s.

• If ω “ 0, sample s‹2 uniformly from the interval r0, 1´ pps1qs.

This procedure yields an s‹2 that, conditioned on s1, is distributed uniformly on r0, 1s,
and hence is independent of s1. It is simple to verify that s‹2 is dominant (see the
proof of Theorem 2).

This procedure can be simplified if the posterior pps1q only takes finitely many
values, in which case there exists a dominant privacy-preserving recommendation that
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is also finitely valued. Let r0, 1s “
ŮK
k“0 Ik be a partition of the unit interval into

subintervals using the values of pps1q. The belief pps‹2q is constant when s‹2 ranges
within Ik. Hence, the constructed dominant recommendation s‹2 with values in r0, 1s
is equivalent to a signal t‹2 P t0, . . . , Ku such that t‹2 “ k whenever s‹2 P Ik. The signal
t‹2 is also a dominant privacy-preserving recommendation and takes at most one more
value than the number of values of pps1q.

Consider the symmetric binary s1 matching ω with probability 3{4 from Figure 6.
A dominant privacy-preserving recommendation s‹2 of the state can be generated as
follows. It takes three values, t0, 1, 2u. If s1 ‰ ω, then s‹2 “ 2 ¨ ω, and if s1 “ ω

then s‹2 “ 1 with probability 2{3 and s‹2 “ 2 ¨ ω with probability 1{3. As a result, the
realization s‹2 “ 1 is completely uninformative and s‹2 P t0, 2u completely reveals ω.

Information Loss in Privacy-Preserving Recommendations. We now discuss
how the informativeness of the dominant privacy-preserving recommendation s‹2 de-
pends on the correlation between s1 and the state ω. As before, we assume ω is
binary. Since s1 can represent the collection of all protected attributes, this question
is of interest to a policymaker considering the welfare implications of adding an extra
protected attribute, thus increasing the correlation.

Corollary 1 implies that informativeness of s1 and s‹2 moves in opposite direc-
tions with respect to the Blackwell order. However, this comparative static does
not quantify the amount of information lost due to the privacy constraint. Sup-
pose the informativeness of a signal s about binary ω is measured by the mutual
information Ipω; sq “ Hppq ´ ErHpppsqqs, where H is the Shannon entropy defined
by Hpqq “ q log2pqq ` p1 ´ qq logp1 ´ qq. The mutual information Ipω; sq “ 0 if s
is uninformative and Ipω; sq “ Hppq if s pins down the realization of ω. The fol-
lowing inequality provides an upper bound on the informativeness of the dominant
privacy-preserving recommendation:

Ipω; s‹2q ď Hppq ´ Ipω; s1q. (2)

The information-theoretic intuition behind (2) is that privacy does not allow s1 and s‹2
to carry the same “bit of information” about ω, and the “total number of bits” is Hppq.
A counterintuitive phenomenon is that (2) is always strict wheneverHppq ą Ipω; s1q ą

0, i.e., s1 is informative about ω but does not reveal it completely. This effect is
discussed in §6.3, where we prove a tighter bound in a more general setting. We also
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consider quadratic loss as an alternative measure of informativeness in Appendix C.
The bound in inequality (2) does not speak directly to the utility loss suffered by

a decision maker due to the privacy constraint. Suppose the dominant recommenda-
tion s‹2 is observed by a decision maker, who selects an action a P A and receives a
payoff of upω, aq. Such a decision maker may be interested in evaluating how good
the signal is in her decision problem. Her expected payoff can be expressed as

E
„

sup
σ : S2ÑA

upω, σps‹2qq



.

We assume that u is bounded from above and thus the indirect utility Upqq “

supaPA
`

p1 ´ qq ¨ up0, aq ` q ¨ up1, aq
˘

is a continuous convex function. The follow-
ing proposition provides an explicit formula for the decision-maker’s expected payoff.

Proposition 1. Consider the dominant privacy-preserving recommendation s‹2 for
pω, s1q with binary ω, and let F be the cumulative distribution function of pps1q. The
expected payoff of a decision maker with an indirect utility function U observing s‹2 is
equal to

ż

r0,1s

Up1´ F ptqq dt. (3)

The mutual information discussed above corresponds to a particular decision prob-
lem with Upqq “ Hppq ´Hpqq.

The proposition follows from Theorem 2. Indeed, the distribution of beliefs in-
duced by the dominant recommendation is the conjugate F̂ of F . Thus the expected
payoff of the decision maker observing s‹2 is given by

ż

r0,1s

Upqq dF̂ pqq.

Changing the variable t “ F̂ pqq and using the definition of the conjugate, we get
formula (3). Details can be found in Appendix B.7.

We end this section with two notes.

Three and More States. Beyond the binary state case, optimal privacy-preserving
recommendations are not unique (see Appendix D), and so the choice of the recom-
mendation can depend on the receiver’s decision problem. In this case, we do not
have a simple characterization or construction and leave this question as a direction
for future research.
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Approximate Privacy. Our notion of privacy is very strong, as it requires com-
plete independence between the signals. In some applications, it might be more
natural to impose a softer constraint. For example, one could imagine a recommen-
dation system that tries to maximize the difference between some utility, as described
above, and a privacy violation cost, e.g., the mutual information between s1 and s2.

This setup is closely related to the rational inattention literature. There, a classical
model (Sims, 2003) describes a decision maker who chooses s2 to maximize

ErUppps2qqs ´ λ ¨ Ipω; s2q,

where U is an indirect utility, and λ ą 0 captures the marginal cost of making the
signal s2 more informative. The approximate privacy model we refer to would involve
maximizing

ErUppps2qqs ´ λ ¨ Ips1; s2q. (4)

Exact privacy corresponds to the limit λÑ `8. However, our results may shed light
on the behavior of this problem even for fixed λ. For example, in the case of a binary
state, it is immediate that the solution to (4) Blackwell dominates the dominant
privacy-preserving recommendation s‹2 as Ips1; s‹2q “ 0.

Since rational inattention models are very well understood, some of the insights
from this literature could potentially be useful in studying approximate privacy. We
leave this as a direction for for future research.

5 Blackwell-Pareto Optimality and Sets of Uniqueness

In this section, we study Blackwell-Pareto optimality of private private information
in the general setting of n signals and a state ω that takes value in Ω “ t0, . . . ,m´

1u. Our main result shows that Blackwell-Pareto optimality can be characterized
using “sets of uniqueness”: subsets of r0, 1sn that are uniquely determined by their
projections to the n axes.

As a first step, we show that it is without loss of generality to focus on information
structures that are constructed similarly to the examples we have considered above:
each si is distributed uniformly on r0, 1s, and each value of ω corresponds to some
subset of r0, 1sn. That is, ω is a deterministic function of the signals (see Figures 1
and 2, as well as Figure 9 in the Appendix).
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More formally, let A “ pA0, . . . , Am´1q be a partition of r0, 1sn into measurable
sets. That is, each Ak is a measurable subset of r0, 1sn, the sets in A are disjoint, and
their union is equal to r0, 1sn.

Definition 7. The private private information structure associated with a partition
A “ pA0, . . . , Am´1q is I “ pω, s1, . . . , snq where ps1, . . . , snq are distributed uniformly
on r0, 1sn and tω “ ku is the event that tps1, . . . , snq P Aku.

Note that if A and A1 are partitions such that each symmetric difference Ak4A1k
has zero Lebesgue measure, then both are associated with the same information
structure, in the strong sense that the joint distributions of pω, s1, . . . , snq coincide.
Accordingly, we henceforth consider two subsets of r0, 1sn to be equal if they only
differ on a zero-measure set.

Private private information structures associated with partitions have two impor-
tant properties that make them useful. First, signals are uniform on r0, 1s, so that
one does not need to consider abstract signal spaces. Second, the collection of signals
ps1, . . . , snq reveals the state. The next result shows that—up to equivalence—these
assumptions are without loss of generality.

Proposition 2. For every private private information structure I, there exists a
partition A whose associated information structure I 1 is equivalent to I.

While the general proof contained in Appendix B.2 is not constructive, for struc-
tures with a finite number of signals and a binary state, we show in Appendix D.1
how to construct a partition with an equivalent associated structure.

The ideas behind the proof of this proposition are the following. Using standard
results, one can always reparameterize the signals so that they are uniformly dis-
tributed in r0, 1s. Thus the main challenge is to ensure that the state is determined
by the signals. To this end, given signals that do not determine the state, we add a
signal t that resolves the remaining uncertainty, so that ω is a deterministic function
of ps1, . . . , sn, tq. Then, we use a “secret sharing” technique (similar to Shamir, 1979)
to create a pair of independent random variables t1, t2 such that t is determined by
the pair pt1, t2q, but each ti is uninformative about the state and the other signals.12

12In the common uses of secret sharing t, t1, t2 are binary, while our construction requires that
they are distributed uniformly on r0, 1s.
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We then augment the signals s1 and s2 with the additional signals t1 and t2, re-
spectively. Thus the information structure

`

ω, ps1, t1q, ps2, t2q, . . . , sn
˘

is equivalent to
pω, s1, . . . , snq, but now the signals determine the state.

Proposition 2 implies that for the purpose of studying the Blackwell-Pareto op-
timality of private private signals, one can assume without loss of generality that
information structures are always associated with partitions. In particular, the ques-
tion of Blackwell-Pareto optimality can now be phrased as a question about partitions:
when does a partition A correspond to a Blackwell-Pareto optimal structure? Our
next result answers this question. We state this result for the case of a binary state,
as it involves significantly simpler notation; the result for a general finite state space
is given in Appendix B.3. In the case of a binary state, a partition A “ pA0, A1q is
determined by A1, since A0 is its complement. Hence, we will represent A by a single
set A “ A1. The information structure associated with A will refer to the structure
associated with the partition pAc, Aq.

Given a measurable set A Ď r0, 1sn, we define n functions pαA1 , . . . , αAn q that cap-
ture the projections of A to the n coordinate axes. Denote by λ the Lebesgue measure
on r0, 1sn´1. The projection αAi : r0, 1s Ñ r0, 1s of A to the ith axis is

αAi ptq “ λpty´i : pyi, y´iq P A, yi “ tuq.

If pω, s1, . . . , snq is the information structure associated with A, then αAi ptq is the
posterior induced by si “ t.

Definition 8. A measurable A Ď r0, 1sn is a set of uniqueness if for every measurable
B Ď r0, 1sn such that pαA1 , . . . , αAn q “ pαB1 , . . . , αBn q, it holds that A “ B.

Less formally, A is a set of uniqueness if it is determined by the projections
pαA1 , . . . , α

A
n q. The black area in the left panel of Figure 7 is an example of a set of

uniqueness. This follows from the fact that upward-closed sets of r0, 1s2 are sets of
uniqueness (see Theorem 4 below). Examples of sets that are not a set of uniqueness
are the black areas in the middle and right panels, as they are different but have the
same projections on the axes.

The main result of this section characterizes Blackwell-Pareto optimality in terms
of sets of uniqueness.

Theorem 3. A private private information structure is Blackwell-Pareto optimal if
and only if it is equivalent to a structure associated with a set of uniqueness A Ď

r0, 1sn.

23



Figure 7: The black area in the left panel is a set of uniqueness, since it is upward-
closed (Theorem 4). The middle and right panels are not sets of uniqueness, since
they are different but have the same projections on the axes.

The connection between Blackwell-Pareto optimality and sets of uniqueness may
seem surprising. To get some intuition, we first explain how we prove that Blackwell-
Pareto optimal structures are associated with sets of uniqueness. Consider a private
private structure associated with a set A that is not a set of uniqueness (for example,
the middle panel of Figure 7). We show that this structure can be improved. Since A
is not a set of uniqueness, there is a set B ‰ A that gives rise to an equivalent structure
(e.g., the shape in the right panel). By randomizing between the two structures using
an independent coin flip t, we arrive at another equivalent structure pω, s1, . . . , snq.
In this structure, the signals do not always determine the state and the coin flip t

resolving this uncertainty is informative about ω. Augmenting the first signal with t,
we obtain a private private information structure

`

ω, ps1, tq, s2, . . . , sn
˘

that dominates
the structure associated with A.

Conversely, suppose the information structure associated with A is not Blackwell-
Pareto optimal. By considering a Blackwell-Pareto dominating information structure
and garbling the signals, we can find a density f : r0, 1sn Ñ r0, 1s that is not an
indicator function, but has the same marginals as A. We next apply a result of
Gutmann, Kemperman, Reeds, and Shepp (1991): the set of densities valued in r0, 1s
with given marginals is a convex set whose extreme points are indicator functions.
Since f is not an indicator function, the corresponding convex set is not a singleton
and must have at least two different extreme points. There exists some other set with
the same marginals as A, so A is not a set of uniqueness.

Theorem 3 shows an equivalence between the two a priori unrelated notions of
Blackwell-Pareto optimality and sets of uniqueness; a similar result in Appendix B.3
establishes an analogous equivalence for arbitrary finite state spaces, generalizing sets
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of uniqueness to partitions of uniqueness. This connection lets us use characteriza-
tion results about sets of uniqueness to study Blackwell-Pareto optimality. Sets of
uniqueness have been studied since Lorentz (1949), who gives a simple characteri-
zation in the two-dimensional case. A version of his characterization, as we explain
below, leads to Theorem 1. Beyond the two-dimensional case, sets of uniqueness
have also been more recently studied in the mathematical tomography literature (e.g.,
Fishburn et al., 1990). We discuss below how these newer results help us understand
Blackwell-Pareto optimal structures.

To characterize sets of uniqueness in two dimensions, we will need the following
definitions. Say that A Ď r0, 1s2 is a rearrangement of B Ď r0, 1s2 if for i “ 1, 2

and every q P r0, 1s, the sets tt P r0, 1s : αAi ptq ď qu and tt P r0, 1s : αBi ptq ď qu

have the same Lebesgue measure. That is, αAi and αBi , when viewed as random
variables defined on r0, 1s, have the same distribution. This has a simple interpretation
in terms of information structures: A is a rearrangement of B if and only if the
two associated information structures are Blackwell equivalent. This is immediate
since in the information structure associated with A, αAi ptq is the belief induced by
si “ t. Recall that B Ď r0, 1sn is upward-closed if x “ px1, . . . , xnq P B implies that
y “ py1, . . . , ynq P B for all y ě x.

Theorem 4 (Lorentz (1949)). A measurable subset A Ď r0, 1s2 is a set of uniqueness
if and only if it is a rearrangement of an upward-closed set.

This formulation is different than the one that appears in the paper by Lorentz
(1949). We, therefore, show in the Appendix B.5 that it is an equivalent characteri-
zation. Theorem 1 is a consequence of Theorems 3 and 4.

When n ě 3, the known characterizations of sets of uniqueness are more involved
(Kellerer, 1993). However, there are simple necessary and simple sufficient condi-
tions. Upward closedness remains a necessary condition: any set of uniqueness is a
rearrangement of an upward-closed set. Combining this insight with Theorem 3, we
get the following corollary that can be seen as an extension of Theorem 1 for n ą 2

signals.

Corollary 2. For a binary state ω and n ě 2 signals, any Blackwell-Pareto optimal
private private information structure I “ pω, s1, . . . , snq is equivalent to a structure
associated with an upward-closed set A Ď r0, 1sn.
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Note that an upward closed set is pinned down by its frontier. By Corollary 2, this
frontier provides a natural parametrization to the corresponding superset of Blackwell-
Pareto optimal structures.

For n ě 3, upward-closedness is not a sufficient condition for a set to be a set of
uniqueness. In particular, not all upward-closed sets give rise to Blackwell-Pareto opti-
mal structures. A sufficient condition for uniqueness (Fishburn, Lagarias, Reeds, and
Shepp, 1990) is to be an additive set: this holds when there are bounded hi : r0, 1s Ñ R
such that

A “

#

x P r0, 1sn :
n
ÿ

i“1

hipxiq ě 0

+

.

Clearly, any additive set is upward-closed up to a rearrangement making each hi non-
decreasing. In two dimensions, the two concepts are equivalent, and so additivity
provides another characterization of the sets of uniqueness (and equivalently, of the
Blackwell-Pareto optimal structures). In higher dimensions (i.e., with three or more
signals), the sufficiency of additivity implies that every additive set is associated with
a Blackwell-Pareto optimal structure. With n ě 3, Kemperman (1991) demonstrated
that there are sets of uniqueness that are not additive. However, additivity is “almost
necessary”: Kellerer (1993) characterizes sets of uniqueness as the closure, in a certain
topology, of the class of additive sets.

In light of these results, progress in understanding Blackwell-Pareto optimal pri-
vate private structures for more than two signals is contingent on new breakthroughs
regarding these old questions. Another promising direction for future research is
to characterize Blackwell-Pareto optimal private private structures for a non-binary
state and two signals. As we discuss in Appendix B.3, this will require understanding
partitions of uniqueness with more than two elements. To the best of our knowledge,
this has not been investigated in the literature.

6 Information Design with Privacy Across Receivers

In this section, we consider a multi-receiver interpretation of our privacy constraint.
We study information design problems in which the designer supplies information to
several receivers and is constrained to using private private information structures.
As we illustrate in §6.1, such constraints may arise because the designer faces an
environment where compromising agents’ privacy leads to undesirable outcomes. In
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§6.2, we define our constrained information design problem and characterize a family
of designer objectives where the optimal information structure lies on the Blackwell-
Pareto frontier. In a special case, we give a more explicit characterization of the
optimal structure and show that it involves very few signal realizations. Finally, in
§6.3, we provide a general recipe for solving information design problems with privacy
across multiple receivers.

6.1 Motivating Example: Informing Bidders

As motivation for our privacy constraint, we outline an example scenario where pri-
vacy across receivers is crucial for the information designer’s objective.

Early auction design literature has pointed out that, in common value auctions,
the privacy of bidders’ information matters more than its accuracy for improving
bidders’ expected profits. Indeed, Milgrom and Weber (1982) demonstrate that if the
information of one bidder contains the information of another, then the latter bidder
gets zero profit. McAfee and Reny (1992) generalize these extreme examples to a
general Bayesian mechanism design context:

Introducing arbitrarily small amounts of correlation into the joint distribu-
tion of private information among the players is enough to render private
information valueless, in the sense that its possessors earn no rents.13

To understand the information design implications of this phenomenon, consider
the following example: a platform market where a seller sells a single unit of a good
to n ě 2 buyers. The buyers have a positive common value vpωq for the good, which
is determined by a random state ω P t0, 1u. The realized state ω is observed by
the platform only. Without information about ω, a seller can sell the good to one
of the buyers, charging her the expected value Ervpωqs. This leaves no surplus to
the buyers and no reason for them to stay on the platform.14 Thus, the platform
is interested in revealing some information about the state to the buyers to ensure
that they get positive surplus. What is the buyers’ welfare for different information

13The difference between full surplus extraction by McAfee and Reny (1992) and by Crémer and
McLean (1988) is that the former considers correlated signals about a common payoff-relevant state,
while the latter considers correlated private values.

14Especially if platform monetization relies on subscription fees.
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structures I “ pω, s1, . . . , snq, provided that the profit-maximizing seller can tailor
the mechanism to the platform’s choice of I?

First, observe that sending fully informative signals to all buyers leaves them with
no surplus. Indeed, the seller can ask one agent to report her value and sell the good
to another agent for a price equal to the reported value. The analogous argument
shows that identical (but not necessarily fully informative) signals also lead to full
surplus extraction.

Full surplus extraction persists even if there is only a tiny correlation between buy-
ers’ signals. Indeed, consider n “ 2 buyers and a family of information structures Iε
indexed by ε P r0, 0.25s, given by the following tables:

ω “ 1 s2 “ 1 s2 “ 0

s1 “ 1 0.5` 2ε 0.25´ ε

s1 “ 0 0.25´ ε 0

ω “ 0 s2 “ 1 s2 “ 0

s1 “ 1 0 0.25´ ε

s1 “ 0 0.25´ ε 0.5` 2ε

When ε “ 0, the two signals are independent, and we get a private private struc-
ture equivalent to the one in Figure 2. When ε “ 1{4, both signals are fully informative.
For any ε ą 0, the two signals are correlated, and we can show that the seller has
a profit-maximizing mechanism that fully extracts the buyers’ surplus. Inspired by
Crémer and McLean (1988), the idea is that the seller asks the buyers to report their
signals. The seller gives both buyers a large bonus if the reports match and charges
both a large penalty if the reports mismatch, so that each type’s expected transfer is
zero when reporting their signal truthfully but sufficiently negative when lying. The
seller then calculates the expected value of the good given the two reports and sells
it to the first buyer for this amount, extracting full surplus. Thus any ε ą 0 leaves
zero surplus to the buyers. For ε “ 0, the buyers’ surplus is positive since the seller
cannot use one buyer to learn about the other buyer’s signal, and thus, the buyers
retain information rents.

6.2 An Information Design Problem with a Privacy Constraint

More generally, in environments where compromising agents’ privacy leads to undesir-
able outcomes (such as full surplus extraction), the information designer is effectively
restricted to maximizing her objective over private private structures. This consid-
eration motivates a class of information design problems, where the designer aims to
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maximize some objective under a privacy constraint across agents.15

Consider a stylized information-design problem under a privacy constraint across
receivers. There are n receivers i P t1, 2, . . . , nu who have common prior p for a
state ω P Ω “ t1, . . . ,mu and observe signals ps1, . . . , snq. The designer’s goal is to
maximize

E
“

U
`

pps1q, pps2q, . . . , ppsnq
˘‰

(5)

over all private private information structures pω, s1, s2, . . . , snq. Here, U is the de-
signer’s utility depending on the profile of realized posterior beliefs.

For example, utilities of this form arise if each receiver has a decision problem to
solve, and the designer aims to maximize the social welfare. Suppose each receiver has
to choose an action ai P Ai after observing a signal si and receives a payoff uipω, aiq.
The social welfare is given by

E

«

ÿ

i

sup
σi : SiÑAi

uipω, σipsiqq

ff

, (6)

which can be rewritten in the form (5) with separable U

Upq1, . . . , qnq “ U1pq1q ` . . .` Unpqnq, (7)

with

Uipqq “ sup
aiPAi

˜

ÿ

kPΩ

qk ¨ uipk, aiq

¸

. (8)

Note that the utility Ui defined by (8)—as the upper envelope of affine functions
of q—is convex and continuous for any ui bounded from above. The following lemma
demonstrates that the convexity of U plays an important role as it allows the de-
signer to focus on Blackwell-Pareto optimal private private structures. Interestingly,
convexity in a single belief qi is enough, since the designer can always improve her ob-
jective by giving the residual informativeness to such agent i.16 The following result
is proved in Appendix B.8.

15In a concurrent paper, Strack and Yang (2024) consider a seller observing a signal about a buyer’s
value and design a signal for the buyer maximizing her welfare. To avoid full-surplus extraction, this
signal has to be independent of the seller’s. As the seller’s signal is given, only a single buyer’s signal
is to be designed. So, the resulting information design problem is closer in spirit to the optimal
privacy-preserving recommendation from Section 4 than to the multi-receiver problem discussed in
the current section.

16If U is convex in each argument, the designer aims to make each signal as informative as possible
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Lemma 1. Let U be an upper semicontinuous function of pq1, . . . , qnq, and suppose
there is at least one agent i such that U is convex in qi. Then, the optimal value
of (5) is attained at a Blackwell-Pareto optimal information structure.

We will now discuss the most tractable binary-state two-receiver setting with a
separable U , before turning to to the general case in §6.3.

Binary State, Two Receivers, and Separable Objective. Consider a binary ω,
two receivers, and Upp1, p2q “ U1pp1q ` U2pp2q. We assume that at least one of Ui
is convex. By Lemma 1, one can look for the optimal structures on the Blackwell-
Pareto frontier characterized in Theorem 1. While the frontier contains a rich set of
information structures, including some that induce a continuum of beliefs, the optimal
ones have a simpler form.

Proposition 3. Given a binary ω and continuous Upp1, p2q “ U1pp1q ` U2pp2q with
convex U2, there exists an optimal private private information structure pω, s1, s2q such
that s1 takes at most two values, s2 takes at most three values, and the distributions
of beliefs induced by s1 and s2 are conjugates. If both U1 and U2 are convex, there is
an optimal structure where both s1 and s2 are binary.

Recall that in the classical single-agent model of Kamenica and Gentzkow (2011),
signals with two possible values are enough for optimal persuasion. By Proposition 3,
to persuade a pair of receivers under our privacy constraint, we may need three.
On the other hand, the fact that only three suffice is surprising, since in multi-agent
persuasion without privacy, there is no such bound on the number of signal values, i.e.,
there are objectives requiring arbitrarily many signals (Arieli et al., 2021; Cichomski
and Osękowski, 2023). The proposition is proved in Appendix B.9 using a combination
of an extreme-point argument and the characterization of Blackwell-Pareto optimal
structures via conjugate distributions (Theorem 1).

To illustrate Proposition 3, we apply it to a simple example of social welfare
maximization (6). There are two equally likely states, Ai “ Ω “ t0, 1u, and each
agent gets utility 1 from matching the state and utility -1 from mismatching it, so
that u1pω, aq “ u2pω, aq “ 1 ´ 2|ω ´ a|. If we reveal the state to agent 1 and give

under the privacy constraint. Contrast this with the secret sharing of Shamir (1979), where the goal
is to split information in a way that each agent knows as little as possible both about others and
about ω.
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Figure 8: A social welfare-maximizing private private information structure for the
decision problem in which u1pω, aq “ u2pω, aq “ 1´ 2|ω ´ a| .

agent 2 no information, then the social welfare is 1. Consider instead a private
private information structure where each agent has a posterior belief of

a

1{2 with
probability

a

1{2 and a posterior belief of 0 with the complementary probability. Such
a structure exists as this distribution is its own conjugate: see also Figure 8. Then
the social welfare is 4 ´ 2

?
2 « 1.17. Let us check that this is the highest possible

social welfare across all private private information structures.
By Proposition 3, we can assume that the distribution of posteriors µ induced

by s1 is supported on two points. It has mean 1{2 since the average posterior equals
the prior, and thus can be represented as α

α`β
δ 1

2
´β `

β
α`β

δ 1
2
`α for some constants

α, β P p0, 1{2s, where δx denotes the point mass at x. The contribution of the first
agent to the welfare is, therefore, 4αβ

α`β
.

The conjugate distribution µ̂ takes the form
`

1
2
´ α

˘

δ0`pα`βqδ β
α`β
`
`

1
2
´ β

˘

δ1.
As the problem is state-symmetric, we can assume β ě α without loss of generality
and, hence, the middle atom of µ̂ is above 1{2. Therefore, the second agent contributes
1´ 2α to the welfare, and the total welfare equals 4αβ

α`β
` 1´ 2α. A simple calculation

shows that this is maximized when β “ 1{2 and α “
a

1{2 ´ 1{2, which yields the
structure described above.

6.3 A Feasibility Perspective on Privacy-Constrained Information Design

Consider the general information-design problem (5) where the designer is restricted
to private private information structures. So far, we have focused on the case where
the designer’s objective is maximized at a Blackwell-Pareto optimal structure. How-
ever, if the conditions of Lemma 1 are not satisfied, an optimal structure may not lie
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on the Blackwell-Pareto frontier. In this case, it is convenient to take the belief-based
approach of Kamenica and Gentzkow (2011), identifying information structures with
the belief distributions that they can induce and rewriting the designer’s problem as
the maximization over these distributions.

Definition 9. An n-tuple pµ1, . . . , µnq of probability measures on ∆pΩq is said to be
feasible under the constraint of privacy if there exists a private private information
structure I “ pω, s1, . . . , snq such that µi is the distribution of ppsiq.

The set of all distributions feasible under the constraint of privacy for a given
prior p P ∆pΩq and n agents is denoted by Fnppq Ă ∆pΩqˆ . . .ˆ∆pΩq. For example,
Figure 2 shows that for symmetric binary states and two agents, it is feasible for
both agents to have binary signals that induce beliefs of either 1{4 or 3{4. That is,
pµ1, µ2q P F2p1{2q for

µ1 “ µ2 “
1

2
δ1{4 `

1

2
δ3{4.

The designer’s objective (5) depends on the information structure only through the
belief distributions that it induces. Accordingly, the problem can be rewritten as the
maximization of

ż

∆pΩqˆ...ˆ∆pΩq

Upq1, . . . , qnq dµ1pq1q . . . dµnpqnq

over pµ1, . . . , µnq P Fnppq. To make this perspective useful, one needs to character-
ize the set of privacy-constrained feasible distributions Fnppq, and we focus on this
question for the remainder of this section.

We first give a simple characterization of the set of privacy-constrained feasible
distributions in the special case of two agents and a binary state, and then discuss
what happens in the general case.

A simple necessary condition for feasibility is given by the so-called martingale
condition, i.e., by the law of iterated expectations. It implies that if the posterior
ppsiq has distribution µi then the expected posterior

ş

q dµipqq must equal to the
prior distribution of ω. Thus a necessary condition for pµ1, . . . , µnq P Fnppq is that
ş

q dµipqq “
ş

q dµjpqq for all i and j.
To characterize feasible distributions, we relate them to Blackwell-Pareto opti-

mality. By Lemma 5 from the Appendix, any private private information structure is
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weakly dominated by a Blackwell-Pareto optimal one. Thus pµ1, . . . , µnq P Fnppq for
some prior p if and only if there exists a Blackwell-Pareto optimal structure repre-
sented by some pν1, . . . , νnq, such that each µi is a mean-preserving contraction of νi.
This holds since mean-preserving contractions of the posterior belief distributions
correspond to Blackwell dominance. By Blackwell’s theorem, one can take a struc-
ture with posteriors pν1, . . . , νnq, and apply an independent garbling to each signal to
arrive at a structure with posteriors pµ1, . . . , µnq.

This observation, together with Theorem 1, gives the following characterization
for the case of a binary state and two signals.

Corollary 3. For a binary state and two signals, a pair pµ1, µ2q of distributions
on r0, 1s belongs to F2ppq if and only if µ2 is a mean preserving contraction of the
conjugate of µ1 and p “

ş1

0
q1dµ1pq1q.17

This corollary generalizes partial results on privacy-constrained feasibility ob-
tained by Gutmann et al. (1991) and Arieli et al. (2021). For example, Proposition 2
of Arieli et al. (2021) focuses on µ1 “ µ2 “ µ being symmetric to reflection around
the prior p “ 1{2 and demonstrates that pµ, µq P F2p1{2q if and only if µ is a mean-
preserving contraction of the uniform distribution on r0, 1s. In Corollary 3, the two
states need not be equally likely, the two signals need not induce the same belief
distribution, and the belief distributions need not be symmetric around 1{2.

Corollary 3 provides a simple tool for checking feasibility. Indeed, by applying
a standard characterization of mean-preserving spreads, the pair pµ1, µ2q P F2ppq

is feasible if and only if they have the same expectation p, and the corresponding
cumulative distribution functions pF1, F2q satisfy

ż 1

y

F2pxq dx ě

ż 1

y

F̂1pxq dx

for every y P r0, 1s.

For n ě 2 signals, the characterization of Blackwell-Pareto optimal private private
structures via sets of uniqueness (Theorem 1) implies the following characterization
of feasible distributions.

Corollary 4. For n ě 2 signals, a collection pµ1, . . . , µnq of distributions on r0, 1s
belongs to Fnppq if and only if there exists a set of uniqueness A Ă r0, 1sn of Lebesgue

17For conjugates,
ş1

0
q1dµ1pq1q “

ş1

0
q2dµ2pq2q, so it is enough to impose this last condition on µ1.
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measure p such that each µi is a mean-preserving contraction of the belief distribution
induced by the signal si in the private private information structure pω, s1, . . . , snq

associated with A.

Note that one can replace sets of uniqueness A Ă r0, 1sn in Corollary 4 with any
other bigger collection of sets and the “if and only if” statement will continue to hold.
Indeed, for any set A Ă r0, 1sn, the information structure associated with A gives rise
to a feasible belief distribution. Thus by enlarging the family of A, we do not get any
new elements beyond Fnppq.

Accordingly, one can use the collection of all upward-closed sets A instead of sets
of uniqueness and obtain a tractable representation of all privacy-constrained feasible
distributions. In the context of the privacy-constrained information design problem,
this observation reduces the choice of information structure to choosing an upward-
closed set and, possibly, individual garbling.

Corollary 4 admits a straightforward extension to the general case of n ě 2 signals
and m ě 2 states by replacing sets of uniqueness with partitions of uniqueness and
relying on Theorem 5 from Appendix B.3 instead of Theorem 1.

7 Causal Strength and Responsiveness of Social Choice Rules

In this section, we consider applications of private private information structures to
causal inference and mechanism design. In both applications, we aim to understand
how strongly independent inputs can affect a common outcome.

7.1 Causal Strength

In causal inference, a collider is one of the basic causal structures. It represents
a situation where multiple independent causes s1, . . . , sn produce an effect ω (see,
e.g., Pearl, 2009).18 Consider, for example, two causes s1, s2—say, nature (DNA)
and nurture (socioeconomic status)—that produce an effect ω—say, the winning of
an Olympic medal. Assuming that s1 and s2 are independent, pω, s1, s2q is a private
private structure.

18In applied work, causes are often correlated. In this case, colliders are often applied to orthog-
onalized causes, obtained via a suitable version of the principal component analysis.
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More generally, any collider pω, s1, . . . , snq can be thought of as a private private
information structure, with the causes interpreted as signals and the effect interpreted
as the state. Similarly to private private signals, which cannot be simultaneously all
very informative, it is impossible for all causes to simultaneously influence the effect ω
too strongly. How strong can these causal strengths be?

Following the causal inference literature, we use mutual information to quantify
causes’ strength (Janzing et al., 2013). Recall that the Shannon entropy of a measure
q P ∆pΩq is

Hpqq “ ´
ÿ

kPΩ

qpkq log2pqpkqq. (9)

The mutual information between ω and si is given by

Ipω; siq “ H pErppsiqsq ´ ErHpppsiqqs. (10)

In information theory, entropy is often used to quantify the amount of randomness in
a distribution. Mutual information is then the expected reduction in this randomness,
and is used as a measure for the amount of information contained in a signal. These
notions are also used in economics, e.g., in the rational inattention literature (Sims,
2010; Matějka and McKay, 2015).

We can bound the causal strengths of different causes in a collider by bounding
the feasible profiles of mutual information Ipω; siq, i “ 1, . . . , n, in private private
information structures. Before turning to these mutual information bounds, we will
discuss another context motivating these results.

7.2 Responsiveness of Social Choice Rules

To elicit information from an agent, it is often important for the agent to know that
her report matters: that is, the social outcome is sufficiently responsive to her report.
For instance, an election in a large society where each ballot has a very low chance of
being pivotal provides little incentive for citizens to participate; see, e.g., Chamberlain
and Rothschild (1981).

We consider a general setting where a social choice rule aggregates agents’ reported
types into a public outcome. We ask how responsive this rule can be to individual
reports.

Consider an environment with n agents in a society, where agent i has a type ti
drawn from a set Ti according to a known distribution νi, independently across agents.
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A public outcome is chosen from a finite set Ω via a social choice rule F : T1 ˆ . . .ˆ

Tn Ñ ∆pΩq that maps the realized type profile to a possibly random outcome. For
example, ti P Rm

` may equal i’s value for each of m candidates, and ω P t1, . . . ,mu
determines which one gets elected. Or, ti P R may be the agent’s value for a good,
and ω P t1, . . . , nu specifies who gets it. We ignore incentive issues and assume that
agents report their true types to F . So, our results provide an upper bound on feasible
levels of responsiveness.

We measure the responsiveness of a social choice rule F to agent i’s report by
the mutual information Ipω; tiq; see (10). In other words, responsiveness captures the
amount of information about the public outcome that is contained in an individual’s
report. For example, in an election between two candidates, our measure of respon-
siveness is related to pivotality, defined as the difference in the winning probability of
the first candidate when an individual voter switches her vote. In more general envi-
ronments, responsiveness measures the average influence of an agent on the outcome
across different realizations of her type. By contrast, a natural extension of pivotality
to general type and outcome spaces looks at the maximal influence of an agent on
the outcome across all types of the agent, so that an agent is deemed influential even
if they are only decisive for the outcome for a rare type realization (Al-Najjar and
Smorodinsky, 2000).

A dictatorship is an example of a social choice rule highly responsive to a single
agent’s type. Intuitively, no rule can be highly responsive to all agents simultaneously.
We formalize this intuition by uncovering constraints that the profile of responsiveness
Ipω; tiq, i “ 1, . . . , n, must satisfy.

The key observation is that any social choice rule defines a private private infor-
mation structure. Indeed, consider type spaces Ti for i “ 1, . . . , n, type distributions
νi P ∆pTiq , and a social choice rule F : T1 ˆ . . . ˆ Tn Ñ ∆pΩq. This data defines a
joint distribution of the public outcome ω and types t1, . . . , tn. Interpreting types as
signals and the outcome as the state, we obtain that pω, t1, . . . , tnq is a private private
information structure, since the types of different agents are independent. Moreover,
responsiveness of F to agent i coincides with the informativeness of the signal ti
about ω. Thus understanding feasible profiles of responsiveness—similarly to causal
strength in colliders—boils down to the question of signal informativeness in private
private structures.
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7.3 Bounds on Signal Informativeness

Consider a private private information structure pω, s1, . . . , snq. Depending on the
application, s1, . . . , sn and ω can be interpreted as independent causes and the effect
they produce or as individual types and the outcome of a social choice rule. Our
goal is to understand how informative s1, . . . , sn can be about ω as measured by the
mutual information Ipω; siq, thus obtaining bounds on causal strength and the social
choice rule’s responsiveness in these settings.

Proposition 4. For any finite state space Ω and a private private structure pω, s1, . . . , snq,
ÿ

i

Ipω; siq ď Hppq,

where p P ∆pΩq is the prior distribution of ω.

In the context of causal inference, the proposition implies that the effect can
depend strongly only on a few independent causes. Similarly, a social choice rule can
only be strongly responsive to a few agents’ reports. In particular, if the social choice
rule treats all agents in the same way—so Ipω; siq has the same value for each i—the
responsiveness to each agent vanishes at the rate of 1{n as the size n of the population
gets large.

The fact that Ipω; siq ď Hppq for each i follows immediately from the definition
of mutual information. For general information structures (e.g., conditionally inde-
pendent signals), there are no further restrictions on the tuple pIpω; s1q, . . . , Ipω; snqq:
each can take any value between 0 and Hppq. Proposition 4 shows that the situation
is different when it comes to private private information structures. Here, the sum of
mutual information is bounded by the entropy of the prior over ω, so that the entropy
of ω behaves like a finite resource that needs to be split between the signals. The
proof of this proposition uses standard information-theoretic tools and is contained
in Appendix B.11.

Note that Ipω; siq can be expressed in terms of the prior distribution p and the
distribution of posteriors µi induced by si,

Ipω; siq “ H ppq ´

ż

Hpqq dµipqq, (11)

and so it is a Blackwell-equivalence invariant; see Definition 2. Thus Proposition 4 pro-
vides an easily-verifiable necessary condition for the feasibility of the tuple pµ1, . . . , µnq
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of posterior distributions.19

Proposition 4 suggests that one can think of private private structures as a way to
divide an “information pie” among the signals. However, this analogy happens to be
incomplete since there are negative externalities, making the sum of the pieces smaller
than the whole pie. We show this in the following strengthening of Proposition 4 for
a binary state.

Proposition 5. For a binary state and any private private structure pω, s1, . . . , snq,
ÿ

i

Ipω; siq ď Hppq ´ Cp
ÿ

iăj

Ipω; siq ¨ Ipω; sjq,

where p P r0, 1s is the prior of ω “ 1 and Cp “ 2 ln 2 ¨ p2p1´ pq2.

This proposition is proved in Appendix B.12. The proposition shows that, for a
binary state, while entropy is a finite resource, it cannot be perfectly divided among
the signals: the sum of mutual information is strictly less than the entropy of ω (as
long as at least two signals are informative). Thus, one can make the pie-cutting
analogy more precise by assuming that the pie is cut using a blunt knife. Beyond
binary ω, the impossibility of perfect division depends on the structure of the state
space—perfect division becomes possible if the state space has a product structure,
which requires |Ω| to be a composite number. For example, if ω is uniformly dis-
tributed over Ω “ t0, 1uˆ t0, 1, 2u, then the structure in which s1 is equal to the first
coordinate of ω and s2 is equal to the second satisfies Ipω; s1q ` Ipω; s2q “ Hppq, and
both signals are informative about ω.

So far, we have relied on entropy as a measure of uncertainty and defined infor-
mativeness as uncertainty reduction. By using a different measure of uncertainty, we
can obtain a different measure of informativeness, which would correspond to another
way of measuring causal strength or the social choice rule’s responsiveness. For exam-
ple, another popular measure of uncertainty is variance, which leads to the expected
reduction in variance as the measure of informativeness. In Appendix C, we show an
analog of Proposition 4 for this informativeness measure.

19Replacing the feasibility constraint with the more tractable constraint from Proposition 4 pro-
vides an upper bound on a designer’s objective in the privacy-constrained multi-agent information
design setting discussed in §6.3 and in the mechanism design setting from §8. One can also use the
proposition to easily show that some distributions are not feasible, e.g., the uniform distribution
over the 4-dimensional cube; to prove infeasibility of the uniform distribution over 3-dimensional
cube one needs to use tighter inequality from Proposition 5.
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8 Feasibility of Reduced-Form Social Choice Rules

In this section, we provide an application of private private signals to feasibility
questions in Bayesian mechanism design. In this literature, the one-agent marginals
of a multi-agent mechanism are known as its reduced forms. Pioneered by Matthews
(1984), Maskin and Riley (1984), and Border (1991), the reduced-form approach
allows the designer, instead of solving a multi-agent problem, to deal with a single-
agent problem under additional feasibility constraints.

We discuss a version of the reduced-form approach for public decision making in
a general setting where a social choice rule specifies a public outcome as a function
of agents’ independent types. We describe an equivalence between the feasibility of
reduced-form rules and the feasibility of private private belief distributions. Thus,
our results on feasible belief distributions—see §6.3 and §7.3—also speak to the fea-
sibility of reduced-form rules. This connection highlights the link between feasible
reduced forms and partitions of uniqueness. It also indicates the possible relevance of
information-theory concepts such as Shannon’s entropy to mechanism design. These
insights contribute to a diverse list of known connections of the reduced-form feasibil-
ity problem to majorization (Hart and Reny, 2015; Kleiner, Moldovanu, and Strack,
2021; Nikzad, 2022), support functions of convex sets (Goeree and Kushnir, 2016,
2023), network flows (Che, Kim, and Mierendorff, 2013; Zheng, 2023), and polyma-
troids (Vohra, 2011; Valenzuela-Stookey, 2022; Lang, 2022b).

Formally, consider the Bayesian mechanism design setting as discussed in §7.2
in the context of social choice rule responsiveness. There are n agents and a set Ω

of m public outcomes. Each agent i “ 1, . . . , n has a type ti P Ti, where the sets of
types Ti are arbitrary measurable spaces, and ti are random draws from νi P ∆pTiq,
independent across agents. To simplify the statements, we assume that each νi is
non-atomic.20 For example, ti P Rm

` may equal i’s value for each of m public projects,
and ω P t1, . . . ,mu determines which project gets implemented.

A social choice rule F selects a randomized outcome for each profile of types,21

i.e., F : T1 ˆ . . . ˆ Tn Ñ ∆pΩq. As each agent i only knows her own type, the
20Our results can be applied to atomic type distributions by augmenting each agent’s type with

an auxiliary dimension independently distributed on r0, 1s independently of the rest of the variables.
21One could augment a mechanism by a vector of transfers, but they are irrelevant to the question

of feasibility; see, e.g., Gopalan, Nisan, and Roughgarden (2018).
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relevant information for i about F is captured by the reduced-form rule Fi : Ti Ñ ∆pΩq

obtained by averaging of F over t´i, i.e.,

Fiptiq “

ż

T´i

F pti, t´iq dν´ipt´iq.

The idea dating back to Maskin and Riley (1984) and Matthews (1984) is that con-
straints of Bayesian incentive compatibility, interim individual rationality, and rev-
enue or welfare objectives can all be reformulated in terms of the collection of reduced
forms pF1, . . . , Fnq rather than F . Thus, a multi-agent mechanism design problem
boils down to a collection of single-agent ones if we know which reduced forms are
feasible.

Definition 10. Single-agent rules pF1, . . . , Fnq with Fi : Ti Ñ ∆pΩq are feasible re-
duced forms for given type distributions νi P ∆pTiq if there is an n-agent social choice
rule F such that Fi are its reduced forms.

The feasibility of reduced-form rules turns out to be tightly related to the fea-
sibility of belief distributions induced by private private information structures, as
studied in §6.3. Recall that an n-tuple of distributions pµ1, . . . , µnq is feasible under
privacy constraint (Fedor: TODO: under privacy constraint) if there is a private
private information structure pω, s1, . . . , snq such that the belief ppsiq is distributed
according to µi for each i “ 1, . . . , n; see Definition 9.

Claim 1. Let Fi : Ti Ñ ∆pΩq, i “ 1, . . . , n, be a collection of single-agent rules, and
each agent’s type ti P Ti be distributed according to non-atomic νi P ∆pTiq. Denote
the distribution of Fiptiq by µi. Then pF1, . . . , Fnq are feasible reduced forms if and
only if pµ1, . . . , µnq are feasible belief distributions.

The idea behind the claim is that the agents’ types can be interpreted as “signals”
about the outcome.

Proof. Each social choice rule F defines a joint distribution of the outcome ω and
the types pt1, . . . , tn). Interpreting ω as the state and types as independent signals
about ω, we conclude that the posterior belief pptiq equals the reduced-form rule
Fiptiq. This equivalence completes the proof.

The connection to private private signals provides structural insights about mech-
anisms. By Claim 1, any social choice rule F can be interpreted as a private private
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information structure, where Fiptiq plays a role of the posterior of agent i. Propo-
sition 2 implies that for any private private information structure with non-atomic
distributions of signals, there is an equivalent one where the signal spaces are the
same and the posteriors are the same after each signal realization, but the state is a
deterministic function of signals.

Corollary 5. For non-atomic distributions of types νi P ∆pTiq and a social choice
rule F : T1ˆ . . .ˆTn Ñ ∆pΩq with a finite set of outcomes Ω, there exists another rule
F 1 with the same reduced forms F 1i “ Fi and such that ω is a deterministic function
of types.

This equivalence of deterministic and stochastic mechanisms has recently been
established by Chen, He, Li, and Sun (2019). We show that their main result can
alternatively be obtained from our analysis of private private signals. In particular,
Corollary 5 implies that a designer maximizing revenue, welfare, or any other objective
that can be expressed through reduced forms can focus on deterministic mechanisms
without loss of generality. However, it is important to make sure that agents’ types
contain enough randomness for the derandomization result to apply. For example, it
is known that there is a revenue gap between deterministic and stochastic multi-good
auctions with atomic value distributions. (Fedor: TODO: find a reference)

We note that our setting also captures auction design, which has been the main
focus of the literature on reduced-form approach. Indeed, each ti P R may represent
the agent’s value for a private good while ω P t1, . . . , nu specifies who gets it. However,
in private good allocation, each agent i typically cares only about her own probability
of getting the good, i.e., about the i’s component Fiptiqpiq P r0, 1s rather than the
whole vector Fiptiq P ∆pΩq. Accordingly, it is common to call Fiptiqpiq the reduced
form of F for agent i in the context of private-good allocation. A version of Claim 1
in that context has appeared in concurrent papers by Lang (2022a, 2023).

(Fedor: TODO cite with a star everywhere)
Claim 1 allows one to use our feasibility results about belief distributions —criteria

from Corollaries 3 and 4 and necessary conditions from Propositions 4, 5, and 6—to
make statements about the feasibility of reduced-form mechanisms. For example,
taking into account that one can replace the sets of uniqueness in Corollary 4 with a
broader family of upward-closed sets, we get the following result.
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Corollary 6. For a binary outcome space Ω “ t0, 1u, single-agent rules pF1, . . . , Fnq

are feasible reduced forms if and only if there exists an upward-closed set A Ă r0, 1sn

such that the distribution of each Fiptiq is a mean-preserving contraction of the dis-
tribution of beliefs induced by signal si in the private private information structure
pω, s1, . . . , snq associated with A.

Similarly to Corollary 4, this result admits a straightforward extension for ar-
bitrary finite outcome spaces Ω, where the role of the set A will be played by a
partition of uniqueness. These general feasibility criteria resemble the majorization
requirements obtained by Hart and Reny (2015) and Kleiner, Moldovanu, and Strack
(2021) for symmetric auctions, and can be thought of as an extension of these results
to public decisions and non-symmetric mechanisms. The only crucial difference is
that, instead of a single dominating distribution, we get a family of such distributions
indexed by sets of uniqueness A. The necessity of checking a continuum of domi-
nating distributions may serve as an explanation for the computational intractability
of the feasibility problem for public decisions, established by Gopalan, Nisan, and
Roughgarden (2018).

For n “ 2 agents, private good allocation is essentially equivalent to public de-
cisions with binary Ω. Indeed, suppose that a good is allocated to one of the two
agents via a social choice rule F : T1ˆT2 Ñ ∆pt1, 2uq. Then Fiptiqp1q`Fiptiqp2q “ 1,
since the good is never retained. Thus, keeping track of F1pt1qp1q and F2pt2qp2q is
enough to reconstruct F1 and F2. Allowing the designer to retain the good would
only decrease F1pt1qp1q and F2pt2qp2q pointwise. We obtain the following corollary of
our characterization of feasibility via conjugate distributions.

Corollary 7. Suppose a private good is allocated to one of two agents or retained
by the designer using a social choice rule F : T1 ˆ T2 Ñ ∆pt1, 2,Huq. For a pair of
functions Qi : Ti Ñ r0, 1s, i “ 1, 2, there exists F such that Qiptiq “ Fiptiqpiq if and
only if there is a pair of distributions Gi that are conjugates—i.e., G2 “ Ĝ1—such
that the distribution of Qiptiq is first-order stochastically dominated by Gi.

For the symmetric case of Q1 “ Q2 studied by Hart and Reny (2015), one can take
G1 “ G2. Since the only self-conjugate distribution is the uniform one, we deduce
the two-agent case of the characterization by Hart and Reny (2015) from Corollary 7.
The corollary shows that their result naturally extends to asymmetric mechanisms.

42



In that setting, the connection between feasibility and majorization has not been
known; see, e.g., Che, Kim, and Mierendorff (2013).
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Appendix

A Influencing Competitors in Zero-Sum Games

Here, we outline another applications of private private signals. Suppose agents com-
pete in a zero-sum game, and a designer who knows the state wishes to influence how
agents’ actions correlate with the state. We show that equilibrium signals must be
private private. So, our bounds on the informativeness of private private signals limit
how much the designer can adapt the agents’ actions to the state, thus constraining
the designer’s payoffs.

Consider a zero-sum game played by two players. The action set of player i P t1, 2u
is Ai, which we take to be finite, and the utilities are given by u1 “ ´u2 “ u for some
u : A1 ˆ A2 Ñ R. We assume that this game has a unique mixed Nash equilibrium,
which holds for generic zero-sum games (Viossat, 2008).

There is a random state ω taking value in Ω. The two players do not know the
state and their payoffs do not depend on it. But, there is another agent (the designer)
who knows the state and has a utility function ud : ΩˆA1 ˆA2 that depends on the
state and the actions of the players. This can model a setting where a designer
wants to influence the actions of two competitors, with the designer’s preference over
actions given by her private type ω. The designer commits to a (not necessarily
private private) information structure pω, s1, s2q. When the state ω is realized, the
designer observes it and sends the signal s1 to player 1 and s2 to player 2. The players
choose their actions after observing the signals.

As a simple example, suppose the game is rock-paper-scissors, so that A1 “ A2 “

tR,P, Su and upa1, a2q equals 1 on tpP,Rq, pR, Sq, pS, P qu, zero on the diagonal, and
´1 on the remaining action pairs. The state ω takes values in t0, 1u and is equal to
1 with probability 1{2. The designer gets a payoff of 1 for each player who chooses
scissors in the high state or chooses rock in the low state.

A pure strategy of player i is a map fi : Si Ñ Ai, and a mixed strategy σi is a
random pure strategy. An equilibrium consists of an information structure together
with a strategy profile pσ1, σ2q such that each agent maximizes her expected utility
given her signal. That is, for every si P Si and ai P Ai

Eruipσipsiq, σ´ips´iqq|sis ě Eruipai, σ´ips´iqq|sis.
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This is just the incentive compatibility condition of a correlated equilibrium, and so,
by a direct revelation argument, we can assume that Si “ Ai and that σi is always the
identity: in equilibrium, the designer recommends an action to each agent, and the
agents follow the recommendations. We refer to such equilibria as direct-revelation
equilibria.

The next claim shows that private private information structures arise endoge-
nously in this setting.

Claim 2. In every direct-revelation equilibrium, the information structure pω, s1, s2q

is a private private information structure.

Proof. A zero-sum game with a unique Nash equilibrium has a unique correlated
equilibrium which is equal to that Nash equilibrium (Forges, 1990). Thus ps1, s2q

form a Nash equilibrium, and in particular s1 must be independent of s2.

The intuition behind this result is simple: revealing to player i any information
about the recommendation given to player ´i gives i an advantage that she can
exploit to increase her expected utility beyond the value of the game. But player ´i
can guarantee that i does not get more than the value, and hence si cannot contain
any information about s´i. Note that Claim 2 applies beyond generic zero-sum games
to any game with any number of players, provided that it has a unique correlated
equilibrium.22

In the rock-paper-scissors example above, the joint distribution of ps1, s2q must
be uniform over tR,P, Su ˆ tR,P, Su, by Claim 2. However, the designer is free to
choose the joint distribution between ps1, s2q and ω. Thus her problem is to maxi-
mize Erudpω, s1, s2qs over all structures in which ps1, s2q is uniform over tR,P, Su ˆ
tR,P, Su. Choosing ps1, s2q independently of ω yields a payoff of 6{9. A straight-
forward calculation shows that an optimal structure yields her a payoff of 10{9. By
comparison, in a relaxed problem where the designer is allowed to dictate the players’
actions without worrying about the privacy constraint, she can achieve utility 2 by

22The set of games with a unique correlated equilibrium is open (Viossat, 2008), so a small
enough perturbation of (for example) the rock-paper-scissors game will still have a unique correlated
equilibrium, although it will not be zero-sum. As a side note, we are unaware of interesting examples
of three-player games with a unique mixed correlated equilibrium. In particular, the following
question is open, to the best of our knowledge: does there exist a three-player game with a unique
correlated equilibrium in which no player plays a pure strategy?
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revealing the state to both players, telling them to both choose scissors when the
state is high and rock when the state is low.

Beyond the specifics of the rock-paper-scissors example, the fact that equilibrium
signals are private private means that any bound on the informativeness of private
private signals yields a bound on the designer’s equilibrium utility: if the designer’s
recommendations only contain a limited amount of information about the state, then
she cannot hope that the players’ actions efficiently adapt to the state and yield her
high utility. Thus our results, including Theorem 1 and Propositions 4, 5, and 6,
constrain what can be achieved by the designer in any such setting.

B Omitted Proofs

Note that we sometimes prove results in a different order than the order that they
appear in the main text since some of the results we state earlier are implied by some
of the later results.

B.1 Preliminary Lemmas

Let I “ pω, s1, . . . , snq be a private private information structure. The signals
s1, . . . , sn can be combined into a new signal s “ ps1, . . . , snq. The following lemma
gives a lower bound on the informativeness of the combined signal s in terms of the
informativeness of the individual signals. It can be seen as superadditivity of mutual
information for independent signals. Recall that the mutual information Ipω ; sq is
defined in (10).

Lemma 2. For a private private information structure pω, s1, . . . , snq the following
inequality holds

n
ÿ

i“1

I
`

ω ; si
˘

ď I
`

ω ; ps1, . . . , snq
˘

. (12)

Proof. The result for n ě 3 follows from the result for n “ 2 by applying it sequentially
to ps1, . . . , skq for k ď n. Consequently, in the rest of the proof we assume n “ 2.

Our goal is to show that ∆ “ I
`

ω ; ps1, s2q
˘

´ I
`

ω ; s1

˘

´ I
`

ω ; s2

˘

ě 0. Let
p1pkq “ pps1qpkq “ Prω “ k | s1s, define p2 likewise, and let p12pkq “ pps1, s2qpkq “

Prω “ k | s1, s2s. Let p denote the prior distribution of ω. By the martingale property
Erp12 | pis “ pi and Erpis “ p.
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Using this notation and the definition of mutual information, we can write for
i P t1, 2u

I
`

ω ; si
˘

“ E

«

ÿ

k

pipkq log
pipkq

ppkq

ff

and I
`

ω ; s1, s2

˘

“ E

«

ÿ

k

p12pkq log
p12pkq

ppkq

ff

.

By the martingale property we can replace the first pi by p12:

I
`

ω ; si
˘

“ E

«

ÿ

k

p12pkq log
pipkq

ppkq

ff

.

Thus

∆ “ ´E

«

ÿ

k

p12pkq log
p1pkqp2pkq

p12pkqppkq

ff

.

Applying Jensen’s inequality to the logarithm, we get that

∆ ě ´ logE

«

ÿ

k

p12pkq
p1pkqp2pkq

p12pkqppkq

ff

.

By cancelling and rearranging, we get

∆ ě ´ log
ÿ

k

1

ppkq
Erp1pkqp2pkqs.

Since p1pkq and p2pkq are independent,

∆ ě ´ log
ÿ

k

1

ppkq
Erp1pkqsErp2pkqs.

By the martingale property Erpipkqs “ ppkq, and so ∆ ě ´ log
ř

k ppkq “ 0.

Note that this proof only used the independence of ps1, s2q to the extent that it
implies that pps1q is uncorrelated with pps2q.

To show that a given private private information structure I “ pω, s1, . . . , snq

is Blackwell-Pareto dominated, we will often use the following technique: construct
an additional informative signal t independent of s1, . . . , sn, and augment one of si
with t, say, the first one. The new information structure I 1 “ pω, ps1, tq, s2, . . . , snq

strictly dominates I thanks to the following direct corollary of Lemma 2.

Corollary 8. Fix ω, and consider a pair of signals s and t such that
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• s and t are independent, and

• t is not independent of ω.

Then the information structure pω, ps, tqq strictly dominates pω, sq with respect to the
Blackwell order.

Proof. Clearly pω, sq is weakly dominated by pω, ps, tqq. We show that this domination
is strict.

Since t is informative, Ipω; tq ą 0. Hence, by Lemma 2, Ipω; ps, tqq ě Ipω; sq `

Ipω; tq ą Ipω; sq. Since Ipω; sq is the value of a particular decision problem (where
the indirect utility is given by a constant minus the entropy), it follows that pω, ps, tqq
strictly dominates pω, sq.

The next lemma shows that, without loss of generality, induced posteriors are
equal to signals, which can be seen as a version of the revelation principle for private
private information structures.

Lemma 3. Any private private information structure I “ pω, s1, . . . , snq is equivalent
to J “ pω, t1, . . . , tnq where each signal ti is the posterior ppsiq in the structure I.

Proof. By the law of total expectation, pptiq “ ti. It follows that ppsiq and pptiq have
the same distribution, and so are Blackwell equivalent.

For a private private information structure I “ pω, s1, . . . , snq, recall that we
denote by µi P ∆p∆pΩqq the distribution of the belief ppsiq. Let M Ă ∆p∆pΩqqn be
the set of feasible distributions µ1, . . . , µn, i.e., those that correspond to some private
private information structure I.

Lemma 4. The set of feasible distributions M is compact in the topology of weak
convergence.

Proof. Since the set of probability measures ∆p∆pΩqq is compact, to prove the com-
pactness of M, it is enough to check that it is closed. In other words, we need
to check that if a sequence of feasible distributions pµl1, . . . , µlnq weakly converges to
pµ81 , . . . , µ

8
n q as l Ñ 8, then the limit is also feasible.

Let I l “ pω, sl1, . . . , s
l
nq be an information structure inducing pµl1, . . . , µlnq. By

Lemma 3, we can assume without loss of generality that the signals sli are in ∆pΩq
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and they coincide with the induced beliefs, i.e., p
`

sli
˘

“ si. Let ψl P ∆pΩ ˆ∆pΩqnq

be the joint distribution of ω and the beliefs sl1, . . . , sln. By compactness of the set of
probability measures, we can extract a subsequence of ψl converging to some ψ8. By
definition, the marginal of ψ8 on the belief coordinates equals µ81 ˆ . . .ˆ µ8n .

Consider a private private information structure I8 “ pω, s81 , . . . , s
8
n q, where

signals s8i belong to ∆pΩq and the joint distribution of the state and signals is given
by ψ8. Each signal s8i has distribution µ8i . Let us check that the induced beliefs
coincide with signals, i.e., p

`

s8i
˘

pkq “ s8i pkq almost surely for each k P Ω. We verify
an equivalent integrated version of this identity:

ż

˜

ÿ

k

hpk, s8i qpps
8
i qpkq

¸

dψ8 “

ż

˜

ÿ

k

hpk, s8i qs
8
i pkq

¸

dψ8 (13)

for any continuous function h on Ωˆ∆pΩq. Since the left-hand side is just the integral
of h, this is equivalent to

ż

hpω, s8i qdψ
8
“

ż

˜

ÿ

k

hpk, s8i qs
8
i pkq

¸

dψ8. (14)

For each l ă 8, the beliefs in I l coincide with the signals, i.e.,

ż

hpω, sliqdψ
l
“

ż

˜

ÿ

k

hpk, sliqs
l
ipkq

¸

dψl.

As integration of a continuous function commutes with taking weak limits, letting l
go to infinity, we obtain (14).

We conclude that each belief p
`

s8i
˘

in I8 coincides with the signal s8i and the
latter is distributed according to µ8i . Therefore, pµ81 , . . . , µ8n q is feasible and so the
set of feasible distributions is closed and thus compact.

The next lemma shows that our order on private private information structures
is well-behaved, in the sense that each structure is dominated by a Blackwell-Pareto
optimal one: each element of the partially ordered set of private private information
structures is upper bounded by a maximal element.

Lemma 5. For any private private information structure I “ pω, s1, . . . , snq, there
exists a Blackwell-Pareto optimal structure I 1 “ pω, s11, . . . , s

1
nq that weakly domi-

nates I.
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Proof. Recall that I ĺ J if for any continuous convex ϕ : ∆pΩq Ñ R and any i “
1, . . . , n,

ż

ϕpqqdµipqq ď

ż

ϕpqqdνipqq (15)

where µi and νi are the distributions of beliefs induced by i’s signal in I and J ,
respectively.

We say that the collection of distributions pµ1, . . . , µnq is dominated by pν, . . . , νnq
if (15) holds. Hence, J dominates I if and only if the distributions of beliefs in J
dominate those in I. If µli Ñ µ8i and νli Ñ ν8i weakly as l Ñ 8 and pνl1, . . . , νlnq
dominates pµl1, . . . , µlnq, then pν81 , . . . , ν8n q dominates pµ81 , . . . , µ8n q as integration of
a continuous function ϕ in (15) is exchangeable with taking weak limits. Thus the
dominance order on distributions is continuous in the weak topology.

Let pµ1, . . . , µnq be the distributions of posteriors induced by I and let M be
the set of feasible distributions endowed with the weak topology. As M is compact
by Lemma 4 and the dominance order is continuous, there is a maximal element
pν1, . . . , νnq PM dominating pµ1, . . . , µnq. Since pν1, . . . , νnq is feasible, it is induced
by some private private information structure I 1. By the construction, I 1 dominates
I and is Blackwell-Pareto optimal.

B.2 Proof of Proposition 2

We need to show that, given a private private information structure I “ pω, s1, . . . , snq

with Ω “ t0, . . .m ´ 1u, there is an equivalent structure associated with a partition
A “ pA0, . . . , Am´1q of r0, 1sn. The construction relies on two lemmas. Lemma 6
shows that assuming signals si are uniform on r0, 1s is without loss of generality.
Hence it remains to show that there is an equivalent information structure where
signal realizations determine the state. This is done using a secret-sharing scheme
from Lemma 7.

Lemma 6. For any private private information structure I “ pω, s1, . . . , snq, there
is an equivalent private private information structure I 1 “ pω, s11, . . . , s

1
nq such that

each s1i is uniformly distributed on r0, 1s.

Proof. Consider the information structure J “ pω, t1, . . . , tnq where ti “ psi, riq, and
each ri is independent and uniformly distributed on r0, 1s. Clearly, I and J are
equivalent. As ti is nonatomic, and since all standard nonatomic probability spaces
are isomorphic, ti can be reparametrized to be uniform on r0, 1s.
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We say that a signal t is split into r1 and r2 if t is a function of r1 and r2, i.e.,
t “ fpr1, r2q.

Lemma 7. A signal t distributed uniformly on r0, 1s can be split into r1 and r2 such
that each ri is uniformly distributed on r0, 1s and the three random variables t, r1,
and r2 are pairwise independent. Furthermore, if t1 is an additional signal that is
independent of t, then we can take the pair pr1, r2q to be independent of t1.

This lemma extends the classic secret sharing idea from cryptography which ap-
plies to discrete random variables. The proof, by construction, is immediate.23

Proof. Denote by txu the number x rounded down to the nearest integer, and denote
by fracpxq “ x´ txu the fractional part of x P R. Take r1 independent of both t and
t1 and distributed uniformly on r0, 1s, and let r2 “ fracpr1` tq. Then t “ fracpr2´ r1q

and r1, r2, and t are easily seen to be pairwise independent and also independent of
t1 altogether.

With the help of Lemmas 6 and 7, we are ready to prove Proposition 2.

Proof of Proposition 2. We are given a private private information structure I “

pω, s1, . . . , snq with sets of signal realizations Si, i “ 1, . . . , n. We aim to construct
an equivalent one, I 1, where each signal s1i is uniformly distributed on r0, 1s and the
realization of signals ps11, . . . , s1nq determines the state or, equivalently, I 1 is associated
with some partition A “ pA1, . . . , Am´1q of r0, 1sn.

By Lemma 6, we can find a private private information structure pω, t1, . . . , tnq
equivalent to I where each ti is uniformly distributed in r0, 1s. If the signals pt1, . . . , tnq
determine the state, then the proof is completed.

Consider the case where pt1, . . . , tnq do not determine the state ω. To capture the
uncertainty in ω remaining after the signals have been realized, we construct a new
signal t as follows.

Let q : r0, 1sn Ñ ∆pΩq be a conditional distribution of ω given all the signals,
i.e., qpx1, . . . , xnqpkq “ Prω “ k | t1 “ x1, . . . , tn “ xns for any k P Ω. With each
distribution q P ∆pΩq we associate a partition of r0, 1q into m intervals

Bkpqq “

«

k´1
ÿ

l“0

qplq,
k
ÿ

l“0

qplq

¸

, k “ 0, . . . ,m´ 1.

23We are thankful to Tristan Tomala for suggesting this construction.
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The length of Bkpqq equals the mass assigned by q to ω “ k. Let t be a random
variable uniformly distributed on r0, 1s and independent of pt1, . . . , tnq. Consider a
new state variable ω1 P Ω such that ω1 “ k whenever t P Bk

`

qpt1, . . . , tnq
˘

. By
definition, the joint distributions of pω, t1, . . . , tnq and pω1, t1, . . . , tnq coincide and,
therefore, the two structures are equivalent.

The new state ω1 is determined by the realizations of t1, . . . , tn and the new signal
t. Using Lemma 7, we split the signal t into r1 and r2 that are independent of each
other, and where each ri is independent of t. Note that, by this lemma, we can
take r1 and r2 to be independent of pt1, . . . , tnq. Since each ri is uninformative of t,
the structure pω1, pt1, r1q, pt2, r2q, t3, . . . , tnq where r1 augments the first signal and r2

augments the second one is a private private structure equivalent to I. Since t is a
function of r1 and r2, the signals pt1, r1q, pt2, r2q, t3, . . . , tn determine the state.

It remains to reparameterize the first two signals so that, instead of being uniform
on r0, 1s2, they become uniform on r0, 1s. Consider any bijection h : r0, 1s2 Ñ r0, 1s

preserving the Lebesgue measure; such a bijection exists since both are standard
nonatomic spaces. and define s11 “ hpt1, r1q, s12 “ hpt2, r2q, and s1i “ ti for i “ 3, . . . , n.
The private private information structure I 1 “ pω1, s11, s12, . . . , s1nq is equivalent to I,
all the signals are uniform on r0, 1s, and the realization of signals determines ω1.

B.3 Proof of Theorem 3

We formulate and prove an extension of Theorem 3 applicable to non-binary sets of
states Ω “ t0, 1, . . . ,m´ 1u.

Consider a partition of r0, 1sn into m measurable sets A “ pA0, . . . Am´1q. Recall
that the structure I “ pω, s1, . . . , smq is said to be associated with a partition A if
all the signals are uniform on r0, 1s and ω “ k whenever ps1, . . . snq P Ak.

We say that two partitions A “ pA0, . . . Am´1q and B “ pB0, . . . Bm´1q are equal
if Ak and Bk differ by a set of zero Lebesgue measure for each k. Recall that the
projection of a measurable set A Ď r0, 1sn on the ith coordinate is denoted by αAi

(see §5). The notion of sets of uniqueness from §5 extends to partitions as follows.

Definition 11. A partition A “ pA0, . . . , Am´1q is a partition of uniqueness if for
any partition B “ pB0, . . . , Bm´1q such that αAki “ αBki for all i and k, it holds that
A “ B.
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Theorem 5 (Extension of Theorem 3 to m states). A private private information
structure I is Blackwell-Pareto optimal if and only if it is equivalent to a structure
associated with a partition of uniqueness A.

Note that in the case of m “ 2 states, a set A1 in a partition A “ pA0, A1q deter-
mines A0 “ r0, 1s

nzA1. Hence, A “ pA0, A1q is a partition of uniqueness if and only if
A1 is a set of uniqueness. Hence, Theorem 3 is an immediate corollary of its extended
version. For an application of the theorem for m ą 2, see the example contained in
Appendix D. This example also demonstrates that partitions of uniqueness are not
necessarily composed of sets of uniqueness for m ą 2 and, hence, the requirement of
a partition to be a partition of uniqueness does not boil down to restrictions on its
elements unless m “ 2.

The proof of the theorem is split into a sequence of lemmas. We say that a private
private information structure is perfect if the realizations of all the signals together
determine the realization of ω, i.e., there exists a function f : S1 ˆ . . . ˆ Sn Ñ Ω

such that ω “ fps1, . . . , snq. In particular, a structure with signals uniform in r0, 1s
is associated with some partition if and only if it is perfect.

The next lemma shows that perfection is necessary for Blackwell-Pareto optimal-
ity.

Lemma 8. If a private private information structure I “ pω, s1, . . . , snq is equivalent
to a structure that is not perfect, then I is not Blackwell-Pareto optimal.

The construction of the Blackwell-Pareto improvement resembles the proof of
Proposition 2 except for the fact that the newly constructed signal is revealed entirely
on top of one of the existing signals thus strictly improving its informativeness in the
Blackwell order by Corollary 8.

Proof. Without loss of generality, I itself is imperfect. Let q : S1 ˆ . . .ˆ Sn Ñ ∆pΩq

be the distribution of ω conditional on s1 “ x1, . . . , sn “ xn, i.e., qpx1, . . . , xnqpkq “

Prω “ k | s1 “ x1, . . . , sn “ xns, k “ 0, . . . ,m´ 1. Since I is not perfect, we can find
a state k0 P Ω such that the event tω “ k0u is not always determined by the signals.
That is, the random variable qps1, . . . , snqpk0q does not always take values in t0, 1u.
Without loss of generality, we assume that k0 “ 0. With each q P ∆pΩq we associate
a partition of r0, 1q “

Ů

kPΩBkpqq, where

Bkpqq “
“

qpt0, . . . , k ´ 1uq, qpt0, . . . , kuq
˘

, k “ 0, . . . ,m´ 1
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so that the length of Bkpqq equals qpkq.
We construct a new equivalent structure with an extra signal t as in the proof

of Proposition 2. Let t be a random variable uniformly distributed on r0, 1s and
independent of s1, . . . , sn. Define a new state ω1 as a function of these variables in
the following way: ω1 “ k whenever t P Bk

`

qps1, . . . , snq
˘

. The joint distribution
of pω1, s1, . . . , snq coincides with that of pω, s1, . . . , snq and, hence, the two structures
are equivalent.

To get a Blackwell-Pareto improvement, we augment the first signal with t and ob-
tain a private private information structure I 1 “ pω1, ps1, tq, s2, . . . , snq. To argue that
I 1 is indeed a Blackwell-Pareto improvement we need to show that t itself is an infor-
mative signal about ω1, i.e., the posterior pptq P ∆pΩq is not equal to the prior p with
a positive probability. It is enough to show pptqpk0q takes different values for t in r0, εs
and in r1´ε, 1s. As we assume without loss of generality that k0 “ 0, the intervalBk0 is
the leftmost one in the partition, and so pptqpk0q “ pptqp0q “ Prt ă qps1, . . . , snqp0q | ts.

That is, if we denote by Q the cumulative distribution function of qps1, . . . , snqp0q,
then pptqpk0q “ 1 ´ Gptq. Since G is a non-constant function on p0, 1q by our as-
sumption on k0, the induced belief pptqpk0q is not a constant. Thus t is informative.
By Corollary 8, this implies that the signal ps1, tq which in I 1 strictly dominates the
signal s1 in I. As the all other signals remain the same in the two structures, I 1

strictly Blackwell-Pareto dominates I.

The next step is to show that only structures corresponding to partitions of unique-
ness can be Blackwell-Pareto optimal.

Lemma 9. If a private private information structure I “ pω, s1, . . . , snq is Blackwell-
Pareto optimal, then I is equivalent to a structure associated with a partition of
uniqueness.

Proof. By Proposition 2, we can find a private private information structure J “

pω, t1, . . . , tnq equivalent to I and associated with some partition A “ pA0, . . . , Am´1q

of r0, 1sn. Let us demonstrate that A is a partition of uniqueness. Towards a contra-
diction, assume that there is another partition A1 “ pA10, . . . , A1m´1q not equal to A
but such that the projections αAki “ α

A1k
i for all i and k. So I is also equivalent to

the structure J 1 “ pω, t11, . . . , t
1
nq associated with A1.

By Lemma 8, to get a contradiction, it is enough to construct an information
structure I 1 that is equivalent to I but not perfect, as this would imply the existence
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of a strict Blackwell-Pareto improvement. We define I 1 as a structure where the joint
distribution of the state and signals is a convex combination of the corresponding
distributions in J and J 1. Formally, let s11, . . . , s1n be independent random variables
each uniformly distributed on r0, 1s and let θ P t0, 1u be a symmetric Bernoulli random
variable independent of ps11, . . . , s1nq. Define the state ω1 as follows:

ω1 “ k if

«

ps11, . . . , s
1
nq P Ak and θ “ 0

ps11, . . . , s
1
nq P A

1
k and θ “ 1

.

Since elements of the partitions A and A1 have the same projections, the posterior
induced by observing ti “ x in J is identical to the one induced by observing t1i “ x

in J 1. Hence it is again identical to the posterior induced by observing s1i “ x in I 1.
As the partitions A and A1 are not equal, there are k ‰ k1 such that the intersection
AkXA

1
k1 has a non-zero Lebesgue measure. Hence, if ps11, . . . , s1nq P AkXA1k1 , whether

ω “ k or ω “ k1 is determined by θ. We conclude that, with positive probability, the
signals ps11, . . . , s1nq do not determine the state, so I 1 is not perfect and thus both I 1

and I can be Blackwell-Pareto improved by Lemma 8.

We see that Blackwell-Pareto optimal structures are contained in those associated
with partitions of uniqueness (up to equivalence of information structures). This
shows one direction of Theorem 5. It remains to demonstrate that any partition of
uniqueness leads to a Blackwell-Pareto optimal structure, i.e., the structures associ-
ated with different partitions cannot dominate each other.

For this purpose, we need two intermediate steps contained in the next two lem-
mas. Lemma 10 shows that a garbling of an information structure is never perfect
and Lemma 11 implies that imperfect structures cannot be equivalent to those asso-
ciated with partitions of uniqueness. Recall that for a pair of information structures
pω, tq and pω, sq, the signal t is a garbling of s if t, and ω are independent conditional
on s. A structure I “ pω, s1, . . . , snq is a garbling of I 1 “ pω, s11, . . . , s1nq if each si is a
garbling of s1i and each si is independent of ps1jqj‰i. The last requirement means that
each signal is garbled independently. Note that, by Blackwell’s Theorem (Blackwell,
1951, Theorem 12), I 1 (weakly) dominates I if and only if I is equivalent to a garbling
of I 1.

Lemma 10. If I is a garbling of a private private information structure I 1, then I
is not perfect unless I and I 1 are equivalent.

61



Proof. Suppose that I is perfect, and so ω “ fps1, . . . , snq for some f : S1ˆ. . .ˆSn Ñ

Ω. Our goal is to show that I is equivalent to I 1. For a given realization of si, the
state ω is a function of the remaining signals sj, j ‰ i. Since s1i and the collection
psjqi‰j are independent, we see that ω is independent of s1i conditional on si. In other
words, s1i is also a garbling of si. We conclude that both I is a garbling of I 1 and I 1

is a garbling of I, so they are equivalent.

The next lemma is used to show that imperfect private private information struc-
tures cannot correspond to partitions of uniqueness. Before stating it, we will need
to introduce the following concept. A fuzzy partition is a tuple pg0, . . . , gm´1q of mea-
surable functions gk : r0, 1sn Ñ r0, 1s such that

ř

k gk “ 1. We can identify this tuple
with a single function g : r0, 1sn Ñ ∆pΩq. The case of a partition is one in which each
gk is the indicator of a set Ak in a partition of r0, 1sn. As with partitions, we identify
two fuzzy partitions if they agree almost everywhere. We denote the collection of
fuzzy partitions by G.

We define the projection of gk to its ith coordinate by αgki pxiq “
ş

r0,1sn´1 gkpxi, x´iq dx´i.

When gk is the indicator of a set Ak, the projection αAki as defined in the main text
is equal to the projection of gk. With each partition A “ pA0, . . . , Am´1q of r0, 1sn

we associate the set GA “
!

g P G such that @k, i αgki “ αAki

)

of fuzzy partitions
that have the same projections as A.

Lemma 11. A partition A “ pA0, . . . , Am´1q of r0, 1sn is a partition of uniqueness if
and only if GA is a singleton.

Note that GA always contains at least one element, namely, the indicators of the
partition A, i.e., p1A0 , . . . ,1Am´1q P GA. The idea behind the lemma is that all
extreme points of GA are indicators of partitions with the same projections as A.
Hence, if GA is not a singleton it has at least two distinct extreme points, i.e., there
is at least one more partition with the same projections as A, which is incompatible
with the fact that A is a partition of uniqueness. This identification of extreme points
and indicators has appeared before in the context of sets of uniqueness (see Gutmann
et al., 1991).

Proof. First we show that GA can be treated as a non-empty compact convex subset
of a locally convex Hausdorff vector space. Non-emptiness and convexity is straight-
forward and compactness is to be checked once an appropriate topology is defined.
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Let Mpr0, 1snq be the set of all finite signed measures on r0, 1sn endowed with
the topology of weak convergence, making it a locally convex completely metrizable
(and hence Hausdorff) topological vector space. We identify a bounded function
gk : r0, 1sn Ñ R with a measure µk on r0, 1sn having the density gk with respect to
the Lebesgue measure, i.e., dµkpx1, . . . , xnq “ gkpxqdx1 . . . dxn. Hence, GA can be

identified with a subset of
´

Mpr0, 1snq
¯Ω

.
Let ∆ďpr0, 1s

nq be the set of sub-probability measures, i.e., non-negative measures
µ with µpr0, 1snq ď 1. The set ∆ďpr0, 1s

nq is a compact subset of Mpr0, 1snq, as it
is the closed convex hull of the compact set given by the union of the probability
measures and the zero measure (Aliprantis and Border, 2006, Theorem 5.35). As
GA is a subset of the compact set

`

∆ďpr0, 1s
nq
˘Ω, compactness of GA follows from

its closedness. To check closedness, we rewrite the conditions defining GA in an
integrated form using as test functions the continuous functions h on r0, 1sn. The

tuple of measures pµ0, . . . , µm´1q P

´

Mpr0, 1snq
¯Ω

belongs to GA if and only if

ż

r0,1sn

ˇ

ˇhpx1, . . . , xnq
ˇ

ˇdµk ě 0 (16)

ÿ

k

ż

r0,1sn
hpx1, . . . , xnqdµk “

ż

r0,1sn
hpx1, . . . , xnqdx1 . . . dxn (17)

ż

r0,1sn
hpxiqdµk “

ż

r0,1s

hpxiqα
Ak
i pxiqdxi (18)

for all k “ 0, . . . ,m ´ 1, i “ 1, . . . , n, and continuous functions h on r0, 1sn (in the
last condition, h depends on one of the coordinates only). Condition (16) is non-
negativity, condition (17) is equivalent to

ř

k gk “ 1, and condition (18) corresponds
to the equal projections condition αgki “ αAki . By the definition of the weak topology,
integration of a continuous function commutes with taking weak limits. We conclude
that GA contains all its limit points and thus is closed.

By the Krein-Milman theorem, any compact convex subset of a locally convex
Hausdorff vector space is the closed convex hull of its extreme points (see Aliprantis
and Border, 2006, Theorem 7.68). Thus GA is the closed convex hull of its extreme
points. Consequently, if GA is not a singleton, it has at least two distinct extreme
points. To prove the lemma, it remains to demonstrate that all extreme points of GA

correspond to partitions. Towards a contradiction, assume that g “ pg0, . . . , gm´1q is
an extreme point of GA but it is not a partition, i.e., there is a state k0 such that
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gk0pxq R t0, 1u for x “ px1, . . . , xnq in a set of positive Lebesgue measure. Since
ř

k gk “ 1, there is k1 ‰ k such that the set of x where both gkpxq ą 0 and gk1pxq ą 0

has positive measure. Hence, for some ε ą 0, the set D Ď r0, 1sn of x such that both
gkpxq ą ε and gk1pxq ą ε also has positive measure. Without loss of generality, we
assume that k “ 0 and k1 “ 1.

By Corollary 2 of Gutmann et al. (1991), for any D of positive measure, there are
two disjoint sets D1, D2 Ď D also of positive measure having the same projections,
i.e., αD1

i “ αD2
i for any i “ 1, . . . , n. Hence, the function apxq “ ε

`

1D1pxq ´ 1D2pxq
˘

has zero projections, is bounded by ε in absolute value, and is equal to zero outside
of the set D. For σ P t´1,`1u, define

gσ0 pxq “ g0pxq ` σ ¨ apxq, gσ1 pxq “ g1pxq ´ σ ¨ apxq.

By definition, gσ0 and gσ1 have the same projections as g0 and g1, they are non-negative,
and gσ0 ` gσ1 “ g0 ` g1 (hence, gσ0 ` gσ1 `

ř

kě2 gk “ 1).
We conclude that the two tuples pgσ0 , gσ1 , g2, g3, . . . , gm´1q, σ P t´1,`1u, belong to

GA. They are not equal to each other as the sets D1 and D2 are disjoint. Since the
original collection pg0, . . . , gm´1q is the average of the two constructed ones, it cannot
be an extreme point. This contradiction implies that all the extreme points of GA

correspond to partitions and completes the proof.

Relying on the last two lemmas, we can demonstrate that any structure associated
with a partition of uniqueness is Blackwell-Pareto optimal.

Lemma 12. Let I be a private private information structure equivalent to a structure
associated with a partition of uniqueness, then I is Blackwell-Pareto optimal.

Proof. Without loss of generality, I “ pω, s1 . . . , snq is itself a structure associated
with a partition of uniqueness A “ pA, . . . , Am´1q of r0, 1sn.

Towards a contradiction, assume that there is a private private information struc-
ture J strictly dominating I. By Blackwell’s theorem, I is equivalent to some gar-
bling of J denoted by I 1 “ pω, s11, . . . , s

1
nq. By Lemma 10, I 1 is not perfect. Let

ti “ pps1iq P ∆pΩq be the posterior belief induced by s1i and µi P ∆p∆pΩqq be its
distribution. Consider the structure I2 “ pω, ti, . . . , tnq. It is equivalent to I 1 (and
hence to I) by Lemma 3. As ti is a function of s1i and I 1 is not perfect, I2 cannot be
perfect either (this is also a consequence of the fact that I2 is a garbling of J ).
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Let f : ∆pΩq ˆ . . .ˆ∆pΩq Ñ ∆pΩq be the conditional distribution of ω given the
realized signals t1, . . . , tn. This function is defined µ-everywhere with µ “ µ1ˆ. . .ˆµn.
As I2 is not perfect, there is a state k0 P Ω such that fk0 R t0, 1u on a set of positive
µ-measure.

Choose a fuzzy partition g : r0, 1sn Ñ ∆pΩq so that the following identity holds:24

gps1, . . . , snq “ f
`

pps1q, . . . , ppsnq
˘

. The distributions of posteriors ppps1q, . . . , ppsnqq

and pppt1q, . . . , pptnqq both coincide with µ as the structures I and I2 are equivalent.
Hence, gk0 ‰ t0, 1u on a set of positive Lebesgue measure, i.e., g does not correspond
to a partition. On the other hand, g has the same projections as the partition A.
Indeed, let us compute αgki pxq:

αgki pxq “ Ergkps1, . . . , snq | si “ xs

“ Ergkps1, . . . , si´1, x, si`1, . . . , snqs

“ Erfkppps1q, . . . , ppsi´1q, q, ppsi`1q, . . . , ppsnqqs,

where q is the posterior induced by si “ x. Since the distribution of ppsjq is identical
to that of tj,

αgki pxq “ Erfkpt1, . . . , ti´1, q, ti`1, . . . , tnqs

“ Erfkpt1, . . . , tnq | ti “ qs

“ qpkq,

where in the last equality we rely on the fact that the belief induced by ti coincides
with ti. Since q is the posterior induced by si “ x, the posterior qpkq is equal
to αAki pxq.

We thus constructed g not equal to p1A0 , . . . ,1Am´1q but having the same pro-
jections. By Lemma 11, the partition A “ pA0, . . . , Am´1q cannot be a partition
of uniqueness. This contradiction shows that no structure can dominate the one
associated with a partition of uniqueness, i.e., such structures are Blackwell-Pareto
optimal.

The proof of Theorem 5 is now immediate.
24To construct such a g, define hi : r0, 1s Ñ ∆pΩq by hipxiqpkq “ Prω “ k | si “ xis. That is,

hi is the map that assigns to each signal realization the induced posterior, so that ppsiq “ hipsiq

holds as an equality of random variables. Then let g : r0, 1sn Ñ ∆pΩq be given by gpx1, . . . , xnq “
fph1px1q, . . . , hnpxnqq.
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Proof of Theorem 5. By Lemma 9, for each Blackwell-Pareto optimal I, we can find
an equivalent structure associated with a partition of uniqueness A “ pA0, . . . , Am´1q.
By Lemma 12, any structure admitting such an equivalent representation is Blackwell-
Pareto optimal.

B.4 Proof of Theorem 4

Proof. Lorentz (1949)’s characterization of two-dimensional sets of uniqueness uses
the idea of a non-increasing rearrangement ϕ̀ of a function ϕ : r0, 1s Ñ r0, 1s. The
function ϕ̀ is defined almost everywhere by the following two properties: it is non-
increasing on r0, 1s and, for any q P r0, 1s, the lower-contour sets tt P r0, 1s : ϕptq ď qu

and tt P r0, 1s : ϕ̀ptq ď qu have the same Lebesgue measure. A non-increasing
rearrangement exists and moreover is unique (as an element of L8pr0, 1sq).

Lorentz (1949) proved that A Ď r0, 1s2 is a set of uniqueness if and only if the
non-increasing rearrangements of its two projections are inverses of each other, i.e.,

ὰA1 “
`

ὰA2
˘´1

. (19)

Formally, if the inverse
`

ὰA2
˘´1
ptq is not unique for some t, the equality (19) is to be

understood as the inclusion: ὰA2 ptq P
`

ὰA1
˘´1
ptq.

Let us demonstrate that the characterization from Theorem 4 is equivalent to the
original characterization of Lorentz (1949). That is, we need to check that a set A
is a rearrangement of an upward-closed set if and only if the condition (19) holds.
Note that for any downward-closed25 set B, its image under the map x1 ÞÑ 1 ´ x1

and x2 ÞÑ 1 ´ x2 is upward-closed. Hence, it is enough to check the equivalence
between (19) and the existence of a downward-closed rearrangement of A.

Suppose that A is a rearrangement of a downward-closed set B. Towards showing
that (19) holds, note that any downward-closed set B can be represented through its
projections in two symmetric ways: B “ tx2 ď αB1 px1qu and B “ tx1 ď αB2 px2qu up
to a zero-measure set. Hence,

αB2 “ pα
B
1 q
´1. (20)

Since B is downward-closed, its projections are non-increasing. Moreover, the sets
tt P r0, 1s : αBi ptq ď qu and tt P r0, 1s : αAi ptq ď qu have the same measure for any i
and q as B is a rearrangement of A. Thus αBi “ ὰAi and we obtain (19) from (20).

25A set B Ď r0, 1s2 is downward-closed if, with each point px1, x2q, it contains all the points
px11, x

1
2q P r0, 1s

2 such that x11 ď x1 and x12 ď x2.
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Now assume that the condition (19) is satisfied and construct the downward-
closed set B as follows: B “ tpx1, x2q P r0, 1s

2 : x2 ď ὰA1 px1qu. By the definition, the
projection αB1 equals ὰA1 . For any downward closed set, the projections satisfy the
identity (20) and thus αB2 “

`

αB1
˘´1

“
`

ὰA1
˘´1

“ ὰA2 , where the last equality follows
from (19). Hence, for any i and q, the measure of tαBi ptq ď qu coincides with that
of tὰAi ptq ď qu and thus with the measure of tαAi ptq ď qu. We conclude that B is a
downward-closed rearrangement of A.

B.5 Proof of Theorem 1

First, we show that the conjugate of a cumulative distribution function on r0, 1s is
also a cumulative distribution function.

Claim 3. The conjugate F̂ is a cumulative distribution function. Furthermore, it has
the same mean:

ş

x dF̂ pxq “
ş

x dF pxq.

Proof. To show that F̂ is a cumulative distribution function it suffices to show that
it is weakly increasing, right-continuous, that F̂ p0q ě 0, and that F̂ p1q “ 1.

We first note that F´1 is weakly increasing, by its definition at x as the minimum
of the preimage of rx,8q under F . Hence F̂ is also weakly increasing.

To see that F̂ is right continuous, let limk xk “ x P r0, 1s, with xk ď x. Then

lim
k
F´1

pxkq “ lim
k

minty : F pyq ě xku

“ minty : F pyq ě xu

“ F´1
pxq

where the penultimate equality follows from the fact that F is right-continuous. Hence
F´1 is left-continuous, and so F̂ is right-continuous.

It is immediate from the definitions that F̂ p0q ě 0 and F̂ p1q “ 1, and thus
F is a cumulative distribution function. Finally, the expectations of F and F̂ are
identical since the shape under F (whose measure is equal to its expectation), given
by tpx, yq P r0, 1s2 : y ď F pxqu is congruent to the shape under F̂ , since one is mapped
to the other by the measure-preserving transformation px, yq ÞÑ p1´ y, 1´ xq.

Now, we prove Theorem 1.
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Proof. First, suppose I is Blackwell-Pareto optimal. By Theorem 3, I is equivalent
to some structure I 1 associated with a set of uniqueness A. By Theorem 4, A is a
rearrangement of an upward-closed set A1, whose associated structure I2 must also
be equivalent to I. We show that the two belief distributions induced by I2 are
conjugates of each other.

Define h̃ : r0, 1s Ñ r0, 1s by h̃px1q “ inftx2 : px1, x2q P A
1u. We have that h̃ is

a decreasing function since A1 is upward-closed. Define a left-continuous version of
h̃ as hpxq “ limzÑx´ h̃pzq. For any q P r0, 1s, in the structure associated with A1,
the belief induced by the realization of the first signal equal to x1 is lower or equal
to q if and only if hpx1q ě 1 ´ q, so the cumulative distribution function of beliefs
is F1pqq “ maxtx1 : hpx1q ě 1 ´ qu. For the second signal, the belief for any signal
realization lower than x2 “ hp1 ´ qq is lower or equal to q, while beliefs at higher
signals are strictly above q. So, the cumulative distribution function of beliefs induced
by the second signal is F2pqq “ hp1´ qq. Note that F´1

2 p1´ qq “ minty : hp1´ yq ě

1´ qu “ 1´maxtx1 : hpx1q ě 1´ qu “ 1´ F1pqq, so F1 and F2 are conjugates.
Conversely, suppose the distributions of pps1q and pps2q in a private private infor-

mation structure I are conjugates. Write F̃1 and F̃2 for the cumulative distribution
functions of pps1q and pps2q, and consider the set A Ď r0, 1s2 where px1, x2q P A if
and only if x2 ě F̃2p1 ´ x1q. We show that the structure associated with A is equiv-
alent to I; Figure 4 illustrates the construction. Let h̃pxq “ F̃2p1 ´ xq, and define
a left-continuous version of h̃ as hpxq “ limzÑx´ h̃pzq. For the structure associated
with A, by the same argument as above, the distribution function of beliefs induced
by the second signal is F2pqq “ hp1 ´ qq “ F̃2pqq. The distribution function of be-
liefs induced by the first signal is F1pqq “ maxtx1 : hpx1q ě 1 ´ qu “ 1 ´ mintx2 :

F̃2px2q ě 1 ´ qu “ 1 ´ F̃´1
2 p1 ´ qq. Using the hypothesis that F̃1 and F̃2 are conju-

gates, 1´ F̃´1
2 p1´ qq “ F̃1pqq. So, the structure associated with A is equivalent to I.

Because x1 ÞÑ F̃2p1´ x1q is a decreasing function, the set A is upward-closed. Using
Theorem 3 and Theorem 4, I is Blackwell-Pareto optimal.

B.6 Proof of Theorem 2

We first demonstrate that the definition of an optimal privacy-preserving recommen-
dation (Definition 5) is equivalent to the requirement of Blackwell-Pareto optimality
of the corresponding private private information structure. For this purpose, we need
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the following result refining Lemma 5 and applicable for any number of states.

Lemma 13. If I “ pω, s1, s2q is a private private information structure that is not
Blackwell-Pareto optimal, then there exists s12 independent of s1 such that the private
private structure pω, s1, s

1
2q dominates I and is Blackwell-Pareto optimal.

Proof. Denote by µ1 and µ2 the distributions of beliefs induced by s1 and s2, re-
spectively. Let us verify the existence of a Blackwell-Pareto optimal structure J “

pω, t1, t2q such that ppt1q is distributed according to µ1 and t2 dominates s2. Consider
the set Mpµ1q of distributions µ12 of beliefs such that the pair pµ1, µ

1
2q is feasible,

i.e., there is a private private information structure inducing these distributions. In
particular, µ2 belongs to Mpµ1q. By Lemma 4, Mpµ1q is compact in the weak topol-
ogy as a closed subset of the set of feasible pairs M. Since the Blackwell order is
continuous in the weak topology (see the proof of Lemma 5), there is a maximal
element µ12 PMpµ1q dominating µ2. Let J “ pω, t1, t2q be the private private infor-
mation structure inducing the pair of distributions pµ1, µ

1
2q. The structure J must

be Blackwell-Pareto optimal. Else, by Lemma 10, there is an equivalent structure
J 1 “ pω, t11, t

1
2q where the signals do not determine the state. Then, by the construc-

tion from Lemma 8, there exists an informative signal t independent of pt11, t12q. By
augmenting the second signal with t, we obtain a strict Blackwell-Pareto improvement
of J 1 where the distribution of beliefs induced by the first signal remains fixed, but
the distribution of beliefs induced by the second signal is improved to µ22. So we have
µ22 PMpµ1q and µ22 strictly dominates µ12, which contradicts the maximality of µ12 in
Mpµ1q. This contradiction implies that J is Blackwell-Pareto optimal.

Without loss of generality, we can assume that s1 “ pps1q and t1 “ ppt1q, i.e.,
signals coincide with the induced posteriors. Thus, by the equivalence of s1 and t1,
the joint distributions of pω, s1q and pω, t1q are the same. We complete the proof by
defining s12 so that the joint distributions of pω, s1, s

1
2q and pω, t1, t2q coincide.

Corollary 9. For any number of states, given a one-signal information structure
pω, s1q, a signal s2 is an optimal privacy-preserving recommendation if and only if
I “ pω, s1, s2q is a Blackwell-Pareto optimal private private information structure.

Proof. If I is Blackwell-Pareto optimal, then it cannot be dominated by any private
private structure, in particular, by a structure of the form pω, s1, s

1
2q. Therefore, s2

is an optimal privacy-preserving recommendation. Conversely, if I is not Blackwell-
Pareto optimal, then, by Lemma 13, there is a dominating private private structure
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of the form pω, s1, s
1
2q. Thus s2 is dominated by s12, and so it is not an optimal

privacy-preserving recommendation.

We are now ready to prove Theorem 2.

Proof of Theorem 2. We are given pω, s1q and aim to construct a dominating rec-
ommendation s‹2, i.e., a new signal independent of s1 such that any other signal s2

independent of s1 is weakly dominated by s‹2; see Definition 6.
As usual, pps1q is the belief induced by s1. We sample s‹2 uniformly from the

interval r1 ´ pps1q, 1s if the state is ω “ 1 and from r0, 1 ´ pps1qs if ω “ 0. Hence,
conditioned on s1, the constructed signal is distributed uniformly on r0, 1s and so s‹2
is independent of s1. Denote by F the cumulative distribution function of pps1q and
compute the belief induced by s‹2. The conditional probability of ω “ 1 given s‹2 “ t

is equal to Pr1´ pps1q ď ts. Hence, pps‹2q “ 1 ´ F p1 ´ s‹2q. Thus the distribution
function F ‹ of pps‹2q is given by

F ‹pxq “ Prpps‹2q ď xs “ Pr1´ F p1´ s‹2q ď xs “ P
“

s‹2 ď 1´ F´1
p1´ xq

‰

,

where F´1 is defined as in (1). Since s‹2 is uniformly distributed on r0, 1s, we get
F ‹pxq “ 1´ F´1p1´ xq “ F̂ pxq, where F̂ is the conjugate of F .

We conclude that pω, s1, s
‹
2q is a private private information structure and the

distributions of posteriors induced by s1 and s‹2 are conjugates. Therefore, pω, s1, s
‹
2q

is Blackwell-Pareto optimal by Theorem 1. Corollary 9 implies that s‹2 is an optimal
privacy-preserving recommendation.

Now, we show that any s2 independent of s1 is (weakly) dominated by s‹2. If
pω, s1, s2q is itself Blackwell-Pareto optimal, then, by Theorem 1, the cumulative
distribution function of beliefs induced by s2 is F̂ and thus s2 is equivalent to s‹2.
Hence, it suffices to consider the case where I “ pω, s1, s2q is not Blackwell-Pareto
optimal. By Lemma 13, there exists an s12 dominating s2 such that pω, s1, s

1
2q is

a Blackwell-Pareto optimal private private structure. Hence, by Theorem 1, the
distribution of beliefs induced by s12 is the conjugate of F , and so s12 is equivalent
to s‹2. We conclude that s‹2 dominates any s2 independent of s1, and thus s‹2 is a
dominant privacy-preserving recommendation.
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B.7 Proof of Proposition 1

The indirect utility of the decision maker Upqq “ supaPA
`

p1´ qq ¨ upa, 0q` q ¨ upa, 1q
˘

is a continuous convex function as u is assumed to be bounded from above. By a
standard argument, the expected payoff of the decision maker observing a signal s
is equal to ErUpppsqqs. By Theorem 2, the distribution of ppsq for the dominant
privacy-preserving recommendation s “ s‹2 is the conjugate to that of pps1q. Thus
Proposition 1 is implied by the following lemma about integrating with respect to
conjugate distributions.

Lemma 14. Let F and F̂ be a pair of conjugate distributions, and U be a continuous
function. The following identity holds

ż

r0,1s

Upqq dF̂ pqq “

ż

r0,1s

U
`

1´ F ptq
˘

dt.

Proof. Assume first that F is a bijection r0, 1s Ñ r0, 1s. By the definition of a
conjugate, we obtain

ż

r0,1s

Upqq dF̂ pqq “

ż

r0,1s

Upqq d
`

1´ F´1
p1´ qq

˘

“

ż

r0,1s

U
`

1´ F ptq
˘

dt, (21)

where we changed the variable q “ 1´ F ptq in the second equality.
Now we show that the identities (21) hold even without the assumption that F is

a bijection. Since any continuous function on r0, 1s can be approximated by a linear
combination of indicators 1r0,as in the sup-norm, it is enough to prove that

ż

r0,1s

1r0,aspqqdF̂ pqq “

ż

r0,1s

1r0,as
`

1´ F ptq
˘

dt

or, equivalently, that

F̂ paq “ λ
`

tt P r0, 1s : 1´ F ptq ď au
˘

, (22)

where λ stands for the Lebesgue measure. By the monotonicity of F , the set from
the right-hand side of (22) is an interval rta, 1s where ta “ mintt : F ptq ě 1´ au, i.e.,
ta “ F´1p1 ´ aq as defined in §3. We conclude that (22) holds as it is equivalent to
the equality F̂ paq “ 1´F´1p1´ aq defining the conjugate distribution and thus (21)
holds as well.
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B.8 Proof of Lemma 1

Proof. The upper semicontinuity of U and the compactness of the set of belief dis-
tributions that can be induced by private private structures (Lemma 4) ensure that
the optimum is attained at some private private structure I “ pω, s1, . . . , snq; see
Lemma 4.3 in Villani (2008). By the same compactness argument, there exists a
Blackwell-Pareto optimal private private structure I˚ “ pω, s˚1 , . . . , s

˚
nq such that

each signal s˚j is equivalent to sj for j ‰ i, and s˚i weakly dominates si. By the con-
vexity of U in qi, the expected value ErU s cannot decrease when i’s signal becomes
Blackwell-more informative. Since I is optimal for the designer and the value of I˚

is at least as high, I˚ is also optimal.

B.9 Proof of Proposition 3

Proof. Consider the problem of maximizing W pIq “ E
“

U1

`

pps1q
˘

` U2

`

pps2q
˘‰

with
continuous U1, U2 and convex U2 over private private information structures I “

pω, s1, s2q. By Lemma 1, the convexity of the objective in one of the arguments implies
that the optimum is attained at a Blackwell-Pareto optimal I. By Theorem 1, the
distributions of posteriors pps1q and pps2q induced by I are conjugates. Denote the
distribution of pps1q by µ, which can be an arbitrary measure on r0, 1s with the mean
equal to the prior p. Denote the set of all such measures by ∆ppr0, 1sq. The choice of
µ P ∆ppr0, 1sq determines the distribution µ̂ of pps2q. Thus, to maximize W pIq over
I it is enough to find µ P ∆ppr0, 1sq maximizing the functional

wpµq “

ż

r0,1s

U1pqqdµpqq `

ż

r0,1s

U2pqqdµ̂pqq. (23)

Below, we check that wpµq is convex and continuous in the weak topology. Hence,
by Bauer’s principle, the optimum is attained at an extreme point of ∆ppr0, 1sq. It is
well-known that the extreme points of this set are measures with the support of size
at most two: see, e.g., Winkler (1988). Since the optimal µ is supported on at most
two points, its conjugate µ̂ is supported on at most three points (see the discussion
after Theorem 1) and we conclude that there is an optimal structure I where s1 takes
at most two values and s2 takes at most three values.

We now check that w is convex and continuous in the weak topology. The first
integral in (23) is linear in µ (hence, convex) and continuous thanks to the continuity
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of the integrated. We, therefore, focus on the second integral. By Lemma 14, it can
be expressed through the cumulative distribution function F of µ as follows

ż

r0,1s

U2pqqdµ̂pqq “

ż

r0,1s

U2

`

1´ F pqq
˘

dq. (24)

It is a convex function of F by convexity of U2. To show its continuity, note that the
weak convergence µk Ñ µ implies the convergence of Fkpqq Ñ F pqq for all points q of
continuity of F (see Aliprantis and Border, 2006, Theorem 15.3). Since any monotone
function is continuous almost everywhere with respect to the Lebesgue measure, the
sequence of functions U2

`

1´Fk
˘

converges almost everywhere in r0, 1s and is bounded
thanks to the boundedness of U2. The Lebesgue dominated convergence theorem
implies that

ş

r0,1s
U2

`

1 ´ Fkpqq
˘

dq converges to
ş

r0,1s
U2

`

1 ´ F pqq
˘

dq. We conclude
that the second integral in (23) is a convex continuous function of µ, and thus so is
wpµq itself.

It remains to show that there is an optimal structure with binary signals if both
U1 and U2 are convex. As a first step, we demonstrate uniqueness of optimal belief
distributions for strictly convex U2 without any assumptions on U1. It is enough to
show that wpµq is a strictly convex functional of µ, i.e.,

wpµq ą α ¨ wpνq ` p1´ αqwpν 1q with µ “ α ¨ ν ` p1´ αqν 1

for all distinct ν, ν 1 P ∆ppr0, 1sq and α P p0, 1q. The first integral in (23) is affine
in µ, and thus we need to show strict convexity of the second integral. Denote the
cumulative distribution functions of ν, ν 1, and µ by G, G1, and F “ α ¨G`p1´αqG1.
By (24), we get

ż

r0,1s

U2pqqdµ̂pqq “

ż

r0,1s

U2

´

1´ α ¨Gpqq ` p1´ αqG1pqq
¯

dq.

By the assumption that ν ‰ ν 1, the functions G and G1 differ on a set of positive
Lebesgue measure. On this set, by strict convexity of fptq “ U2p1´ tq, we get

U2

`

1´ α ¨Gpqq ` p1´ αqG1pqq
˘

ą α ¨ U2

`

1´Gpqq
˘

` p1´ αqU2

`

1´G1pqq
˘

.

We conclude that
ż

r0,1s

U2pqqdµ̂pqq ą α

ż

r0,1s

U2pqqdν̂pqq ` p1´ αq

ż

r0,1s

U2pqqdpν 1pqq.
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Thus the functional wpµq is strictly convex in µ, and so the optimal µ is unique.
Now suppose that U1 and U2 are strictly convex. By convexity of U2, there is

a an optimal private private structure pω, s1, s2q inducing distributions of posteriors
µ and µ̂ such that µ is supported on at most two points and µ̂ on at most three.
Exchanging the roles of signals s1 and s2 and using convexity of U1, we conclude that
there is another optimal structure inducing distributions µ1 and pµ1 with µ1 supported
on at most three points and pµ1, on at most two. By the strict convexity, the optimal
distributions are unique and so µ “ µ1 and µ̂ “ pµ1. We obtain that, in pω, s1, s2q, each
signal induces at most two different posteriors and thus this structure is equivalent
to a structure with each signal taking at most two different values.

Finally, we relax the assumption of strict convexity. Consider convex but not
necessarily strictly convex U1 and U2. For ε ą 0, define U ε

i pqq “ Uipqq ` ε ¨ q2. By
strict convexity of U ε

i , the corresponding problem admits optimal belief distributions
µε and pµε with at most two atoms. Extracting a weakly-convergent subsequence
as ε Ñ 0, we deduce the existence of a solution to the original problem with binary
signals.

B.10 Proof of Corollary 1

Proof. Since pω, s1, s2q is Blackwell-Pareto optimal, the signal s2 can be seen as an
optimal privacy-preserving recommendation corresponding to pω, s1q. By Theorem 2,
such s2 dominates any other signal s12 independent of s1. Hence, to conclude that s2

dominates t2, it is enough to demonstrate that there is a private private information
structure pω, s11, s12q such that s11 is equivalent to s1 and s12 is equivalent to t2. By
the assumption, t1 dominates s1 and, therefore, the signal s1 is equivalent to some
garbling s11 of t1. Putting s12 “ t2, we get the desired private private information
structure pω, s11, s12q and deduce that t2 is dominated by s2.

B.11 Proof of Proposition 4

Proof of Proposition 4. We have Ipω; ps1, . . . , snqq ď Hppq. By Lemma 2 proved in
Appendix B.1,

řn
i“1 Ipω; siq ď Ipω; ps1, . . . , snqq provided that the signals are inde-

pendent.
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B.12 Proof of Proposition 5

Proof. We have Ipω; ps1, . . . , snqq ď Hppq, so it suffices to show that
ÿ

i

Ipω; siq ď Ipω; ps1, . . . , snqq ´ Cp
ÿ

iăj

Ipω; siqIpω; sjq. (25)

Similarly to the proof of Lemma 2, the result for general n follows from the result
for n “ 2 via an inductive argument. Indeed, assume that the statement holds for
n ď n0 with n0 ě 2 and show that it holds for n “ n0 ` 1 as well:

I
´

ω ;
`

s1, . . . , sn0 , sn0`1

˘

¯

“ I
´

ω ;
`

ps1, . . . , sn0q, sn0`1

˘

¯

ě I
´

ω ;
`

s1, . . . , sn0

˘

¯

` Ipω ; sn0`1q ` Cp ¨ I
´

ω ;
`

s1, . . . , sn0

˘

¯

¨ Ipω ; sn0`1q,

where we applied the two signal version of (25) for the pair of signals ps1, . . . , sn0q

and sn0`1. Estimating Ipω ; s1, . . . , sn0q from below via the n0-signal version of (25),
we get

I
´

ω ;
`

s1, . . . , sn0 , sn0`1

˘

¯

ě

n0
ÿ

i“1

I
`

ω ; si
˘

` Cp
ÿ

1ďiăjďn0

I
`

ω ; si
˘

¨ I
`

ω ; sj
˘

` Ipω ; sn0`1q`

` Cp ¨ Ipω ; sn0`1q ¨

˜

n0
ÿ

i“1

I
`

ω ; si
˘

` Cp
ÿ

1ďiăjďn0

I
`

ω ; si
˘

¨ I
`

ω ; sj
˘

¸

Eliminating all the cubic terms from the second line can only decrease the right-hand
side and leads to inequality (25) for n “ n0 ` 1:

I
´

ω ;
`

s1, . . . , sn0 , sn0`1

˘

¯

ě

n0`1
ÿ

i“1

I
`

ω ; si
˘

` Cp
ÿ

1ďiăjďn0`1

I
`

ω ; si
˘

¨ I
`

ω ; sj
˘

.

It thus remains to prove the result for n “ 2. We aim to show that

Ipω ; s1q ` Ipω ; s2q ´ Ipω ; s1, s2q ď ´Cp ¨ Ipω ; s1q ¨ Ipω ; s2q. (26)

Denote the left-hand side of (26) by ∆ and the posterior probabilities of the high
state by pi “ Prω “ 1 | sis and p12 “ Prω “ 1 | s1, s2s. By the martingale property,
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Erp12 | sis “ pi and Erpis “ p. Thanks to the martingale property, we can represent
Ipω ; siq as follows:

Ipω ; siq “ E
„

p12 log2

ˆ

pi
p

˙

` p1´ p12q log2

ˆ

1´ pi
1´ p

˙

,

where pi outside of the logarithm was replaced by p12. Hence,

∆ “ E
„

p12 log2

ˆ

p1 ¨ p2

p12 ¨ p

˙

` p1´ p12q log2

ˆ

p1´ p1qp1´ p2q

p1´ p12qp1´ pq

˙

.

By the concavity of the logarithm, a convex combination of logarithms is at most the
logarithm of the convex combination. Therefore,

∆ ď E
„

log2

ˆ

p1p2

p
`
p1´ p1qp1´ p2q

p1´ pq

˙

.

Denote the centered posteriors by p̄1 “ p1 ´ p and p̄2 “ p2 ´ p. The right-hand side
simplifies to

E
„

log2

ˆ

p1 ¨ p2

p
`
p1´ p1qp1´ p2q

p1´ pq

˙

“ E
„

log2

ˆ

1`
p̄1 ¨ p̄2

pp1´ pq

˙

.

Note that p̄1¨p̄2
pp1´pq

belongs to the interval
”

´1,max
!

1´p
p
, p

1´p

)ı

. Consider the function
fpxq “ log2p1` xq. By the Taylor formula, for any x ą ´1,

fpxq “ fp0q ` f 1p0q ¨ x`
f2pyq

2
x2

for some y between 0 and x. Computing the derivatives, we get

fpxq “
1

ln 2
x`

1

2 ln 2

´1

p1` yq2
x2
ď

1

ln 2
x´

mintp2, p1´ pq2u

2 ln 2
x2,

where in the last inequality we used the fact that y P
”

´1,max
!

1´p
p
, p

1´p

)ı

. Taking
into account that mintp2, p1´ pq2u ě 4p2p1´ pq2, we obtain

fpxq ď
1

ln 2
x´

2p2p1´ pq2

ln 2
x2

and conclude that

E
„

log2

ˆ

1`
p̄1 ¨ p̄2

pp1´ pq

˙

ď
1

ln 2
E
„

p̄1 ¨ p̄2

pp1´ pq



´
2p2p1´ pq2

ln 2
E

«

ˆ

p̄1 ¨ p̄2

pp1´ pq

˙2
ff

.
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Since the expectation of the product is the product of expectations for the independent
random variables p̄1 and p̄2,

∆ ď ´
2

ln 2
Varrp1s ¨ Varrp2s.

It remains to lower-bound the variance by the mutual information. The Kullback–Leibler
divergence between Bernoulli random variables with success probabilities p and x is
defined as follows: DKLpx||pq “ x log2

´

x
p

¯

` p1 ´ xq log2

´

1´x
1´p

¯

. Then Ipω ; siq “

ErDKLppi||pqs. Applying the inequality ln t ď t ´ 1 to both logarithms and taking
into account that log2 t “

1
ln 2

ln t, we obtain

DKLpx||pq ď
1

ln 2

ˆ

x ¨

ˆ

x

p
´ 1

˙

` p1´ xq ¨

ˆ

1´ x

1´ p
´ 1

˙˙

“
1

pp1´ pq ln 2
px´ pq2

for x P r0, 1s. Therefore,

Varrpis ě ppp1´ pq ln 2q ¨ Ipω ; siq

and we conclude that

∆ ď ´2 ln 2 ¨ p2
p1´ pq2 ¨ Ipω ; s1q ¨ Ipω ; s2q “ ´Cp ¨ Ipω ; s1q ¨ Ipω ; s2q,

which is equivalent to the desired inequality (26).

C Signal Informativeness Measured by Variance Reduction

In §7.2, we measured signal informativeness by mutual information. Mutual infor-
mation is the expected utility associated with a particular decision problem: one in
which the indirect utility is given by a constant minus the entropy. Here we consider
quadratic indirect utility, which results in an alternative measure of signal informa-
tiveness.

Let ω P Ω be a random state taking a finite number of different values and s be
a signal about ω inducing a belief ppsq P ∆pΩq. Denote H̄pqq “

ř

kPΩ qpkqp1 ´ qpkqq

for q P ∆pΩq. Analogously to mutual information defined in (11), consider

Īpω; sq “ H̄ pErppsqsq ´ E
“

H̄pppsqq
‰

.

Loosely speaking, Īpω; sq is the expected reduction in the variance in ω after observ-
ing s.
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We establish an analog of Proposition 4 for Īpω; sq thus obtaining new bounds
on causal strength or the social choice rule’s responsiveness as discussed in §7.2 and
getting additional necessary conditions for feasibility of belief distributions under the
privacy constraint.

Proposition 6. For any finite state space Ω and a private private structure pω, s1, . . . , snq,
ÿ

i

Īpω; siq ď H̄ppq.

where p P ∆pΩq is the prior distribution of ω.

While this statement of Proposition 6 is completely analogous to that of Proposi-
tion 4, the proof uses a different technique, exploiting the L2 orthogonality of indepen-
dent random variables. Indeed, we do not know of a unifying argument that implies
both propositions, and we furthermore do not know of additional decision problems
that yield analogous statements. We note that Proposition 6 is a generalization—
from the binary state case—of the “concentration of dependence” principle of Mossel,
Mueller-Frank, Sly, and Tamuz (2020). A very similar idea appeared earlier in the eco-
nomics literature (Al-Najjar and Smorodinsky, 2000) and is standard in the analysis
of Boolean functions (see, e.g., Kahn et al., 1988; O’Donnell, 2014).

Proof. As in the proof of Proposition 4, we show a stronger statement:
ÿ

i

Īpω; siq ď Īpω; ps1, . . . , snqq.

This implies the statement of Proposition 6 since H̄ is concave, and so, as with mutual
information, Īpω; ps1, . . . , snqq ď H̄ppq.

Applying the definition of Ī, and using the martingale property Erppsiqs “ Erpps1, . . . , snqs “

p, what we want to prove is that
ÿ

i

ÿ

kPΩ

E
“

rppsiqpkq ´ ppkqs
2
‰

ď
ÿ

k

E
“

rpps1, . . . , snqpkq ´ ppkqs
2
‰

.

In fact, we prove an even stronger statement, showing that the inequality holds already
for each k P Ω separately, rather than only when summed over Ω.

To this end, fix k, and denote the centered posteriors by p̄i “ ppsiqpkq ´ ppkq, so
that p̄i is a zero-mean bounded random variable. Likewise denote p̄ “ pps1, . . . , snqpkq´

ppkq. We want to prove that Erp̄2s ě
ř

i Erp̄2
i s.
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Let V be the vector space of zero-mean random variables spanned by tp̄, p̄1, . . . , p̄nu.
As a subspace of L2, it is endowed with the inner product given by the expectation
of the product.

Since the structure is private private, Erp̄i ¨ p̄js “ Erp̄is ¨Erp̄js “ 0 for i ‰ j. That
is, the vectors tp̄1, . . . , p̄nu are orthogonal. Hence, V “ spantq, p̄1, . . . , p̄nu for some
q P V that is orthogonal to each p̄i (note that q “ 0 is allowed and corresponds to
the case where p̄ can be represented as a linear combination of p̄i). Since p̄ P V , we
can write

p̄ “ αq `
ÿ

i

αip̄i

for some scalars α, α1, . . . , αn. By the martingale property, Erp̄ | p̄is “ p̄i, and so
Erpp̄´ p̄iq ¨ pis “ 0. That is, p̄´ p̄i is orthogonal to p̄i. Hence αi “ 1, and

p̄ “ αq `
ÿ

i

p̄i.

Since tq, p̄1, . . . , p̄nu are orthogonal,

E
“

p̄2
‰

“ α2E
“

q2
‰

`
ÿ

i

E
“

p̄2
i

‰

,

and in particular Erp̄2s ě
ř

i Erp̄2
i s.

Note that we used the assumption that the structure is private private only inas-
much as it implies that posteriors induced by different signals are uncorrelated.

D Non-Uniqueness of Optimal Privacy-Preserving Recommen-

dation for Non-Binary States

Theorem 2 shows that, when the state is binary, there is a dominant privacy-preserving
recommendation s‹2 for each s1. This s‹2 dominates any other s2 independent of s1, and
so all optimal privacy-preserving recommendations are Blackwell-equivalent to s‹2. In
this section, we show that there may be non-equivalent optimal recommendations s2

for non-binary states. In particular, a dominant recommendation may fail to exist.
Consider the case of Ω “ t0, 1, 2u where ω P Ω is distributed according to the

prior p “
`

1{4, 1{2, 1{4
˘

. The signal s1 is binary: if ω “ 2 then s1 “ 1, if ω “ 0 then
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Figure 9: In the private private information structure associated with the partition
pA0, A1, A2q, the signal t1 induces the same distribution of posteriors as s1. For any
parameter β P r0, 1{2s, this partition is a partition of uniqueness and, hence, we get a
one-parametric family of non-equivalent optimal privacy-preserving recommendations
given by the signal t2.

s1 “ 0, and if ω “ 1 then s1 P t0, 1u equally likely. The induced beliefs pps1q are
equal to either

`

1{2, 1{2, 0
˘

or
`

0, 1{2, 1{2
˘

, each with probability 1{2.
To construct an optimal privacy-preserving recommendation s2 we first build an

auxiliary private private information structure pω, t1, t2q, associated with the partition
of r0, 1s2 into three sets A0, A1, and A2 depending on a parameter β P r0, 1{2s, as
depicted in Figure 9. The pair of signals pt1, t2q is uniformly distributed on r0, 1s2

and the state ω equals k whenever the pair of signals belongs to Ak. Since the area
of A1 is twice the area of A0 and A2, and since the latter two areas are equal, ω has
the right distribution p “

`

1{4, 1{2, 1{4
˘

.
Let us check that the signal t1 is equivalent to s1, i.e., it induces the same posterior

distribution. Indeed, if the realization of t1 belongs to r0, 1{2s, half of each vertical
slice of the square is covered by A0 and half by A1, and so the induced posterior
is ppt1q “

`

1{2, 1{2, 0
˘

with probability 1{2. Similarly, for t1 P r1{2, 1s, we get ppt1q “
`

0, 1{2, 1{2
˘

also with probability 1{2.
Let us check that for different values of β we obtain non-equivalent recommen-

dations. For this purpose, we compute the distribution of posteriors induced by t2.
Note that t2 is equivalent to a signal s2 taking four different values corresponding to
different pairs of sets pAi, Ajq intersected by the horizontal slice of the square. We
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get the following distribution of posteriors:

pps2q “

$

’

’

’

’

&

’

’

’

’

%

`

0, 1{2, 1{2
˘

with probability β
`

1{2, 0, 1{2
˘

with probability 1{2´ β
`

0, 1, 0
˘

with probability 1{2´ β
`

1{2, 1{2, 0
˘

with probability β

For different values of β we get different distributions, i.e., the constructed recom-
mendations are not equivalent.

It remains to show that for any value of β, the signal s2 is an optimal privacy-
preserving recommendation. To this end, we check that the partition pA0, A1, A2q is
a partition of uniqueness (as defined in Appendix B.3). Therefore, by Theorem 5, the
information structure pω, t1, t2q is Blackwell-Pareto optimal. Thus t2 is an optimal
privacy-preserving recommendation, and so is s2 as it is equivalent to t2.

To show that pA0, A1, A2q is a partition of uniqueness, we rely on the following
elementary but useful general observation: if in a partition pA0, . . . , Am´1q of r0, 1sn

all sets except for possibly one are sets of uniqueness, then the partition itself is a
partition of uniqueness. In our example, the set A2 is upward-closed and hence is a
set of uniqueness by Theorem 4. The set A0 is a rearrangement of an upward-closed
set (since it can be made upward-closed via a measure-preserving reparametrization
of the axes) and so is a set of uniqueness by the same theorem. Thus the parti-
tion pA0, A1, A2q is a partition of uniqueness and s2 is an optimal privacy-preserving
recommendation for any value of β.

The partition pA0, A1, A2q provides an interesting example of the fact that a par-
tition of uniqueness is not necessarily composed of sets of uniqueness. Indeed, for
β ‰ 0, the set A1 is not a set of uniqueness as it has the same marginals as the set
obtained by the reflection of A1 with respect to the vertical line t1 “ 1{2.

D.1 Representing Private Private Signals for Binary ω as Sets

To simplify notation, in this section, we consider the case of n “ 2 agents and a
binary state ω P Ω “ t0, 1u. Nevertheless, the same ideas apply more generally to
finitely many agents and possible values of the state. By Proposition 2, any private
private information structure I is equivalent to a structure associated with some set
A Ď r0, 1s2, which we denote by IA “ pω, s1, s2q. In this section, we show how to
construct IA given I. We begin with the case where I is uninformative and describe
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IA for any prior p “ Prω “ 1s. Relying on this construction, we then describe how
to construct IA for any I with a finite number of possible signal values.

Recall that in IA, the signals ps1, s2q are uniformly distributed on r0, 1s2, the
state is ω “ 1Aps1, s2q, and A is some measurable subset of r0, 1s2 with Lebesgue
measure λpAq “ p so that p “ Prω “ 1s. Recall that the distribution of posteriors
induced by IA can be computed as follows: the conditional probability of the high
state given that agent i receives a signal si “ t is exactly αAi ptq, the one-dimensional
Lebesgue measure of the cross-section tpy1, y2q P A : yi “ tu. In other words, αAi psiq
is i’s posterior corresponding to si and the induced distribution of posteriors µi is
the image of the uniform distribution under the map αAi , i.e., µipr0, tsq equals the
Lebesgue measure of txi P r0, 1s : αAi pxiq ď tu.

Example 1 (Non-informative signals). Consider a private private information struc-
ture I, where both agents receive completely uninformative signals, i.e., the induced
posteriors are equal to the prior p.

To find an equivalent structure IA, we need to construct a set A “ Ap Ď r0, 1s
2

such that the Lebesgue measure of all its projections equals p. To this end, let Y be
any subset of r0, 1s with measure p (e.g., r0, ps), and let

A “
 

px1, x2q P r0, 1s
2 : tx1 ` x2u P Y

(

,

where txu is the fractional part of x P R. It is easy to see that A indeed has the
desired property.

It turns out that the construction of an information structure IAp representing
completely uninformative signals can be used to find a representation for any infor-
mation structure with a finite number of possible signal values.

Example 2 (Arbitrary finite number of signal values). Let I “ pω, s1, s2q be a private
private information structure with n “ 2 agents and finite signal spaces S1 and S2.
Our goal is to construct a set A Ď r0, 1s2 such that the structure IA associated with
A is equivalent to I.

For each agent i P t1, 2u, consider a disjoint partition of r0, 1s into intervals Asi ,
si P Si, so that the length of each Asi coincides with the probability that the signal
si P Si is sent under I. Let qps1, s2q P r0, 1s be the conditional probability of tω “ 1u

given signals ps1, s2q.
Recall that, in Example 1, we constructed a set Ap Ď r0, 1s2 such that its projection

to each of the coordinates has a constant density p. Now we construct A by pasting
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the appropriately rescaled copy of Aqps1,s2q into each rectangle As1 ˆ As2 . Denote by
Tra,bsˆrc,ds an affine map R2 Ñ R2 that identifies r0, 1s2 with ra, bs ˆ rc, ds:

Tra,bsˆrc,dspx1, x2q “
`

a` pb´ aqx1, c` pd´ cqx2

˘

.

We define A as the following disjoint union:

A “
ğ

s1PS1, s2Ps2

TAs1ˆAs2

´

Aqps1,s2q

¯

.

Let s1i P r0, 1s be a signal received by an agent i in IA. The signal s1i falls into
Asi with the same probability that i receives the signal si in I. By construction,
the conditional probability of tω “ 1u given s1i is constant over each interval Asi and
coincides with the posterior pipsiq that i gets under I. We conclude that I and IA
induce the same distribution of posteriors and so are equivalent.
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