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Abstract

A multi-product monopolist faces a buyer who is privately informed about
his valuations for the goods. As is well-known, optimal mechanisms are in gen-
eral complicated, while simple mechanisms—such as pure bundling or separate
sales—can be far from optimal and do not admit clear-cut comparisons. We
show that this changes if the monopolist observes sufficiently rich data about
the buyer’s valuations: Now, pure bundling always outperforms separate sales;
moreover, there is a sense in which pure bundling performs essentially as well
as the optimal mechanism. To formalize this, we characterize how fast the cor-
responding revenues converge to the first-best revenue as the monopolist’s data
grows rich: Pure bundling achieves the same convergence rate to the first-best
as optimal mechanisms; in contrast, the convergence rate under separate sales
is suboptimal.
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1 Introduction

A classic problem in economic theory is how a multi-product monopolist should sell
its goods to a buyer whose valuations for the goods are unknown to the monopolist.
While of clear economic relevance from both a positive and normative perspective,
this problem—and related multi-dimensional screening problems—is well-known to
be quite intractable. Even in simple subcases (e.g., two goods for which the buyer
has independently distributed, additive values), the seller’s optimal mechanism can be
difficult to characterize and look complicated: For instance, it may require the buyer
to choose between a continuum of differently priced lotteries over product bundles
(Manelli and Vincent, 2007; Daskalakis, Deckelbaum, and Tzamos, 2013).1 At the
same time, the multi-product selling mechanisms used in practice are often quite
simple: For example, many firms only present buyers with some limited number of
deterministic product bundles, or even engage in pure bundling, i.e., offer only the
grand bundle of all products at a take-it-or-leave-it price.

In this paper, we provide a novel perspective on the use of such simple multi-
product selling mechanisms. We consider a revenue-maximizing monopolistic seller
who is endowed with a finite set G of indivisible goods. There is one potential buyer,
whose valuations for the goods are summarized by a type vector θ ∈ R|G|

++ (drawn
from an arbitrary prior distribution) and whose payoffs are additive across goods.2

The realization of θ is only known to the buyer. However, as in the literature on
price discrimination, we assume that the seller observes some information about the
buyer’s type that she can use in designing a selling mechanism. For example, the
seller might observe various buyer characteristics (or noisy signals thereof) that are
correlated with θ within the population from which the buyer is drawn.

The question we ask is: Are there simple mechanisms that perform well at exploit-
ing such information, and, if so, which ones? If the seller’s information is arbitrary,
the comparison across different simple mechanisms is not clear-cut: For example, it is
well-known that, depending on the seller’s posterior, pure bundling may yield higher
or lower revenue than separate sales (i.e., setting a separate price for each individual

1Finding the optimal mechanism can also be computationally intractable (e.g., Daskalakis, Deck-
elbaum, and Tzamos, 2014), and it can exhibit counterintuitive features, e.g., nonmonotonic revenues
with respect to first-order stochastic dominance increases in buyer values (Hart and Reny, 2015).

2Section 6 considers nonadditive buyer utilities, negative valuations, and seller production costs.
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good). Moreover, both these simple mechanisms are in general far from optimal.3

However, the key insight of our paper is that there is a sharp answer if the seller’s
information is sufficiently precise: In this case, we show that the seller is always bet-
ter off using pure bundling than separate sales; what is more, we formalize a sense in
which pure bundling performs essentially as well as the optimal mechanism.

The assumption of precise seller information may, for instance, reflect the pro-
liferation of consumer data to which retailers have access in digital marketplaces.4

To tractably formalize such information, our baseline model assumes that the seller
observes n independent signals from some distribution Pθ that depends on θ.5 Thus,
the seller’s information is more precise the richer the amount of data n, and we are
interested in the case where n is large.

Crucially, to evaluate and compare the performance of different classes of mecha-
nisms, we do not explicitly derive the seller’s revenues at any particular n. Instead, we
take a convergence rate approach: We analyze how fast the gap between the seller’s
expected revenue and the first-best (i.e., known type) revenue vanishes as n grows
large. This provides a parsimonious way of comparing revenues across different classes
of mechanisms under rich consumer data: Mechanisms with a faster convergence rate
to the first-best yield higher expected revenues than mechanisms with a slower con-
vergence rate at all large enough n. As a one-dimensional statistic, convergence rates
also succinctly characterize how revenues at large n depend on features of the envi-
ronment, such as the seller’s signal distribution Pθ. Most importantly, while optimal
mechanisms by definition approximate the first-best revenue at the fastest rate, this
does not rule out that some simple (but suboptimal) mechanisms may achieve this
same optimal convergence rate. If this is the case, this suggests that a seller who ob-
serves rich consumer data loses very little from using such simple mechanisms rather
than the optimal mechanism.

In particular, our main result (Theorem 1) shows that, regardless of whether the
seller optimizes over general selling mechanisms or is restricted to pure bundling,
her expected revenue converges to the first-best equally fast as n grows large: In

3See Hart and Nisan (2019) in Section 1.1.
4Retailers increasingly use sophisticated tools to draw inferences about consumers’ preferences

from data such as their browsing and search history, geolocation, and operating system. Retailers
have also started to personalize selling mechanisms based on such data, not only via outright price
discrimination but also more subtle channels such as personalized discounts, add-on offerings, or
product displays (e.g., Hannak, Soeller, Lazer, Mislove, and Wilson, 2014; Gonzaga, 2018).

5Section 6 discusses more general settings.
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both cases, the revenue gap relative to the first-best vanishes as fast as λG
√

lnn
n

.
Here, the coefficient λG captures how fast the seller’s posterior standard deviation
about the value

∑
g∈G θg of the grand bundle decays. This coefficient (and hence the

corresponding revenues at large n) depends on the signal distribution Pθ only through
a common statistical informativeness measure, the Fisher information.

To interpret, note that for any given n, the seller’s revenue under pure bundling is
in general lower than under the optimal mechanism, which may screen the buyer via
(possibly elaborate) menus of bundles or lotteries over bundles. However, Theorem 1
implies that at large n, any additional revenue gain from using such more complicated
mechanisms vs. pure bundling becomes negligible: For example, as we discuss, this
revenue gain is smaller than the gain from having access to even an arbitrarily small
fraction of additional signals. As such, Theorem 1 suggests a novel “approximate
optimality” rationale for using pure bundling.

In contrast, Theorem 1 also shows that if the seller instead optimizes over separate
sales mechanisms, then her expected revenue converges to the first-best more slowly:
Now, the revenue gap relative to the first-best vanishes as fast as

∑
g∈G λg

√
lnn
n

, where
the coefficients λg capture how fast the seller’s posterior standard deviation about the
values θg of each individual good decays. The coefficient

∑
g∈G λg is greater than the

aforementioned optimal coefficient λG: By subadditivity of standard deviations, the
sum of the standard deviations of all θg always exceeds the standard deviation of the
sum

∑
g∈G θg. Thus, whereas at small n, the seller may be better off using separate

sales or pure bundling depending on parameters, pure bundling always yields a higher
expected revenue than separate sales when n is large enough.

A potential concern in assessing the economic relevance of Theorem 1 is whether
it requires such unrealistically rich data n that the seller can almost perfectly discrim-
inate between different buyer types: At such n, many mechanisms yield revenues that
are very close to the first-best, so the differences between mechanisms may not be
very interesting. This concern can be mitigated by analyzing numerical examples. For
instance, in a Gaussian environment, Section 3.2 finds that pure bundling starts to
approximate the optimal mechanism and to significantly outperform separate sales at
n where the corresponding revenues are still only a moderate fraction of the first-best.

The proof of Theorem 1 first exploits the Bernstein-von Mises theorem to reduce
the analysis to a setting in which the seller’s posterior is deterministic and Gaussian.
The analysis is then based on three main insights that we illustrate in Section 4:
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First, focusing on the single-good case, we shed light on how rich data affects
the tradeoff between two forms of revenue loss that the seller incurs: Losses on the
intensive margin (due to having to shade the price relative to the known type case)
and on the extensive margin (due to the probability that the buyer is unwilling to
pay the seller’s chosen price). We show that, as the seller’s posterior grows more and
more precise, these two margins become strikingly imbalanced: The seller optimally
prices the good in such a way that her revenue losses are driven almost entirely by
the intensive margin; in contrast, extensive-margin losses become negligible at large
n. This dominance of the intensive margin lies at the heart of why, in the multi-good
setting, the convergence to the first-best under pure bundling cannot be improved
upon by general deterministic mechanisms. Under the latter, the seller can engage in
mixed bundling, i.e., screen the buyer by offering a menu of product bundles. Relative
to pure bundling, this benefits the seller by extracting revenue from buyers who are
unwilling to purchase the grand bundle. However, since this benefit only affects the
extensive margin, it has a negligible impact on the revenue gap relative to the first-
best at large n.6

Second, we show that intensive-margin losses under single-good monopoly vanish
as fast as the (scaled) standard deviation of the seller’s posterior about the buyer’s
type. In the multi-good case, this implies that comparing the revenue gap to the
first-best at large n under pure bundling vs. separate sales boils down to comparing
the seller’s posterior standard deviation about the value

∑
g∈G θg of the grand bundle

vs. the sum of her posterior standard deviations about each θg. As noted, the former
is smaller than the latter, as standard deviation is subadditive. At a high level, this
relates to the classic intuition (e.g., Adams and Yellen, 1976; Armstrong, 1999) that
bundling reduces the seller’s uncertainty relative to separate sales, as overestimating
the valuations of some goods but underestimating those of others can cancel out
when estimating the value of the grand bundle. However, for this intuition to be
valid in our setting, it is crucial to show that the relevant measure of the seller’s
uncertainty is standard deviation, as other measures of uncertainty (e.g., variance)
are not subadditive.

Finally, we show that pure bundling achieves the same convergence rate as the
6Relative to pure bundling, mixed bundling also in principle allows the seller to reduce the mag-

nitude of intensive-margin losses by appropriately raising the price of the grand bundle. However, we
show that this increases extensive-margin losses by an order of magnitude that more than outweighs
the intensive-margin gains.
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optimal mechanism, which may additionally involve randomization. To get around
the aforementioned challenge that optimal mechanisms are difficult to characterize,
we introduce a more tractable relaxed problem that yields an upper bound on the
seller’s optimal revenue. We then prove that even this upper bound converges to the
first-best no faster than the pure bundling revenue. The relaxed problem partitions
the type space into line segments and imposes incentive compatibility only within each
segment. As Section 5 explains, optimal mechanisms in this problem are tractable
to characterize and take an “almost deterministic” form. Moreover, we show that by
carefully choosing the line segments, we can ensure that the pure bundling revenue
in the relaxed problem is the same as in the original problem. Based on this, similar
arguments to the comparison of pure vs. mixed bundling yield that pure bundling
achieves the optimal convergence rate.

1.1 Related Literature

Our paper relates to the large classical literature on multi-dimensional screening
(Adams and Yellen, 1976; McAfee, McMillan, and Whinston, 1989; Armstrong, 1996;
Rochet and Choné, 1998; Manelli and Vincent, 2006, 2007; Daskalakis, Deckelbaum,
and Tzamos, 2017, among many others). Several of these papers develop general
methodologies to characterize optimal mechanisms. However, as discussed in the
Introduction, optimal mechanisms are complicated unless specific conditions are im-
posed on type distributions. Some papers derive conditions under which pure bundling
is optimal (e.g., Haghpanah and Hartline, 2021; Ghili, 2023).7 Our setting allows for
general type distributions, and pure bundling is in general suboptimal at any n. An-
other recent strand of this literature characterizes optimal mechanisms in settings
where a seller maximizes her worst-case expected revenue across a set of possible type
distributions (e.g., Carroll, 2017; Deb and Roesler, 2023; Che and Zhong, 2021). De-
pending on the structure of this set, optimal mechanisms can take simple forms such
as separate sales or pure bundling.

In contrast to the above papers, we depart from the criterion of exact optimality.
Instead, we provide a rationale for pure bundling based on the idea that this simple
mechanism allows sellers who observe rich data about buyers’ types to approximate
the first-best revenue at the optimal rate. This contrasts with a notion of approximate

7Other recent work (e.g., Yang, 2023; Bergemann, Bonatti, Haupt, and Smolin, 2021) provides
conditions under which more general menus of bundles (e.g., nested bundling) are optimal.
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optimality that is often studied in computer science: worst-case guarantees, i.e., lower
bounds on the performance ratio of simple vs. optimal mechanisms that are uniform
with respect to type distributions (or other features of the environment; see the
survey by Roughgarden and Talgam-Cohen, 2019). Neither pure bundling, separate
sales, nor more generally the class of all deterministic mechanisms admit a non-zero
worst-case guarantee (Hart and Nisan, 2019).8

While we fix a set of goods G, Armstrong (1999) and Bakos and Brynjolfsson
(1999) study the many-good limit. Under independent and additive valuations, they
show that pure bundling approximates the first-best as |G| → ∞, because the value
of the grand bundle becomes deterministic by a law of large numbers; in contrast,
separate sales does not, because the value of individual goods is random.9 In our
setting, bundling also reduces uncertainty relative to separate sales, but in a different
sense: Regardless of the type distribution, both bundling and separate sales approx-
imate the first-best as the amount of consumer data grows large, because this data
allows the seller to learn the valuations for all goods; however, we show that the
rate of convergence under bundling is always faster than under separate sales. More
importantly, we prove that the convergence rate under bundling is the same as under
the optimal mechanism.

As noted, a key step of our proof is to upper-bound the optimal revenue via
a relaxed problem that partitions buyer types into line segments. Exploiting the
linear structure of this problem, Proposition 3 shows that optimal mechanisms in-
volve at most one random allocation (that is consumed only by types with binding
IR). This almost deterministic structure makes optimal mechanisms tractable to an-
alyze and is notable, as even under one-dimensional types, optimal mechanisms with
multi-dimensional allocations in general rely on more extensive randomization. As we
discuss, this result may be useful in economic settings beyond multi-good monopoly.
Haghpanah and Hartline (2021) impose a stochastic monotonicity assumption on
type distributions and use this to construct a different relaxed problem: There, types
are decomposed into (not necessarily linear) one-dimensional paths and the optimal
mechanism is pure bundling.10

8However, positive worst-case guarantees can be derived under more restrictive assumptions on
the environment (Hart and Nisan, 2017; Babaioff, Immorlica, Lucier, and Weinberg, 2020).

9Fang and Norman (2006) provide joint non-asymptotic conditions on the number of goods and
type distribution under which pure bundling outperforms separate sales and vice versa.

10For related decomposition approaches, see also Armstrong (1996); Wilson (1993).
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More broadly, we relate to a resurgent literature on price discrimination, which
studies the implications of a seller’s ability to condition selling mechanisms on addi-
tional information about buyers (e.g., Bergemann, Brooks, and Morris, 2015; Hagh-
panah and Siegel, 2023). Motivated by the availability of rich consumer data in
digital marketplaces, some papers focus on sellers with very precise information (e.g.,
Rhodes and Zhou, 2024). In the context of multi-good monopoly, we highlight that
sufficiently precise information can serve as a rationale for using simple selling mech-
anisms, such as pure bundling. An important step in our analysis is the insight that,
under single-good monopoly, such information leads to a stark imbalance between
intensive and extensive-margin considerations.11

Finally, convergence rates to a perfect information benchmark have been used as a
performance measure in other contexts: In single-agent decision problems, Moscarini
and Smith (2002) study how fast an agent who observes many i.i.d. signals about the
state and follows an optimal strategy can approximate the perfect information payoff;
they use this to define a ranking over signal structures. Subsequent work conducts
related exercises in other learning settings.12 Aside from our different economic en-
vironment and research question, a technical departure from these papers is that our
setting features continuous actions and types. This necessitates different mathemati-
cal techniques from the large-deviation theory tools that apply in the finite state and
action settings of these papers. This technical difference also applies relative to our
previous work, Frick, Iijima, and Ishii (2024a), which uses convergence rates to eval-
uate the performance of simple but suboptimal contracts in a moral hazard problem
where a principal observes rich monitoring data about an agent’s action. The “hidden
action” nature of that problem makes the analysis quite different from the current
“hidden type” setting in other respects as well.13

11Xie, Zhu, and Shishkin (2024) consider a single-good monopolist who observes samples from an
unknown distribution of both consumer data and types. They study how fast the monopolist can
approximate the second-best (i.e., known distribution) revenue.

12This includes multi-agent learning and misspecified learning (e.g., Harel, Mossel, Strack, and
Tamuz, 2021; Frick, Iijima, and Ishii, 2023, 2024b).

13More broadly, convergence rates to full efficiency have been used to study the performance of
simple mechanisms or strategies in the context of trade in large markets (e.g., Rustichini, Satterth-
waite, and Williams, 1994) and repeated games with patient players (Sugaya and Wolitzky, 2024).
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2 Setting

A monopolistic seller (“she”) is endowed with a finite set G of indivisible consumption
goods. The seller is risk-neutral, attaching zero value to the goods herself and seeking
to maximize her expected revenue from selling them. There is one potential buyer
(“he”), described by a type vector θ ∈ R|G|

++ whose gth entry θg represents his valuation
of good g. The type θ is drawn from a prior density h whose support is some compact
set Θ ⊆ R|G|

++ with non-empty interior. The buyer’s utility from receiving the bundle
of goods B ⊆ G and paying a monetary transfer t to the seller takes the additively
separable form ∑

g∈B

θg − t = 1B · θ − t,

where 1B ∈ R|G| denotes the indicator vector on bundle B (i.e., 1B
g := 1{g∈B} for each

g ∈ G). Section 6 incorporates nonadditive buyer utilities, negative valuations, and
seller production costs into the analysis.

While the realization of θ is only known to the buyer, the seller has access to
fairly precise (but imperfect) information about the buyer’s type. As discussed in
the Introduction, such information may represent various observable consumer data
(e.g., the examples in footnote 4) that is correlated with θ within the population
from which the buyer is drawn. For tractability, our main focus is on the following
formulation of seller information (Section 6 discusses more general formulations): Let
X be a measurable space of signals that is endowed with some σ-finite measure. The
seller observes n signals, xn = (x1, . . . , xn), that are drawn i.i.d. conditional on θ from
a distribution Pθ ∈ ∆(X) with density f(·, θ). Thus, the seller’s information is more
precise the richer her amount of data n, and we will be interested in settings where
n is large.

Upon observing the signals xn, the seller updates her prior h about the buyer’s
type. She then chooses a direct mechanism, which asks the buyer to report his type
and, as a function of this report, specifies allocation probabilities q : Θ → ∆(2G) for
each bundle along with an expected transfer t : Θ → R.14 Denote by q(B; θ) the
allocation probability of bundle B ⊆ G to type θ.

In the second-best problem, the seller chooses q and t conditional on each signal
14This formulation rules out asking the buyer to place “bets” (à la Crémer and McLean, 1988) on

the realization of xn. This is in line with the above interpretation of xn as a collection of personal
data that is known to the buyer.
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sequence xn to maximize her expected revenue

RSB
xn := sup

q,t
E[t(θ) | xn] (1)

subject to the incentive compatibility (IC) and individual rationality (IR) constraints∑
B⊆G

q(B; θ)
(
1B · θ

)
− t(θ) ≥

∑
B⊆G

q(B; θ′)
(
1B · θ

)
− t(θ′), ∀θ, θ′ ∈ Θ, (IC)

∑
B⊆G

q(B; θ)
(
1B · θ

)
− t(θ) ≥ 0, ∀θ ∈ Θ. (IR)

The seller’s second-best revenue is then the ex-ante expectation RSB
n := E[RSB

xn ].
As discussed in the Introduction, the solution to the second-best problem (i.e.,

the optimal mechanism) is in general complicated. Thus, we are interested in un-
derstanding how well the seller can perform at large n by using simpler mechanisms.
To evaluate the performance of different classes of mechanisms, we do not explicitly
derive the corresponding revenues at any given n. Instead, we analyze the conver-
gence rates of these revenues to the first-best as n grows large. Formally, denote by
RFB := E

[∑
g∈G θg

]
the first-best revenue , i.e., the expected revenue the seller

can achieve when she directly observes the buyer’s type and thus can fully extract
his valuation θg for each good g. Note that, as n grows large, the second-best rev-
enue converges to the first-best, i.e., limn→∞RSB

n = RFB, as observing infinitely many
signals perfectly reveals the buyer’s type to the seller given Assumption 1.5 below.
Moreover, by definition, the rate at which RSB

n converges to RFB represents the op-
timal (i.e., fastest) convergence rate of the seller’s revenue to the first-best across all
IC-IR mechanisms.

Convergence rates to the first-best also provide a parsimonious way to compare
the performance of simple but suboptimal mechanisms: Whenever n is large enough,
mechanisms whose revenues converge to the first-best faster yield higher expected
revenues than mechanisms with a slower convergence rate. At the same time, achiev-
ing the optimal convergence rate to the first-best is a less demanding criterion than
maximizing revenue at each n. Thus, there may be simpler classes of mechanisms
than the second-best that nevertheless attain the optimal convergence rate.

We will be particularly interested in the following two classes of simple mecha-
nisms: Under pure bundling (which we often refer to as bundling for short), the
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seller posts a single price p(G) for the entire grand bundle G of goods and makes a sale
only if the buyer is willing to purchase all goods at this price. Under separate sales ,
the seller posts a separate price p(g) for each good g and sells g to any buyer willing
to pay this price.15 Let Rbd

xn (resp. Rsep
xn ) denote the seller’s expected revenue when in

(1) she is restricted to optimizing over bundling (resp. separate sales) mechanisms.
Let Rbd

n := E[Rbd
xn ] and Rsep

n := E[Rsep
xn ].

Throughout, we impose the following regularity conditions. For technical conve-
nience, we extend the signal distribution Pθ and signal density f(·, θ) to all types in
some compact neighborhood Θ̂ ⊇ Θ:

Assumption 1.

1. The prior density h is strictly positive and locally Lipschitz continuous for all
θ ∈ Θ.

2. For all x ∈ X, the signal densities f(x, θ) are strictly positive and C2 in θ ∈
int Θ̂, and there is L > 0 such that, for all g, g′ ∈ G, θ, θ′ ∈ int Θ̂, and x ∈ X,∣∣∣∂2 ln f(x,θ)

∂θg∂θg′

∣∣∣ ≤ L and
∣∣∣∂2 ln f(x,θ)

∂θg∂θg′
− ∂2 ln f(x,θ′)

∂θg∂θg′

∣∣∣ ≤ L∥θ′ − θ∥.16

3. The signal distributions Pθ are continuous in θ ∈ Θ̂ with respect to the total
variation distance.

4. We have supθ∈Θ
∫
(supθ′∈Θ ln f(x, θ′))2 dPθ(x) < ∞.

5. The Fisher information matrix I(θ) ∈ R|G|×|G|, given by

I(θ) :=

(
−
∫

∂2

∂θg∂θg′
ln f(x, θ) dPθ(x)

)
g,g′∈G

, (2)

is well-defined and positive definite for each θ ∈ Θ̂.

The main content of Assumption 1 is that the log-signal densities ln f(x, θ) are suf-
ficiently well-behaved. Most importantly, Assumption 1.5 requires that, conditional
on θ, their expected curvatures ∂2

∂θg∂θg′
ln f(x, θ) with respect to changes in θ are well-

defined. The Fisher information matrix I(θ), which summarizes these curvatures, is a
15Under bundling, q(G; θ) = 1{

∑
g∈G θg≥p(G)}, q(∅; θ) = 1{

∑
g∈G θg<p(G)}, t(θ) =

1{
∑

g∈G θg≥p(G)}p(G) for all θ. Under separate sales, q(B; θ) = 1{θg≥p(g)∀g∈B and θg′<p(d′)∀g′ ̸∈B},
t(θ) =

∑
g∈G 1{θg≥p(g)}p(g) for all θ.

16Here, ∥ · ∥ denotes the L1-norm on R|G|, i.e., ∥y∥ :=
∑

g∈G |yg|.
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standard statistical measure of how informative signals are about type θ and will fea-
ture prominently in our analysis. Fisher information provides a local approximation of
the Kullback-Leibler divergence between the signal distributions at type θ vs. nearby
types θ′, as KL(Pθ, Pθ′) :=

∫
ln f(x,θ)

f(x,θ′)
dPθ(x) = (θ − θ′) · I(θ)(θ − θ′) + o(∥θ − θ′∥2).

Imposing positive definiteness on each I(θ) implies that KL(Pθ, Pθ′) > 0 for all θ ̸= θ′,
so signal distributions differ across different types. For example, if signals conditional
on each θ are distributed Gaussian with mean θ and a fixed positive definite covari-
ance matrix Σ, then I(θ) = Σ−1 for all θ, and positive definiteness rules out perfect
(positive or negative) correlation across signal coordinates.

3 Main Result

3.1 Optimal Convergence Rate

Our main result, Theorem 1 below, shows that bundling allows the seller to achieve
the optimal convergence rate to the first-best, whereas the convergence under separate
sales is slower. Naturally, how fast the seller can approximate the perfect information
benchmark depends on how informative her signals are about the buyer’s type. By
explicitly characterizing these convergence rates in terms of the underlying signal
distributions, Theorem 1 also sheds light on the relevant measure of informativeness
in this setting.

To formalize this, the Fisher information matrix I(θ) introduced in Assumption 1.5
turns out to play a key role. By the Bernstein-von Mises theorem, this measure is
closely tied to the covariance of the seller’s posterior at large n: Conditional on
(almost) any true type θ∗, the seller’s posterior as n → ∞ is approximated by a nor-
mal distribution N

(
θ∗, 1

n
I(θ∗)−1

)
whose covariance matrix is the scaled down inverse

Fisher information 1
n
I(θ∗)−1. Consequently, for any bundle B, the standard deviation

of the seller’s posterior about the buyer’s valuation 1B · θ of B is approximated by
λB(θ∗)√

n
, where

λB(θ∗) :=
√
1B · I(θ∗)−11B.

An important property of standard deviation is subadditivity. In particular, if |G| ≥

12



2, then letting λg(θ∗) := λ{g}(θ∗) for each g ∈ G, we have

λG(θ∗) <
∑
g∈G

λg(θ∗), (3)

where the inequality is strict by the positive definiteness of I(θ∗).17

Let λB := E[λB(θ)] for each bundle B. For any sequences of real numbers xn, yn
with limn→∞ xn = limn→∞ yn = 0, write xn ∼ yn if limn→∞

xn

yn
= 1, i.e., if xn and yn

vanish equally fast as n grows large.

Theorem 1. Under the second-best mechanism and optimal bundling mechanism, the
revenue gap to the first-best vanishes equally fast:

RFB −RSB
n ∼ RFB −Rbd

n ∼ λG

√
lnn

n
. (4)

Under separate sales, the revenue gap to the first-best vanishes more slowly:

RFB −Rsep
n ∼

∑
g∈G

λg

√
lnn

n
. (5)

By (4), when the seller optimizes over all mechanisms, the gap between her revenue
RSB

n and the first-best revenue RFB vanishes as fast as λG
√

lnn
n

as the amount of data
n grows large. Crucially, (4) also shows that the seller can achieve this same optimal
convergence rate to the first-best under pure bundling, because RFB − Rbd

n likewise
vanishes as fast as λG

√
lnn
n

. In both cases, how fast the seller can approximate the
first-best depends on the signal distribution only through the coefficient λG, which,
as noted above, captures how fast the seller’s posterior standard deviation about the
value 1G · θ of the grand bundle vanishes.

To interpret this result, note that at each n, pure bundling is in general suboptimal,
as optimal mechanisms may involve menus of bundles and/or lotteries over bundles.
However, the result shows that bundling is an effective way for the seller to exploit
rich consumer data, providing a rationale for this simple class of mechanisms. As
n grows large, any revenue gain from optimizing over general mechanisms vs. pure
bundling is second-order: By (4), the only potential difference between the revenue

17Since I(θ∗) is symmetric and positive definite, ∥y∥θ∗ :=
√
y · I(θ∗)−1y yields a norm on R|G|

induced by an inner product. Thus, for any non-empty and disjoint B,B′ ⊆ G, the triangle inequality
implies λB∪B′

(θ∗) = ∥1B∪B′∥θ∗ < ∥1B∥θ∗ + ∥1B′∥θ∗ = λB(θ∗) + λB′
(θ∗).
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gaps RFB − RSB
n and RFB − Rbd

n is a term that is o
(√

lnn
n

)
, but such a term is

negligible relative to λG
√

lnn
n

at large n.18 One way to quantify this is by saying that
at large n, the benefit of optimizing over general vs. bundling mechanisms is smaller
than the benefit of having access to even an arbitrarily small fraction of additional
signals: For any ε > 0, no matter how small, we have

Rbd
⌈(1+ε)n⌉ > RSB

n for all large enough n,

i.e., the seller is better off under pure bundling with (1 + ε)n signals than under the
optimal mechanism with n signals.19

In contrast, (5) shows that under separate sales the seller’s revenue approximates
the first-best more slowly: RFB − Rsep

n only vanishes as fast as
∑

g∈G λg
√

lnn
n

, and
by (3),

∑
g∈G λg > λG for |G| ≥ 2. Thus, whereas for small n, the seller’s revenue

may be higher under separate sales or bundling depending on parameters, Theorem 1
implies that bundling always outperforms separate sales when the seller has access
to rich enough consumer data. To understand this performance gap, note that at
large n, (4)-(5) imply that to attain the same revenue as under bundling (or under
the optimal mechanism) with n signals, a seller who uses separate sales would need

to have access to at least
(∑

g∈G λg

λG

)2
n signals.20 Depending on parameters, the ratio∑

g∈G λg

λG can be arbitrarily large:

Example 1. Suppose G = {1, 2} and signals xi ∈ R2 are distributed Gaussian with

mean θ and covariance matrix Σ =

(
σ2 ρσ2

ρσ2 σ2

)
. Then λ1(θ)+λ2(θ)

λG(θ)
= 2σ

σ
√

2(1+ρ)
> 1

for all θ. This ratio, and hence the performance gap of bundling vs. separate sales, is
decreasing in the correlation ρ of signals across goods and approaches ∞ as ρ → −1

(while it approaches 1 in the perfect correlation limit ρ → 1).21 ▲

18For any f, g : N → R++, write f(n) = o(g(n)) if limn→∞
f(n)
g(n) = 0.

19This has a similar flavor to Bulow and Klemperer’s (1996) seminal (non-asymptotic) result
that, in independent private value auctions, an auctioneer’s benefit of using optimal vs. second-price
auctions is smaller than the benefit of having just one additional bidder.

20Another way to compare these mechanisms is in terms of their performance ratios relative to

the second-best. Theorem 1 implies that Rbd
n

RSB
n

= 1− o

(√
lnn
n

)
while Rsep

n

RSB
n

= 1−
√

lnn
n

(
∑

g λg−λG)
RFB −

o

(√
lnn
n

)
, so the ratio approaches 1 faster under bundling than under separate sales.

21This is broadly reminiscent of classical findings (e.g., Adams and Yellen, 1976; Schmalensee,
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We prove Theorem 1 in Appendix A.2. Section 4 illustrates the main ideas.
Notably, the proof implies that under bundling, the seller can achieve the optimal
convergence rate using a pricing algorithm that does not require her to know the
prior type distribution: At each realized signal sequence xn, compute the maximum-
likelihood estimate θ̂xn of the buyer’s type. Then price the grand bundle at

pxn = 1G · θ̂xn −
√

lnn

n

√
1G · Ixn(θ̂xn)−11G. (6)

Here Ixn(·) denotes the empirical Fisher information, which replaces the expectation
with respect to Pθ in (2) with the sample average (see Appendix A.2.1). Thus, under
(6), the price depends only on two statistics: The seller’s best estimate 1G · θ̂xn of
the buyer’s valuation of the grand bundle, shaded by (an amount that approximates)
the standard deviation of this valuation scaled by

√
lnn. While (6) need not coincide

with the optimal pure bundling price (which does not typically admit a closed-form
solution), we show that the induced expected revenue gap RFB − E[1{pxn≤1G·θ}pxn ]

again vanishes at the optimal rate λG
√

lnn
n

.

Remark 1. Convergence rates of other simple mechanisms. Theorem 1 high-
lights that the optimal convergence rate is achieved by a particularly simple, albeit
stark, class of mechanisms—pure bundling. However, a fortiori, this implies that the
optimal convergence rate is also attained by optimizing over other simple and less ex-
treme classes of mechanisms that generalize pure bundling. This includes commonly
observed mechanisms such as (i) nested bundling (the seller offers a menu of bundles
that are nested by set inclusion) and (ii) two-part tariffs (the seller charges an entry
fee along with a usage fee for each good).22 Like pure bundling, these mechanisms
involve no randomization and only limited menus of bundles and are in general subop-
timal at any fixed n. At the same time, the suboptimal convergence of separate sales
extends to mechanisms where the seller chooses a more general partition B1, . . . , Bk

(1 < k < |G|) of G and prices p(Bℓ) for each ℓ (e.g., Palfrey, 1983): The convergence
rate is

∑k
ℓ=1 λ

Bℓ

√
lnn
n

, which is in between that under separate sales and bundling
and faster the coarser the partition.

1984) that negatively (resp. positively) correlated valuations across goods favor bundling (resp.
separate sales) under some conditions. However, note that in this example ρ parametrizes signal
correlations and that bundling outperforms separate sales for all ρ when n is large enough.

22Pure bundling corresponds to the special case of (ii) where the entry fee is the price of G and
the usage fee is 0 for all g.
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Countervailing forces to pure bundling. In various natural settings, The-
orem 1 breaks down as even the first-best may not involve all goods being sold.
Section 6 considers two such cases—seller production costs and negative buyer valu-
ations. A generalization of Theorem 1 remains valid: The optimal convergence rate
to the first-best is achieved by mechanisms that, similar to pure bundling, offer just
a single bundle (albeit generally a strict subset of G) at a take-it-or-leave price. This
preserves the message that a seller with rich enough consumer data derives only a
negligible benefit from using more complicated menus or lotteries over bundles. ▲

3.2 Gaussian Environment and Illustration of Convergence

As Theorem 1 highlights, an advantage of analyzing convergence rates to the first-
best is that this allows for sharp comparisons across different mechanisms that do not
depend on all the specifics of the environment (e.g., the details of the prior and signal
distributions). On the flipside, convergence rate results are silent about revenues at
fixed n, which would depend on the details of the environment. However, this does not
mean that the predictions of Theorem 1 only apply once n is so large that revenues are
very close to the first-best. This can be illustrated by considering numerical examples.

Specifically, we introduce the following deterministic Gaussian setting that will
also play a central role in the proof of Theorem 1. For any type θ∗, denote by
Ri

gauss,n(θ
∗) (i ∈ {SB, bd, sep}) the seller’s optimal expected revenue (under general

mechanisms, bundling, and separate sales) when her belief about the buyer’s type is
N (θ∗, 1

n
I(θ∗)−1).23 Thus, whereas in our original model the seller’s posterior at each

n is stochastic and depends on the realized signal sequence xn, here the seller observes
no signals and n parametrizes a deterministic sequence of Gaussian beliefs that con-
centrate on θ∗ as n grows large. Nevertheless, by the aforementioned Bernstein-von
Mises theorem, this deterministic Gaussian setting approximates the seller’s expected
revenues conditional on type θ∗ in our original model, where this approximation oc-
curs faster than the convergence in Theorem 1:24

23That is, RSB
gauss,n(θ

∗) = supq,t EN (θ∗, 1
n I(θ∗)−1)[t(θ)] subject to (IC)–(IR), and Rbd

gauss,n(θ
∗)

(Rsep
gauss,n(θ

∗)) is the seller’s value when the sup is over bundling (separate sales) mechanisms.
24Lemma 1 is immediate from Propositions A.2 and A.3 in Appendix A.
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Lemma 1. For almost all θ∗ ∈ Θ and all i ∈ {SB, bd, sep},

E[Ri
xn|θ∗]−Ri

gauss,n(θ
∗) = o

(√
lnn

n

)
.

The revenues in this Gaussian setting can be studied numerically as a function
of n. Figure 1 plots the revenues under pure bundling, separate sales, and mixed
bundling (i.e., the optimal deterministic mechanism, see Section 4.4); it also plots an
upper bound on the second-best revenue that we will derive in Section 4.5.

Note that in both panels of Figure 1, the predictions of Theorem 1 start to apply
at values of n that are moderate, in the sense that all revenues are still far from the
first-best revenue of 0.6.25 First, pure bundling starts to outperform separate sales
very quickly, and the revenue gap between the two remains significant throughout
the domain of the figure. Second, the revenue gap of pure bundling relative to both
mixed bundling and the second-best bound all but disappears at a point where these
revenues are still only a moderate fraction (less than 70%) of the first-best revenue.
Finally, reflecting the impact of correlation on the relative performance of separate
sales vs. bundling highlighted in Example 1, the revenue gap between separate sales
and bundling is more pronounced in the left-hand panel of Figure 1 where ρ = −0.5

than in the middle panel (ρ = 0) and right-hand panel (ρ = 0.5).

4 Main Ideas behind Theorem 1

This section illustrates the main ideas behind Theorem 1. Section 4.1 reduces the
analysis to the Gaussian setting from Section 3.2. Section 4.2 analyzes single-good
monopoly, establishing a key result about revenue losses on the intensive vs. extensive
margins. Based on this, we derive the convergence rates under bundling vs. separate
sales (Section 4.3), and show that offering menus of bundles does not improve the con-
vergence rate relative to pure bundling (Section 4.4). Finally, Section 4.5 introduces
a relaxed problem that yields an upper bound on the second-best revenue. Using this,
we show that bundling achieves the same convergence rate as the optimal mechanism.

25The slow convergence in Figure 1 reflects the slow convergence speed of
√

lnn
n in Theorem 1.

Note that (unlike in our original model) revenues in this deterministic setting are initially decreasing
in n, as very low n correspond to very high posterior variance, which benefits the seller by allowing
her to charge very high prices and focus on extracting surplus from right-tail types.
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ρ = −0.5 ρ = 0 ρ = 0.5

Figure 1: Gaussian setting with θ∗ =

(
0.3
0.3

)
, I(θ∗)−1 =

(
1 ρ
ρ 1

)
, and ρ = −0.5 (left), ρ = 0

(middle), or ρ = 0.5 (right). We plot revenues Ri
gauss,n(θ

∗) under pure bundling (orange), mixed

bundling (purple), separate sales (blue), and the upper bound R
SB

gauss,n(θ
∗) on the second-best revenue

(yellow) as a function of n. All revenues converge to the first-best RFB(θ∗) = 0.6 (gray) as n → ∞.

4.1 Reduction to Gaussian Setting

To prove Theorem 1, it suffices to establish the following analog of this result in the
deterministic Gaussian setting we introduced in Section 3.2. Let RFB(θ∗) :=

∑
g∈G θ∗g .

Proposition 1. For all θ∗ ∈ Θ, we have

RFB(θ∗)−RSB
gauss,n(θ

∗) ∼ RFB(θ∗)−Rbd
gauss,n(θ

∗) ∼ λG(θ∗)

√
lnn

n
,

and RFB(θ∗)−Rsep
gauss,n(θ

∗) ∼
∑
g∈G

λg(θ∗)

√
lnn

n
.

That Proposition 1 implies Theorem 1 follows from the Gaussian approximation
in Lemma 1, along with additional arguments that allow us to go from the conditional
revenues in Proposition 1 to the ex-ante expected revenues in Theorem 1.26 Hence-
forth, we focus on the Gaussian setting and illustrate the ideas behind Proposition 1.

4.2 Single-Good Monopoly: Intensive vs. Extensive Margin

First, we analyze the convergence rate to the first-best under single-good monopoly.
Suppose |G| = 1 and the seller’s belief is distributed N (θ∗, σ2/n) for some θ∗ > 0;
the corresponding cdf is Fn(x) := Φ

(
(x−θ∗)

√
n

σ

)
, where Φ is the standard normal cdf.

Under single-good monopoly, the optimal mechanism is a posted price: The seller
chooses a price pn and sells the good to buyers of type θ ≥ pn. Let R∗

n denote the
26Such arguments are needed because the approximation errors in Lemma 1 are not uniform in θ.
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optimal revenue in this setting, which is given by

R∗
n = max

p
p(1− Fn(p)).

Let p∗n denote an optimal price.
To understand how fast the revenue gap to the first-best (i.e., RFB(θ∗) − R∗

n =

θ∗ −R∗
n) vanishes as n grows large, it is helpful to decompose this gap as follows:

θ∗ −R∗
n = θ∗ − p∗n(1− Fn(p

∗
n)) = θ∗ − p∗n︸ ︷︷ ︸

intensive margin

+ θ∗Fn(p
∗
n)︸ ︷︷ ︸

extensive margin

− (θ∗ − p∗n)Fn(p
∗
n)︸ ︷︷ ︸

smaller order terms

.

That is, at each n, the optimal price p∗n must trade-off revenue losses on the intensive
margin (i.e., due to price discounts relative to the first-best) and the extensive
margin (i.e., due to some buyer types refusing to buy). To reduce intensive-margin
losses, the seller wants to choose a price sequence pn that approaches θ∗ as fast as
possible. But if the rate at which pn → θ∗ is too fast, then extensive-margin losses
Fn(pn) = Φ

(
(pn−θ∗)

√
n

σ

)
may vanish too slowly or fail to vanish at all.

The key observation is that this tradeoff dictates that p∗n is set in such a way that
revenue losses at large n are driven almost entirely by the intensive margin:

Proposition 2. In the Gaussian environment with |G| = 1 and θ distributed N (θ∗, σ2/n)

for some θ∗ > 0, any optimal price sequence p∗n satisfies

RFB(θ∗)−R∗
n ∼ θ∗ − p∗n ∼

√
lnn

σ√
n

and θ∗Fn(p
∗
n) = o

(√
lnn

n

)
. (7)

Moreover, for any price sequence pn with θ∗ − pn ∼ δ(θ∗ − p∗n) for some δ ∈ [0, 1), we
have limn

θ∗Fn(pn)√
lnn
n

= ∞.

Proposition 2 shows that losses on the extensive margin θ∗Fn(p
∗
n) become negligible

relative to the intensive margin θ∗− p∗n at large n. Hence, the revenue gap relative to
the first-best vanishes at the same rate as the intensive margin. Moreover, this rate
takes a simple form, given by the standard deviation σ√

n
of the seller’s posterior scaled

by
√
lnn.27 While there is no closed-form solution for the optimal prices p∗n, the result

27To understand this rate, note that if the intensive margin is proportional to the standard devi-
ation (θ∗ − pn = κ σ√

n
for some κ > 0), extensive-margin losses Fn(pn) = Φ

(
(pn−θ)

√
n

σ

)
= Φ(−κ) do
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implies that the same optimal convergence rate is achieved by a simple pricing rule,

pn = θ∗ −
√
lnn

σ√
n
, (8)

which shades the price by the amount
√
lnn σ√

n
relative to the posterior mean θ∗.

It may appear counterintuitive that the intensive and extensive margins are highly
imbalanced at the optimum. Why can’t the seller reduce the intensive margin a little
by correspondingly increasing the extensive margin? The “moreover” part of Proposi-
tion 2 sheds light on this point: If the intensive margin is scaled down relative to the
optimum θ∗−p∗n by some factor δ < 1, then the extensive margin explodes relative to
the magnitude

√
lnn
n

of the intensive margin, which is clearly suboptimal. Notably,
this occurs even when δ is arbitrarily close to 1. This reflects the relatively thin tails of
the Gaussian distribution, which make the tail-event probability Fn(pn) very sensitive
to the choice of pn (Appendix C.3 extends this to more general distributions).

4.3 Bundling vs. Separate Sales: Role of Standard Deviation

We return to the multi-good setting, |G| ≥ 2, with seller belief N
(
θ∗, 1

n
I(θ∗)−1

)
.

Proposition 2 immediately yields the convergence rates of Rbd
gauss,n(θ

∗) and Rsep
gauss,n(θ

∗),
as under both bundling and separate sales, the seller’s problem reduces to single-good
monopoly.

Specifically, bundling is an instance of single-good monopoly, where the good is
the grand bundle and the buyer’s type is

∑
g∈G θg. Since the standard deviation

of
∑

g∈G θg is
√

1G·I(θ∗)−11G

n
= λG(θ∗)√

n
, (7) then yields that the revenue gap relative

to the first-best vanishes as fast as
√
lnnλG(θ∗)√

n
. In contrast, under separate sales,

the seller solves a collection of single-good monopoly problems, one for each good

g, with corresponding type θg. Since the standard deviation of θg is
√

1g ·I(θ∗)−11g

n
=

λg(θ∗)√
n

, (7) yields that the revenue gap relative to the first-best vanishes as fast as
√
lnn

∑
g∈G λg(θ∗)

√
n

.
Thus, the reason that convergence under bundling is faster than under separate

sales boils down to the fact that the standard deviation of the sum of all valuations∑
g∈G θg is less than the sum of the standard deviations of each individual valuation

not vanish with n. For the extensive margin to vanish, θ∗ − pn must be scaled up, where the role of
the scaling factor

√
lnn comes from the exponential form of the standard normal distribution.
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θg. By Proposition 2, this allows the seller to charge a bundling price pbdn (G) that at
large n exceeds the total price

∑
g∈G psepn (g) under separate sales. By the dominance

of the intensive margin, this ensures a higher revenue under bundling.
At a high level, this reflects the intuition that bundling reduces the seller’s un-

certainty about the buyer’s type relative to separate sales, as overestimating the
valuations of some goods but underestimating those of others can cancel out when
estimating the valuation of the grand bundle. However, for this intuition to be valid
in our setting, it is crucial that Proposition 2 shows that the relevant measure of
uncertainty at large n is standard deviation, which is subadditive. The same logic
would not have been valid under other natural measures of uncertainty: For example,
the variance of

∑
g∈G θg can be greater or smaller than the sum of the variances of all

θg, depending on the correlation across dimensions.28

4.4 Bundling vs. Mixed Bundling

It remains to show that general mechanisms, which may involve menus of bundles
and randomization, cannot achieve a faster convergence rate than pure bundling. As
a first step, we focus on the effect of menus and ignore randomization. IC-IR deter-
ministic mechanisms correspond to mixed bundling : The seller sets prices p(B) for
all bundles B, and the buyer chooses which bundle to purchase.29 Let

(
pmix
n (B)

)
B⊆G

denote the optimal mixed bundling prices under the seller belief N
(
θ∗, 1

n
I(θ∗)−1

)
.

Relative to pure bundling, mixed bundling allows the seller to extract revenue
from buyers who are unwilling to purchase the grand bundle G, i.e., those types with∑

g∈G θg < pbdn (G). However, while this improves the seller’s revenue at each n, we
show that the benefit in terms of the convergence rate to the first-best is negligible.

The logic relies on the intensive vs. extensive margin analysis in Proposition 2.
Indeed, by (7), the extensive-margin losses under pure bundling from types

∑
g∈G θg <

pbdn (G) become negligible relative to the intensive-margin losses
∑

g∈G θ∗g − pbdn (G) at
large n. Thus, the only way for mixed bundling to achieve a first-order improvement

28To illustrate a setting where variance would have been the appropriate measure, consider a
generalization of the monopolist’s problem in Section 4.2, where θ is distributed N (θ∗, σ2

n ) and
the price choice p induces a payoff u(p, θ). If u(p, θ) is smooth, Taylor approximation arguments
imply that the gap to the first-best payoff is proportional to the variance σ2

n . However, in our
setting, u(p, θ) = p1{p≤θ} is discontinuous at p = θ. This makes it more difficult to approximate the
first-best payoff, leading to the slower convergence rate

√
lnn σ√

n
.

29We implicitly assume that a buyer cannot purchase multiple bundles at once.

21



!!

!"

Θ#$
Θ#$$

Θ#

#

Figure 2: Illustration of segmentation when |G| = 2.

over pure bundling would be if mixed bundling allowed the seller to raise the price
of the grand bundle in a significant enough way that the intensive-margin losses∑

g∈G θ∗g − pmix
n (G) vanish strictly faster than

∑
g∈G θ∗g − pbdn (G). However, this is

impossible by the “moreover” part of Proposition 2: Under any such price sequence
pmix
n (G), extensive-margin losses (i.e., the rejection probability of the grand bundle)

would increase so substantially relative to pure bundling that this would more than
offset the improvements on the intensive margin.

4.5 Bounding the Optimal Revenue via a Relaxed Problem

Finally, we show that bundling achieves the same convergence rate as the second-best
mechanism. Relative to mixed bundling, the second-best mechanism may involve
randomization and, as noted, can be difficult to characterize. To get around this, we
instead derive an upper bound on the second-best revenue RSB

gauss,n(θ
∗) by considering

the seller’s optimal revenue R
SB

gauss,n(θ
∗) in a more tractable relaxed problem. We

then show that even RFB(θ∗) − R
SB

gauss,n(θ
∗) does not vanish at a faster rate than

RFB(θ∗)−Rbd
gauss,n(θ

∗).
To define the relaxed problem, we split the type space into one-dimensional

segments: Fix a full-rank matrix A ∈ R(|G|−1)×|G| and partition types into lines
(Θy)y∈R|G|−1 , where

Θy := {θ ∈ R|G| : Aθ = y} for each y ∈ R|G|−1.

22



See Figure 2 for an illustration when |G| = 2, in which case A corresponds to a
vector in R2 and each line segment is parametrized by a real number y. Given this
segmentation, denote by R

SB

gauss,n(θ
∗) the second-best revenue when the IC constraint

governing RSB
gauss,n(θ

∗) is relaxed to only hold across types in the same line segment,
i.e., we only require that∑
B⊆G

q(B; θ)
(
1B · θ

)
− t(θ) ≥

∑
B⊆G

q(B; θ′)
(
1B · θ

)
− t(θ′), ∀y ∈ R|G|−1, θ, θ′ ∈ Θy.

Thus, it is as if the seller observes each type θ’s segment (i.e., the vector Aθ) before
choosing a mechanism. Clearly, RSB

gauss,n(θ
∗) ≥ RSB

gauss,n(θ
∗).

An advantage of the relaxed problem is that solving for R
SB

gauss,n(θ
∗) reduces to a

collection of problems with one-dimensional type spaces. That is, RSB

gauss,n(θ
∗) can be

written as the average

R
SB

gauss,n(θ
∗) = E

[
RSB

gauss,n(θ
∗ | y)

]
,

where RSB
gauss,n(θ

∗ | y) denotes the second-best revenue when the seller’s belief over
types is the conditional distribution on segment Θy induced by N

(
θ∗, 1

n
I(θ∗)−1

)
, and

the expectation on the right is with respect to y being distributed N (Aθ∗, 1
n
AI(θ∗)−1A⊤).

Since each Θy is one-dimensional, analyzing RSB
gauss,n(θ

∗ | y) is quite tractable. Sec-
tion 5 below characterizes optimal mechanisms in a more general environment with
one-dimensional types (dropping the Gaussian assumption). The key observation is
that optimal mechanisms at each Θy are “almost deterministic:” In addition to deter-
ministic bundles, they offer (at most) a single lottery over bundles. Thus, ruling out
more complicated mechanisms with infinitely many lotteries, the optimal mechanism
at each Θy is a simple modification of mixed bundling. Based on this, a similar logic
to the comparison between mixed and pure bundling in Section 4.4 implies that, at
each Θy, the seller’s second-best revenue RSB

gauss,n(θ
∗ | y) does not converge to the first-

best faster than does her conditional pure bundling revenue Rbd
gauss,n(θ

∗ | y). That is,
the seller’s revenue gain from randomization becomes negligible at large n.

A crucial remaining issue is that the pure bundling price at each Θy may in general
depend on y, so the bundling revenue E

[
Rbd

gauss,n(θ
∗ | y)

]
in the relaxed problem may

be greater than the revenue Rbd
gauss,n(θ

∗) in the original problem. However, this issue
can be avoided by carefully choosing how to segment the type space in the relaxed
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problem. Specifically, we choose the matrix A in such a way that the conditional
distribution of

∑
g∈G θg at every segment Θy is the same as the unconditional dis-

tribution of
∑

g∈G θg. That is, observing the buyer’s line segment (i.e., the vector
Aθ) provides the seller with no additional information about the buyer’s valuation of
the grand bundle. Picking an A with this property is always possible, since in the
current Gaussian setting this is equivalent to the requirement that Aθ and 1G · θ are
uncorrelated.30 Under this choice of A, the optimal pure bundling price at each Θy

is the same as the optimal pure bundling price in the original problem. Hence, the
seller’s pure bundling revenue in the original problem can be written as

Rbd
gauss,n(θ

∗) = E
[
Rbd

gauss,n(θ
∗ | y)

]
.

Combined with the previous paragraph, this yields the desired conclusion that RFB(θ∗)−
R

SB

gauss,n(θ
∗) does not vanish at a faster rate than RFB(θ∗)−Rbd

gauss,n(θ
∗).

5 Analysis of One-Dimensional Type Setting

This section analyzes (a generalization of) the one-dimensional type environment
at the center of the argument in Section 4.5. As claimed in Section 4.5, we show
that optimal mechanisms take an almost deterministic form. This result may be of
independent interest beyond its application in Section 4.5.

Let B denote a finite set of allocations, which we enumerate as {1, 2, . . . ,m}. An
agent’s type is described by an L1 random variable τ that admits a strictly positive
density on some interval T ⊆ R. We normalize types so that 0 ∈ T . Each type τ ∈ T

is associated with a vector α(τ) ∈ Rm, where αℓ(τ) represents type τ ’s utility from
allocation ℓ. Our key assumption is that α is linear, i.e., there is β ∈ Rm such that

α(τ) = α(0) + τβ.

Let β := max{β1, . . . , βm}, β := min{β1, . . . , βm}, and assume there exists some
allocation ℓ̄ for which αℓ̄(0) = βℓ̄ = 0. Section 4.5 is a special case of this environment
where B corresponds to the set of bundles (with ℓ̄ the empty bundle), but the current
formulation does not require Gaussian type distributions or additive valuations.31

30For example, if |G| = 2 and Var(θ1) = Var(θ2), then we can pick A to be the vector (1,−1).
31More specifically, the current setting nests Section 4.5 by letting T = R and choosing α with
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The current setting also encompasses some other economic applications.32

A direct mechanism consists of a pair of measurable functions q : T → ∆(B)
and t : T → R. Let M denote the set of all direct mechanisms (q, t) that satisfy
both IC (i.e., α(τ) · q(τ) − t(τ) ≥ α(τ) · q(τ ′) − t(τ ′) for all τ, τ ′ ∈ T ) and IR (i.e.,
α(τ) · q(τ) − t(τ) ≥ 0 for all τ ∈ T ). The designer’s objective is to maximize the
expected transfer E[t(τ)] subject to IC and IR.

Since βℓ̄ = 0 ∈ [β, β], we can pick a lottery

b0 ∈ argmax
q∈∆(B)

α(0) · q such that β · q = 0;

that is, b0 yields maximal utility among all lotteries that give the same utility to all
types. Let D := {δk : k ∈ B} denote the set of deterministic allocations. Let

Ms := {(q, t) ∈ M : q(T ) ⊆ D ∪ {b0}}

denote the subset of IC and IR mechanisms that involve only allocations that are
either deterministic or b0. The following result shows that it is without loss of opti-
mality for the designer to restrict attention to such mechanisms. Note that the choice
of the lottery b0 is independent of the type distribution.

Proposition 3. We have sup(q,t)∈M E [t(τ)] = sup(q,t)∈Ms E [t(τ)].

We prove Proposition 3 in Appendix B. As in Manelli and Vincent (2007) and
Daskalakis, Deckelbaum, and Tzamos (2017), we reformulate the designer’s problem
as an optimization over agent value functions V : T → R that are induced by IC-IR
mechanisms. However, in contrast to these papers, a challenge is that V does not
uniquely pin down the corresponding mechanism (and hence the designer’s payoff),
because the allocation space has a higher dimension than the type space. Thus, we
solve the problem in two steps: First, for each V , we optimize over the set of IC-IR
mechanisms that induce V ; second, we optimize over V . We show that, while the
objective in the second step is non-linear in V , it has a piecewise linear structure.

αℓ(0) = E[θ · 1Bℓ |Aθ = y] and βℓ = 1Bℓ · z for each bundle Bℓ, where z ∈ RG is such that Az = 0.
32For example, the linearity assumption is satisfied in settings where allocations correspond to

multi-dimensional consumptions (e.g., state-contingent payoffs) and types represent weights over
dimensions (e.g., beliefs). Also, Boleslavsky and Kolb (2024) consider a setting where an agent
purchases allocations (“influence bundles”), whose payoff depends linearly on his one-dimensional
type.
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Based on this, we verify that it suffices for optimality to consider V functions that
are induced by mechanisms in Ms.

Relative to deterministic mechanisms, the role of offering lottery b0 is to extract
more surplus from types for whom IR binds. To illustrate, consider the case where
α(0) · b0 > 0 and b0 is a non-degenerate lottery. Suppose that under an optimal
deterministic mechanism, there is a non-trivial interval T̂ ⊆ T of types who receive
the degenerate lottery δℓ. Clearly, IR binds for these types and they pay nothing to
the designer. But then the designer can strictly improve her payoff by offering b0 at
price α(0) · b0 > 0 to these types instead of δℓ. Under this modification, IC remains
valid, because α(τ) · b0 = α(0) · b0 for all τ ∈ T by construction of b0, i.e., all types
are indifferent between receiving b0 at price b0 · α(0) or receiving δℓ for free.

Remark 2 (Optimality of deterministic mechanisms). If instead α(0) · b0 =

0, we can set b0 = δℓ, so Proposition 3 implies the optimality of a deterministic
mechanism. A sufficient condition for α(0) · b0 = 0 is if βℓ ≥ 0 for all ℓ, i.e., the
utility to each allocation is nondecreasing in types. This observation contrasts with
Ghili (2023) and Yang (2023), who consider settings with one-dimensional types but
without our linear utility assumption. In their settings, optimal mechanisms in general
require randomization, even though all bundles’ values are nondecreasing in types. ▲

6 Extensions

Production costs/negative valuations. In our main model, the first-best RFB =

E[1G · θ] involves supplying the grand bundle to all buyer types. This can fail if
the seller faces a production cost or some types have negative valuations for some
goods. Appendix C.1 extends the analysis to allow for both possibilities: First, to
produce each bundle B, the seller incurs a cost c(B), so that RFB = E

[
1Bθ · θ − c(Bθ)

]
involves supplying a possibly different bundle Bθ ∈ argmaxB⊆G

(
1B · θ − c(B)

)
to

each type θ. Second, we drop the assumption that Θ ⊆ R|G|
++ and instead assume

1Bθ · θ − c(Bθ) > 0 for all θ ∈ Θ, which ensures positive gains from trade.33 In this
setting, a simple generalization of pure bundling—single-bundle mechanisms—
achieves the optimal convergence rate to the first-best: Let R1bd

n denote the expected
revenue when, following each signal sequence xn, the seller optimally chooses a single

33If c ≡ 0, this simply requires each type to have a positive valuation for at least one good.
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bundle B and fixed price p(B) at which to offer this bundle. Theorem C.1 shows that
RFB−R1bd

n vanishes at the same rate as RFB−RSB
n , namely as fast as E[λBθ(θ)]

√
lnn
n

.
Non-additive utilities. While we focused on buyer utilities that are additive

across goods, this is not essential for our main result. Appendix C.2 assumes that the
buyer’s utility from receiving bundle B and paying transfer t takes the form ωB − t,
where the only restriction on the valuations ωB is that ωG > max{ωB, 0} for all B ⊊ G.
This allows for fairly general complementarity and substitutability patterns across
goods, provided the buyer finds the grand bundle G most attractive.34 Indeed, this
abstract formulation can capture other multi-dimensional screening settings beyond
multi-good monopoly; for example, bundles B might be reinterpreted as discrete
quality levels, where G represents the highest quality. As in our main model, prior
to choosing a mechanism, the seller observes n i.i.d. signals about the buyer’s type,
which in this setting corresponds to the vector ω := (ωB)B⊆G ∈ R2G . Applying
analogous arguments as in Theorem 1, Theorem C.2 shows that the revenue gap to
the first-best continues to vanish at the same rate under the second-best and optimal
bundling mechanisms, viz., as fast as E[λ(ω)]

√
lnn
n

, where λ(ω) :=
√

1G · I(ω)−11G.
More general seller information. To formalize precise seller information, we

assumed that the seller observes n i.i.d. signals about the buyer’s type. This formu-
lation allowed us to apply the Bernstein-von Mises theorem to reduce the analysis
to a setting with a deterministic sequence of Gaussian seller beliefs. While we do
not pursue this direction in the current paper, we conjecture that our results can be
generalized to certain classes of correlated signals, by applying non-i.i.d. versions of
the Bernstein-von Mises theorem to extend this Gaussian approximation approach.

As an alternative modeling approach, Appendix C.3 takes as a primitive a general
(not necessarily Gaussian) deterministic sequence of seller beliefs indexed by n that
converge to a point-mass on the true type θ∗. Such beliefs can be interpreted as the
outcome of the seller observing increasingly precise information that need not take
the form of n (i.i.d. or correlated) signal draws. Under a condition that rules out
heavy-tailed seller beliefs, we extend the key insight (Proposition 2) that intensive-
margin losses dominate the extensive margin at large n under single-good monopoly.
Based on this, Proposition C.1 shows that pure bundling continues to achieve the
same convergence rate to the first-best as the optimal deterministic mechanism.35

34This can be further relaxed, similar to the negative type case in the previous paragraph.
35We do not analyze non-deterministic mechanisms, but conjecture that the approach via the re-
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A Appendix: Main Proofs

This appendix presents the proofs of Propositions 1–2 (Appendix A.1) and uses these
to prove Theorem 1 (Appendix A.2). Online Appendices B–C present proofs and
other omitted details for Sections 5–6.

A.1 Gaussian Environment

We analyze the Gaussian environment from Section 3.2. Appendix A.1.2 proves
Proposition 2. Appendix A.1.3 uses this to prove (a strengthening of) Proposition 1.

Throughout Appendix A.1, we denote by Ri(µ,Σ) (i ∈ {SB, bd, sep}) the seller’s
optimal expected revenue (under general mechanisms, bundling, and separate sales)
when her belief is distributed N (µ,Σ); when |G| = 1, we drop the superscripts i. Let
Φ and φ be the cdf and pdf of the one-dimensional standard normal distribution. Let
γ := supx∈R φ(x)x. We will often use the following Gaussian tail bound (Wainwright,
2019):

Φ(−z) ≤ exp[−z2

2
], for all z ≥ 0. (9)

Moreover, the tail probability admits the approximation limz→∞
Φ(−z)

1√
2π|z|

exp[− z2

2
]
= 1.

A.1.1 Preliminaries for Single-Good Case

Assume |G| = 1 and fix some µ, σ ∈ R. Then R(µ, σ2) = maxp∈R p(1−Φ
(
p−µ
σ

)
). Let

x∗(µ, σ2) := argmaxx∈R(µ+ xσ)(1− Φ(x)) be the optimal normalized price.

Lemma A.1. We have |x∗(µ, σ2)| ≥
√

2
∣∣∣ln µ

σ
√
2π(1+γ)

∣∣∣. If µ ≥ 0, then x∗(µ, σ2) ≤ 1.

Proof. Let x∗ := x∗(µ, σ2). To prove the first claim, assume µ ̸= 0, as the claim is
trivial if µ = 0. The first-order condition for revenue maximization implies

σ ≥ σ (1− Φ(x∗)) = (µ+ σx∗)φ(x∗),

which yields 1− φ(x∗)x∗ ≥ µ
σ
φ(x∗). Thus we have

1√
2π

e−x∗2/2 = φ(x∗) ≤ (1− φ(x∗)x∗)
σ

µ
≤ (1 + γ)

σ

µ
.

laxed problem in Section 4.5 might be extended by exploiting the non-Gaussian analysis in Section 5.
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After manipulation, we get ex∗2 ≥
(
µ
σ

)2 1
2π(1+γ)2

, which ensures |x∗| ≥
√
2
∣∣∣ln µ

σ
√
2π(1+γ)

∣∣∣.
If µ ≥ 0, the derivative of revenue with respect to x > 1 satisfies

σ(1− Φ(x))− φ(x)(µ+ σx) ≤ σ

(
φ(x)

x
− φ(x)x

)
< 0.

Therefore, x∗ ≤ 1 is needed to satisfy the first-order condition.

Lemma A.2. If µ ≥ 0, then R(µ, σ2) ≤ max

{
µ− σ

√
2
∣∣∣ln µ

σ
√
2π(1+γ)

∣∣∣, µ+σ
2

}
.

Proof. As before, let x∗ = x∗(µ, σ2) denote the optimal normalized price. If x∗ ≤ 0,

then by Lemma A.1, x∗ ≤ −
√
2
∣∣∣ln µ

σ
√
2π(1+γ)

∣∣∣. Thus,

R(µ, σ2) = (µ+ x∗σ)(1− Φ(x∗)) ≤ (µ+ x∗σ) ≤ µ− σ

√
2

∣∣∣∣ln µ

σ
√
2π(1 + γ)

∣∣∣∣.
If x∗ > 0, then by Lemma A.1, x∗ ≤ 1. Thus,

R(µ, σ2) ≤ (µ+ σx∗)(1− Φ(x∗)) ≤ µ+ σ

2
.

Combining the above, we obtain the desired bound.

Proposition A.1. If µ ≥ 0, then for every n ∈ N,

max

{
µ− σ

√
lnn

n
+

σ√
n

√
2

∣∣∣∣ln µ

σ
√
2π(1 + γ)

∣∣∣∣, µ+ σ/
√
n

2

}
≥ R(µ, σ2/n)

≥ µ− σ

√
lnn

n
− µ√

2πn lnn
.

If µ ≤ 0, then for every n ∈ N, R(µ, σ2/n) ≤
√

2π
n
σ.

Proof. First, consider µ ≥ 0. By Lemma A.2,

R(µ, σ2/n) ≤ max

{
µ− σ√

n

√
2

∣∣∣∣ln µ
√
n

σ
√
2π(1 + γ)

∣∣∣∣, µ+ σ/
√
n

2

}
.
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Thus, the desired upper bound follows from the observation that√
2

∣∣∣∣ln µ
√
n

σ
√
2π(1 + γ)

∣∣∣∣ =
√∣∣∣∣lnn+ 2 ln

µ

σ
√
2π(1 + γ)

∣∣∣∣ ≥ √
lnn−

√
2

∣∣∣∣ln µ

σ
√
2π(1 + γ)

∣∣∣∣.
To derive the lower bound, observe that the revenue from offering price µ−σ

√
lnn
n

is

(
µ− σ

√
lnn

n

)(
1− Φ

(
−
√
lnn
))

≥ µ− σ

√
lnn

n
− µΦ

(
−
√
lnn
)

= µ− σ

√
lnn

n
− µ

(
1− Φ

(√
lnn
))

≥ µ− σ

√
lnn

n
− µ

φ(
√
lnn)√
lnn

= µ− σ

√
lnn

n
− µ√

2πn lnn
,

where the second inequality uses the bound on the Mills ratio (Wainwright, 2019).
Next, consider µ ≤ 0, and let x∗ := x∗(µ, σ2/n). Then

R(µ, σ2/n) ≤ µ+ x∗ σ√
n
=

σ√
n

1− Φ(x∗)

φ(x∗)
=

σ√
n

Φ(−x∗)

φ(x∗)
≤ σ√

n

e−
(x∗)2

2

φ(x∗)
=

√
2π

σ√
n
,

where the first equality uses the first-order condition σ√
n
(1−Φ(x∗)) = (µ+x∗ σ√

n
)φ(x∗),

and the second inequality uses the tail bound (9) at x∗ ≥ |µ|/(σ/
√
n) ≥ 0.

A.1.2 Proof of Proposition 2

Take any δ ≥ 0 and sequence of prices (pn) with θ∗ − pn ∼ δ
√
lnn σ√

n
. Then

Fn(pn) = Φ

(
(pn − θ∗)

√
n

σ

)
= exp

[
−δ2

2
lnn+ o (lnn)

]
= n− δ2

2
+o(1),

and thus

lim
n→∞

θ∗Fn(pn)

(lnn)1/2n−1/2
=

0 if δ > 1,

∞ if δ < 1.
(10)

Additionally, if θ∗ − pn =
√
lnn σ√

n
, then limn

θ∗Fn(pn)

(lnn)1/2n−1/2 = 0, and hence RFB(θ∗) −
Rn(pn) ∼

√
lnn σ√

n
, where Rn(pn) := pn(1− Fn(pn)). This implies that, up to taking
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a convergent subsequence, any sequence of optimal prices (p∗n) must satisfy

1 ≥ lim
k→∞

RFB(θ∗)−Rnk
(p∗nk

)
√
lnnk

σ√
nk

≥ lim
k→∞

θ∗ − p∗nk√
lnnk

σ√
nk

. (11)

If either inequality is strict, then θ∗ − p∗nk
∼ δ

√
lnnk

σ√
nk

for some δ ∈ (0, 1), so (10)
implies the contradiction that

∞ = lim
k→∞

θ∗Fnk
(pnk

)√
lnnk

σ√
nk

≤ lim
k→∞

RFB(θ∗)−R∗
nk
(p∗nk

)
√
lnnk

σ√
nk

.

Thus, both inequalities in (11) hold with equality, which implies RFB(θ∗)−Rn(p
∗
n) ∼√

lnn σ√
n
∼ θ∗ − p∗n. This in turn implies that θ∗Fn(p

∗
n) = o

(√
lnn
n

)
, as claimed.

A.1.3 Proof of Proposition 1

We prove the following stronger result than Proposition 1, which we will use in the
proof of Theorem 1. Assumption 1 ensures that I(θ) is invertible for each θ ∈ Θ̂, and
that {I(θ)−1 : θ ∈ Θ̂} is a compact set consisting of positive definite matrices. Let
J be a compact neighborhood of {I(θ)−1 : θ ∈ Θ̂}. By choosing J to be sufficiently
small, we can assume that every J ∈ J is positive definite.

Proposition A.2. There is K > 0 such that for all θ∗ ∈ Θ̂, J ∈ J , and n ∈ N,∣∣∣∣∣Ri

(
θ∗,

1

n
J

)
− θ∗ · 1G +

(
lnn

n
1G · J1G

)1/2
∣∣∣∣∣ ≤ Kn−1/2 for i = bd, SB,

and

∣∣∣∣∣Rsep

(
θ∗,

1

n
J

)
− θ∗ · 1G +

∑
g∈G

(
lnn

n
1g · J1g

)1/2
∣∣∣∣∣ ≤ Kn−1/2.

A.1.4 Proof of Proposition A.2

Since Rbd
(
θ∗, 1

n
J
)
= R

(∑
g∈G θ∗g ,

1G·J1G

n

)
and Rsep

(
θ∗, 1

n
J
)
=
∑

g∈GR
(
θ∗g ,

1g ·J1g

n

)
,

the desired inequalities for bundling and separate sales follow from the single-good
case (Proposition A.1) combined with the compactness of Θ̂ and J . Since Rbd

(
θ∗, 1

n
J
)
≤

RSB
(
θ∗, 1

n
J
)
, the lower bound for RSB

(
θ∗, 1

n
J
)

is immediate from the bundling case,
and it suffices to establish the desired upper bound for RSB

(
θ∗, 1

n
J
)
.
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To this end, suppose types are distributed N (θ∗, 1
n
J) for some θ∗ ∈ Θ̂ and J ∈ J .

Enumerate the set of bundles as B = {Bℓ : ℓ = 1, . . . ,m}, where m = 2|G| and
Bm := G. Rewrite types as vectors ω ∈ Rm, where each coordinate ωℓ represents
the valuation of bundle Bℓ.36 Note that ω is distributed N (y, 1

n
Σ), where y ∈ Rm

satisfies yℓ =
∑

g∈Bℓ
θ∗g for all ℓ, and Σ ∈ Rm×m satisfies Σℓℓ′ =

∑
g∈Bℓ,d′∈Bℓ′

Jdd′ for
all ℓ, ℓ′. Observe that y is strictly positive and ym ≥ yℓ + κ for all ℓ ̸= m, where
κ := ming∈G,θ∈Θ θg > 0.

Consider the following relaxed problem. Pick a full-rank matrix A ∈ R(m−1)×m

with AΣ1m = 0.37 Conditional on Aω = z ∈ Rm−1, ω is distributed N (ŷz, 1
n
Σ̂),

where ŷz := y + B(z − Ay), B := ΣA⊤(AΣA⊤)−1, Σ̂ := Σ
(
I− A⊤(AΣA⊤)−1AΣ

)
,

and I ∈ Rm×m is the identity matrix. Define

R
SB
(
y,

1

n
Σ

)
:= E

[
RSB

(
ŷz,

1

n
Σ̂

)]
,

where the expectation is with respect to z = Aω, which is distributed N (Ay, 1
n
AΣA⊤).

The value R
SB (

y, 1
n
Σ
)

represents the seller’s revenue in the relaxed problem where
each type ω is restricted to only report types in {ω′ ∈ Rm : Aω′ = Aω}. Clearly,
RSB

(
θ∗, 1

n
J
)
≤ R

SB (
y, 1

n
Σ
)
.

Conditional on Aω = z, the buyer’s type belongs to {ω′ ∈ Rm : Aω′ = z}, which
is a line of the form {ŷz + τΣ1m : τ ∈ R}. Thus, the current setting is a special
case of the environment in Section 5, where α(0) := ŷz and β := Σ1m. Moreover,
conditional on Aω = z, the valuation ωℓ of each bundle Bℓ is distributed N (ŷzℓ ,

1
n
σ̂2
ℓ ),

where σ̂2
ℓ := Σ̂ℓℓ. Crucially, ŷzm = ym and σ̂2

m = σ2
m := Σmm, i.e., the distribution of

the valuation ωm of the grand bundle is unchanged by observing z. This is because
AΣ1m = 0 ensures that ωm and Aω are uncorrelated.

To apply the analysis in Section 5, we define the lottery

bz0 ∈ argmax
q∈∆(B)

ŷz · q such that β · q = 0.

Conditional on Aω = z, the value of bz0 is thus distributed N (ŷ0,
1
n
σ̂2
0), where ŷ0 :=

36This more general formulation is useful for analyzing non-additive utilities (Appendix C.2).
37In particular, if Σ1m = 0, then we can choose any full-rank matrix A. If Σ1m ̸= 0, then

{a : a · Σ1m = 0} is an (m − 1)-dimensional hyperplane in Rm, and hence includes m − 1 linearly
independent vectors a1, . . . , am−1. Then the matrix A with row vectors a1, . . . , am−1 has row rank
m− 1 and satisfies AΣ1m = 0.
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bz0 · ŷz and σ̂2
0 := bz0 · Σ̂bz0. Let Rs

(
ŷz, 1

n
Σ̂
)

denote the optimal revenue when restricting
attention to mechanisms that allocate to each type either a deterministic bundle
{δBℓ

: ℓ = 1, . . . ,m} or bz0. By Proposition 3, this restriction is without loss.
The following result establishes an upper bound on Rs

(
ŷz, 1

n
Σ̂
)
:

Lemma A.3. Suppose that ym > ŷzℓ + κ/2 > 0 for all ℓ = 0, 1, . . . ,m − 1. Then
Rs
(
ŷz, 1

n
Σ̂
)

is bounded above by

max

{
ym − σm

√
lnn

n
+

σm√
n

√
2

∣∣∣∣ln κ/2

σm

√
2π(1 + γ)

∣∣∣∣, ym − κ

4
+

σm

2
√
n

}
+
∑
ℓ̸=m

√
2π

n
σ̂ℓ.

Proof. Any IC-IR mechanism that allocates only deterministic bundles and bz0 can be
represented as a collection of prices pℓ for each deterministic bundle Bℓ (ℓ = 1, . . . ,m)
and price p0 for lottery bz0. For the empty bundle Bℓ, where ωℓ = 0 for all types, it
is without loss to set pℓ = 0. Denote by Pz the probability measure conditional on
z = Aω. The revenue

∑m
ℓ=0 Pz(ωℓ − pℓ ≥ ωℓ′ − pℓ′∀ℓ′)pℓ is bounded above by

ym − κ/2 +
m∑
ℓ=0

Pz(ωℓ − pℓ ≥ ωℓ′ − pℓ′∀ℓ′)max{pℓ − (ym − κ/2), 0}

≤ ym − κ/2 +
m∑
ℓ=0

Pz(ωℓ ≥ pℓ)max{pℓ − (ym − κ/2), 0}

≤ ym − κ/2 +
m∑
ℓ=0

R(ŷzℓ − ym + κ/2, σ̂2
ℓ/n)

≤ ym − κ/2 +R(κ/2, σ2
m/n) +

∑
ℓ̸=m

√
2π

n
σ̂ℓ,

where the last inequality uses part 2 of Proposition A.1. Then part 1 of Proposi-
tion A.1 yields the desired bound.

To complete the proof of Proposition A.2, recall that ŷz = y + B(z − Ay) and
ŷzm = ym > yℓ + κ for all z ∈ Rm−1 and ℓ = 0, 1, . . . ,m− 1. Pick ε > 0 small enough
that all z with ∥z − Ay∥ ≤ ε satisfy ym > ŷzℓ + κ/2 > 0 for all ℓ = 0, 1, . . . ,m − 1.
Since z is distributed N (Ay, 1

n
AΣA⊤), there is K1 > 0 such that, for all n,∣∣∣∣RSB

(
y,

1

n
Σ

)
− E

[
RSB

(
ŷz,

1

n
Σ̂

)
: ∥z − Ay∥ ≤ ε

]∣∣∣∣ ≤ K1n
−1.
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By Lemma A.3, there is K2 > 0 such that, for all n,

E
[
RSB

(
ŷz,

1

n
Σ̂

)
: ∥z − Ay∥ ≤ ε

]
≤ ym −

(
lnn

n

)1/2

σm +K2n
−1/2.

Since ym =
∑

g∈G θ∗g and σm =
(
1G · J1G

)1/2, this implies the existence of K > 0

such that R
SB (

y, 1
n
Σ
)
≤
∑

g∈G θ∗g −
(
lnn
n

)1/2
σm +Kn−1/2 for all n ∈ N. Finally, by

compactness of Θ̂ and J , the coefficient K can be chosen uniformly in y and Σ.

A.2 Proof of Theorem 1

A.2.1 Preliminaries

Denote by Ri(λ) (i ∈ {SB, bd, sep}) the optimal expected revenue (under general
mechanisms, bundling, and separate sales) when the buyer’s type is drawn from λ ∈
∆(Θ). Denote by λxn ∈ ∆(Θ) the seller’s posterior after observing signals xn. For
all i ∈ {SB, bd, sep}, Ri

n = E[Ri(λxn)]. For all signals xn, the compactness of Θ̂ and
continuity of ln f implies the existence of a maximum likelihood estimate (MLE)

θ̂xn ∈ argmax
θ∈Θ̂

n∑
i=1

ln f(xi, θ).

(Note that the maximum is taken over Θ̂ instead of Θ). The empirical Fisher
information at θ is the matrix

Ixn(θ) :=

(
− 1

n

n∑
i=1

∂2

∂θg∂θg′
ln f(xi, θ)

)
g,g′∈G

.

For each xn, denote by λ̂xn the Gaussian distribution with mean θ̂xn and covariance
matrix 1

n
Ixn(θ̂xn)−1 if Ixn(θ̂xn) is invertible; if Ixn(θ̂xn) is not invertible, we set the co-

variance matrix to be the identity matrix. Denote by TV the total-variation distance
on ∆(R|G|), i.e., TV(λ, λ′) := supΘ′ (λ(Θ′)− λ′(Θ′)), where the supremum is taken
over all measurable subsets Θ′ ⊆ R|G|.

By the Bernstein-von Mises theorem, the seller’s posterior λxn can be approxi-
mated (with respect to the total-variation metric) by the Gaussian belief λ̂xn . More-
over, Hipp and Michel (1976) bound the approximation errors. Denote by Pθ and Eθ
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probabilities and expectations conditional on the true type being θ:

Lemma A.4 (Hipp and Michel (1976) ). For each θ ∈ intΘ, there is cθ ≥ 0 with

Pθ(TV(λxn , λ̂xn) > cθn
−1/2) = o(n−1).

It is also known that the MLE θ̂xn is asymptotically normal conditional on each
θ. Specifically, the distribution of n1/2(θ̂xn − θ) is approximated by the Gaussian
distribution with mean 0 and covariance matrix I(θ)−1, denoted by NI(θ)−1 . Moreover,
Pfanzagl (1973) bounds the approximation errors, uniformly in θ:

Lemma A.5 (Pfanzagl (1973)). There is c′ > 0 such that for every θ ∈ Θ, convex
set E ⊆ RG, and n ∈ N, we have

∣∣∣Pθ

(
n1/2(θ̂xn − θ) ∈ E

)
−NI(θ)−1(E)

∣∣∣ ≤ c′n−1/2.

Let T := supθ∈Θ,B⊆G

(
1B · I(θ)−11B

)1/2, which is finite by compactness of Θ and
Assumption 1. For every B ⊆ G and n ∈ N, let EB

n :=
{
z ∈ R|G| : z · 1B > (lnn)1/2T

}
.

Then for all n ∈ N,

Pθ

[
|(θ̂xn − θ) · 1B| >

(
lnn

n

)1/2

T

]
≤ NI(θ)−1(EB

n ) + c′n−1/2

≤ 2n
− T

2(1B ·I(θ)−11B)1/2 + c′n−1/2 ≤ (2 + c′)n−1/2,

(12)

where the first inequality uses Lemma A.5 (with corresponding coefficient c′). The
second inequality uses the Gaussian tail bound (9).

We first prove some preliminary lemmas. Endow |G|×|G|-matrices with the norm
∥A∥ := supy ̸=0

∥Ay∥
∥y∥ =

∑
g∈G maxg′∈G |Agg′| induced by the L1-norm on R|G|:

Lemma A.6. There is C > 0 such that for all θ ∈ Θ and n ∈ N,

Pθ [Aθ,n] ≥ 1− Cn−1/2, (13)

where Aθ,n is the event that ∥Ixn(θ̂xn)−I(θ)∥ ≤
(
lnn
n

)1/2
C. Moreover, there is n such

that for all θ ∈ Θ and n ≥ n, Ixn(θ̂xn) is invertible with ∥Ixn(θ̂xn)−1 − I(θ)−1∥ ≤
C∥Ixn(θ̂xn)− I(θ)∥ for any xn in Aθ,n.

Proof. Inequality (13): By Assumption 1.2, there is a Lipschitz coefficient L of
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∂2 ln f(x,·)
∂θg∂θg′

that is uniform in g, g′ ∈ G and x ∈ X. Then for every n ∈ N and θ ∈ Θ,

Pθ

[
∥Ixn(θ)− Ixn(θ̂xn)∥ >

(
lnn

n

)1/2

LT

]
≤ Pθ

[
∥θ − θ̂xn∥ >

(
lnn

n

)1/2

T

]

≤
∑
g∈G

Pθ

[
|(θ − θ̂xn) · 1g| >

(
lnn

n

)1/2

T

]
≤ |G|(2 + c′)n−1/2

where the last inequality uses (12). By Assumption 1.2, L ≥ supx∈X,θ∈Θ,g,g′∈G

∣∣∣∂2 ln f(x,θ)
∂θg∂θg′

∣∣∣.
Then for every n ∈ N and θ ∈ Θ, Hoeffding’s inequality implies that

Pθ

[
∥I(θ)− Ixn(θ)∥ >

(
lnn

n

)1/2
L

2

]

≤
∑

g,g′∈G

Pθ

[∣∣∣∣∣
∫

∂2 ln f(x, θ)

∂θg∂θg′
dPθ(x)−

1

n

n∑
i=1

∂2 ln f(xi, θ)

∂θg∂θg′

∣∣∣∣∣ >
(
lnn

n

)1/2
L

2

]
≤ |G|22n−1/2.

Combining the above observations and the triangle inequality, (13) holds for all
C ≥ max{LT, |G|(2 + c′), L

2
, 2|G|2}, n ∈ N, and θ ∈ Θ.

Invertibility: By Assumption 1.5, ∥I(θ)−1∥ > 0 for each θ. Thus, there is ε > 0

such that for any θ ∈ Θ, n ∈ N, and xn with ∥I(θ) − Ixn(θ̂xn)∥ ≤ ε, the matrix
Ixn(θ̂xn) is invertible with ∥Ixn(θ̂xn)−1∥ ≤ 2∥I(θ)−1∥. Since Θ is compact and I(θ)

is continuous in θ by Assumption 1, ε can be chosen uniformly in θ. Under such
realizations of xn,

∥I(θ)−1 − Ixn(θ̂xn)−1∥ = ∥I(θ)−1(Ixn(θ̂xn)− I(θ))Ixn(θ̂xn)−1∥

≤ ∥I(θ)−1∥∥Ixn(θ̂xn)− I(θ)∥∥Ixn(θ̂xn)−1∥ ≤ 2 sup
θ∈Θ

∥I(θ)−1∥2∥Ixn(θ̂xn)− I(θ)∥.

By the proof of (13), the conclusion follows by taking C ≥ max{LT, |G|(2 +

c′), L
2
, 2|G|2, 2 supθ∈Θ ∥I(θ)−1∥2} and n large enough that

(
lnn
n

)1/2
C ≤ ε.

Henceforth, we will often use the constant n and C and events (Aθ,n) obtained
above without explicitly referencing Lemma A.6.

Lemma A.7. There is C ′ > 0 such that for all θ ∈ Θ, n ≥ n, and B ⊆ G,

Eθ

[
∥(θ̂xn − θ)∥ | Aθ,n

]
≤ C ′n−1/2, (14)
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and
∣∣∣∣Eθ

[(
1B · Ixn(θ̂xn)−11B

)1/2
| Aθ,n

]
−
(
1B · I(θ)−11B

)1/2∣∣∣∣ ≤ C ′n−1/2. (15)

Proof. Inequality (14): Denote by F̂ g
θ,n the cdf of (θ̂xn − θ) · 1g at θ, and by F g

θ,n

the cdf of the Gaussian distribution with mean 0 and variance 1
n
1g · I(θ)−11g. Then

for every n ∈ N, g ∈ G, and θ ∈ Θ,∣∣∣∣∫ κn

−κn

zdF̂ g
θ,n(z)

∣∣∣∣ = ∣∣∣∣∫ κn

−κn

zdF̂ g
θ,n(z)−

∫ κn

−κn

zdF g
θ,n(z)

∣∣∣∣
=

∣∣∣∣κn

(
F̂ g
θ,n (κn)− F g

θ,n (κn) + F̂ g
θ,n (−κn)− F g

θ,n (−κn)
)
−
∫ κn

−κn

(
F̂ g
θ,n(z)− F g

θ,n (κn)
)
dz

∣∣∣∣
≤ 4κnc

′n−1/2 ≤ 4Tc′n−1/2,

where κn :=
(
lnn
n

)1/2
T , the second equality uses integration by parts, and the first

inequality uses Lemma A.5. Let M := supθ∈Θ̂ ∥θ∥. For all n ∈ N, θ ∈ Θ, the above
inequality and (12) yield

Eθ

[
∥(θ̂xn − θ)∥

]
=
∑
g∈G

∣∣∣∣∫ zdF̂ g
θ,n(z)

∣∣∣∣ ≤ |G|(2Tc′ +M(2 + c′))n−1/2. (16)

Then by Lemma A.6 and the fact that ∥θ̂xn − θ∥ ≤ M for all xn, (14) holds for some
large enough C ′.

Inequality (15): By part 2 of Lemma A.6, it suffices to show that supθ∈Θ Eθ[∥Ixn(θ̂xn)−
I(θ)∥ | Aθ,n] is bounded by a constant times n−1/2 for all n ≥ n. By the part 1 of
Lemma A.6 and since supθ∈Θ,n∈N,xn∈Xn ∥Ixn(θ̂xn)− I(θ)∥ < ∞ (by Assumption 1), it
then suffices to show that Eθ[∥Ixn(θ̂xn)− I(θ)∥] is bounded by a constant times n−1/2

for all n ≥ n.
By Assumption 1.2, there is a Lipschitz coefficient L of ∂2 ln f(x,·)

∂θg∂θg′
that is uniform

in g, g′ ∈ G and x ∈ X. For all n ∈ N and θ ∈ Θ,

Eθ[∥Ixn(θ̂xn)− Ixn(θ)∥] ≤ |G|LEθ[∥θ̂xn − θ∥] ≤ L|G|2(2Tc′ +M(2 + c′)n−1/2,

where the second inequality uses (16). Let ℓ := supx∈X,θ∈Θ,g,g′∈G

∣∣∣∂2 ln f(x,θ)
∂θg∂θg′

∣∣∣, which is
finite by Assumption 1.2. For all n ∈ N and θ ∈ Θ,

Eθ[∥Ixn(θ)− I(θ)∥] ≤ |G| max
g,g′∈G

Eθ

[∣∣∣∣∣
n∑

i=1

1

n

∂2

∂θgθg′
ln f(xi, θ)− Eθ

[
∂2

∂θgθg′
ln f(x, θ)

]∣∣∣∣∣
]
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≤ |G| max
g,g′∈G

(
Varθ

[
n∑

i=1

1

n

∂2

∂θgθg′
ln f(xi, θ)

])1/2

≤ |G|ℓn−1/2,

where the second (resp. third) inequality uses Hölder’s (resp. Popoviciu’s) inequality.
Combining these observations with the triangle inequality yields the desired claim.

A.2.2 Conditional Payoffs

Next, we prove a conditional analog of Theorem 1:

Proposition A.3. For all θ ∈ intΘ,

θ · 1G − Eθ[R
SB(λxn)] ∼ θ · 1G − Eθ[R

bd(λxn)] ∼
(
lnn

n
1G · I(θ)−11G

)1/2

,

and θ · 1G − Eθ[R
sep(λxn)] ∼

∑
g∈G

(
lnn

n
1g · I(θ)−11g

)1/2

.

The proof is immediate from the following two lemmas:

Lemma A.8. For all θ ∈ intΘ, there is Kθ > 0 such that, for all i ∈ {SB, bd, sep},∣∣∣Eθ

[
Ri(λxn)

]
− Eθ

[
Ri
(
λ̂xn

)
| Aθ,n

]∣∣∣ ≤ Kθn
−1/2 + o

(
n−1/2

)
.

Proof. Let cθ > 0 denote the coefficients obtained in Lemma A.4. Since Ri(λxn) and
Ri(λ̂xn) are uniformly bounded under realizations in (Aθ,n), it suffices by Lemmas A.4
and A.6 to find Kθ such that

Eθ

[∣∣∣Ri(λxn)−Ri
(
λ̂xn

)∣∣∣ | Aθ,n ∩ {TV(λxn , λ̂xn) ≤ cθn
−1/2}

]
≤ Kθn

−1/2 + o
(
n−1/2

)
.

(17)
Let Θ̂′ ⊆ R|G| be a compact neighborhood of Θ̂. Let λ̂′

xn denote the conditional
probability measure on Θ̂′ induced by λ̂xn . By Lemma A.6 and compactness of {I(θ) :
θ ∈ Θ}, there is M > 0 such that ∥ 1

n
Ixn(θ̂xn)−1∥ ≤ n−1M for every n ≥ n and any

realization xn in Aθ,n. Thus, since θ̂xn is bounded away from R|G|\Θ̂′, there is M ′ > 0

such that λ̂xn(R|G| \ Θ̂′) ≤ Mn−1 and
∫
R|G|\Θ̂′

∑
g∈Gmax{θg, 0} dλ̂xn(θ) ≤ M ′n−1 for

any sequence of such realizations.
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The seller’s expected revenue under belief λ̂xn can be bounded as follows:

λ̂xn(Θ̂′)Ri
(
λ̂′
xn

)
+

∫
R|G|\Θ̂′

∑
g∈G

max{θg, 0}dλ̂xn(θ) ≥ Ri
(
λ̂xn

)
≥ λ̂xn(Θ̂′)Ri

(
λ̂′
xn

)
.

The left-hand side is the seller’s expected payoff when all types outside Θ̂′ are perfectly
observable. The right-hand side is the seller’s expected payoff when all types outside
Θ̂′ do not purchase anything. Thus, there is M ′′ > 0 such that

∣∣∣Ri(λ̂′
xn)−Ri

(
λ̂xn

)∣∣∣ ≤
M ′′n−1 for all xn in (Aθ,n).

Observe that, for all θ ∈ Θ, n ≥ 2M , and xn in Aθ,n,

TV(λxn , λ̂′
xn) = sup

E⊆Θ̂′
|λxn(E)− λ̂′

xn(E)| = sup
E⊆Θ̂′

|λxn(E)− λ̂xn(E)|+ λ̂xn(E)
1− λ̂xn(Θ̂′)

λ̂xn(Θ̂′)

≤ TV(λxn , λ̂xn) +
Mn−1

1−Mn−1
≤ TV(λxn , λ̂xn) + 2Mn−1.

Since Θ̂′ is bounded, there is K > 0 such that for all xn in Aθ,n,∣∣∣Ri(λxn)−Ri
(
λ̂xn

)∣∣∣ ≤
∣∣∣Ri(λxn)−Ri

(
λ̂′
xn

)∣∣∣+ ∣∣∣Ri(λ̂′
xn)−Ri

(
λ̂xn

)∣∣∣
≤ KTV(λxn , λ̂′

xn) +M ′′n−1.

The above observations yield (17) with Kθ = Kcθ.

Lemma A.9. There exist K ′ > 0 and n′ ∈ N such that for all θ ∈ Θ and n ≥ n′,∣∣∣∣∣θ · 1G −
(
lnn

n
1G · I(θ)−11G

)1/2

− Eθ[R
i(λ̂xn) | Aθ,n]

∣∣∣∣∣ ≤ K ′n−1/2 for i ∈ {SB, bd},

and

∣∣∣∣∣θ · 1G −
∑
g∈G

(
lnn

n
1g · I(θ)−11g

)1/2

− Eθ[R
sep(λ̂xn) | Aθ,n]

∣∣∣∣∣ ≤ K ′n−1/2.

Proof. By Proposition A.2, there is K > 0 such that for all n ∈ N and xn with
Ixn(θ̂xn)−1 ∈ J , we have∣∣∣∣∣Ri
(
λ̂xn

)
− θ̂xn · 1G +

(
lnn

n
1G · Ixn(θ̂xn)−11G

)1/2
∣∣∣∣∣ ≤ K

(
lnn

n

)1/2

for i ∈ {SB, bd},
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and

∣∣∣∣∣Rsep
(
λ̂xn

)
− θ̂xn · 1G +

∑
g∈G

(
lnn

n
1g · Ixn(θ̂xn)−11g

)1/2
∣∣∣∣∣ ≤ K

(
lnn

n

)1/2

.

Lemma A.6 yields n′ such that for all n ≥ n′, θ ∈ Θ, and xn in Aθ,n, we have
Ixn(θ̂xn)−1 ∈ J . Thus, Lemma A.7 implies the claim by setting K ′ = K + C ′.

A.2.3 Completing the Proof of Theorem 1

Lower bound of revenue gap: We first show that RFB − RSB
n and RFB − Rbd

n

(resp. RFB − Rsep
n ) vanish no faster than at rate

(
lnn
n

)1/2 E [(1 · I(θ)−11)1/2
]

(resp.(
lnn
n

)1/2∑
g∈G E

[
(1g · I(θ)−11g)1/2

]
). For i ∈ {SB, bd},

lim inf
n→∞

(RFB −Ri
n)

(
lnn

n

)−1/2

= lim inf
n→∞

∫
(θ · 1G − Eθ[R

i(λxn)])

(
lnn

n

)−1/2

g(θ)dθ

≥
∫
(1G · I(θ)−11G)1/2g(θ)dθ = E

[
(1G · I(θ)−11G)1/2

]
,

where the inequality holds by Fatou’s Lemma, as lim infn→∞(θ·1G−Eθ[R
i(λxn)])

(
lnn
n

)−1/2
=

(1G ·I(θ)−11G)1/2 for almost all θ ∈ Θ by Proposition A.3. The same argument implies

lim inf
n→∞

(RFB −Rsep
n )

(
lnn

n

)−1/2

≥
∑
g∈G

E
[
(1g · I(θ)−11g)1/2

]
.

Upper bound of revenue gap: Next, we show that RFB − RSB
n and RFB − Rbd

n

(resp. RFB−Rsep
n ) vanish no slower than at rate

(
lnn
n

)1/2 E [(1G · I(θ)−11G)1/2
]

(resp.(
lnn
n

)1/2∑
g∈G E

[
(1g · I(θ)−11g)1/2

]
). For each xn, consider the mixed bundling mech-

anism that prices each B ⊆ G at 0 if Ixn(θ̂xn) is not invertible, and otherwise at

pxn(B) := θ̂xn · 1B −
(
lnn

n
1B · Ixn(θ̂xn)−11B

)1/2

.

We first lower-bound the probability that the buyer’s willingness-to-pay for B

exceeds pxn(B):

Lemma A.10. There exists M > 0 such that for all B ⊆ G, n ≥ n, and θ ∈ Θ,

Pθ[pxn(B) ≤ θ · 1B] ≥ 1−Mn−1/2.
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Proof. Let C denote the coefficient obtained in Lemma A.6. By Lemma A.6, there

is M1 > 0 such that
∣∣∣∣(1B · Ixn(θ̂xn)−11B

)1/2
−
(
1B · I(θ)−11B

)1/2∣∣∣∣ ≤ ( lnn
n

)1/2
M1 for

all B ⊆ G, θ ∈ Θ, n ≥ n and xn with ∥I(θ)− Ixn(θ̂xn)∥ ≤
(
lnn
n

)1/2
C.

Letting EB
n :=

{
z ∈ R|G| : z · 1B > (lnn)1/2

((
1B · I(θ)−11B

)1/2
+M1

(
lnn
n

)1/2)}
for all B ⊆ G, n ≥ n, and θ ∈ Θ, we have

Pθ

[
(θ̂xn − θ) · 1B >

(
lnn

n

)1/2
((

1B · I(θ)−11B
)1/2

+M1

(
lnn

n

)1/2
)]

≤ NI(θ)−1(EB
n ) + c′n−1/2

≤ exp

−(lnn)
((

1B · I(θ)−11B
)
+ 2M1

(
1B · I(θ)−11B lnn

n

)1/2
+M2

1
lnn
n

)
21B · I(θ)−11B

+ c′n−1/2

= n−1/2n
2M1(1B ·I(θ)−11B lnn

n )
1/2

+M2
1

lnn
n

21B ·I(θ)−11B + c′n−1/2

= n−1/2 exp

[
(lnn)

2M1

(
1B · I(θ)−11B lnn

n

)1/2
+M2

1
lnn
n

21B · I(θ)−11B

]
+ c′n−1/2 ≤ M2n

−1/2,

where M2 > 0 is chosen uniformly in θ. The first inequality uses Lemma A.5, the
second inequality uses the Gaussian tail bound (9), and the last inequality uses the
inequality lnn ≤ nα

α
, which holds for all n > 0 and α > 0.

For every B ⊆ G, n ≥ n and θ ∈ Θ, by definition of pxn(B) and choice of M1,
Pθ[pxn(B) ≤ θ · 1B] is weakly greater than the probability

Pθ

[
∥I(θ)− Ixn(θ̂xn)∥ >

(
lnn

n

)1/2

C and

(θ̂xn − θ) · 1B ≤
(
lnn

n

)1/2
((

1B · I(θ)−11B
)1/2

+M1

(
lnn

n

)1/2
)]

,

which in turn is no less than

1− Pθ

[
∥I(θ)− Ixn(θ̂xn)∥ >

(
lnn

n

)1/2

C

]

−Pθ

[
(θ̂xn − θ) · 1B >

(
lnn

n

)1/2
((

1B · I(θ)−11B
)1/2

+M1

(
lnn

n

)1/2
)]

≥ 1− (C +M2)n
−1/2,
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where the inequality uses (13) from Lemma A.6. This establishes the desired claim
with M := C +M2.

Next, we approximate the revenue from offering each bundle B at price pxn(B):

Lemma A.11. There exists M ′ > 0 such that for all B ⊆ G, n ≥ n, and θ ∈ Θ,∣∣∣∣∣Eθ[pxn(B)1{pxn (B)≤θ·1B}]− θ · 1B +

(
lnn

n
1B · I(θ)−11B

)1/2
∣∣∣∣∣ ≤ M ′n−1/2.

Proof. Let C ′ be the coefficient obtained in Lemma A.7. For all B ⊆ G, n ≥ n and
θ ∈ Θ, (14)–(15) from Lemma A.7 imply∣∣∣∣∣Eθ[pxn(B) | Aθ,n]− θ · 1B +

(
lnn

n
1B · I(θ)−11B

)1/2
∣∣∣∣∣

≤
∣∣∣Eθ[θ̂xn · 1B | Aθ,n]− θ · 1B

∣∣∣
+

(
lnn

n

)1/2 ∣∣∣∣Eθ

[(
1B · Ixn(θ̂xn)−11B

)1/2
|Aθ,n

]
−
(
1B · I(θ)−11B

)1/2∣∣∣∣ ≤ 2C ′n−1/2.

Since supx∈X,θ∈int Θ̂,g,g′∈G |∂
2 ln f(x,θ)
∂θg∂θg′

| < ∞ by Assumption 1.2 and Θ̂ is bounded,
supn∈N,xn∈Xn |pxn(B)| < ∞. Given this and Lemmas A.6 and A.10, |Eθ[pxn(B) |
Aθ,n]− Eθ[pxn(B)1{pxn (B)≤θ·1B}]| is bounded by n1/2 times a constant that is uniform
in θ. Thus, the desired bound follows from the above inequality.

To complete the proof of Theorem 1, denote by R̂bd
n := E[pxn(G)1{pxn (G)≤θ·1G}] the

expected revenue from the pure bundling mechanism that prices the grand bundle at
pxn(G) at each xn (as in (6)). By definition, R̂bd

n ≤ Rbd
n for each n. By Lemma A.11

applied to B = G, the difference between R̂bd
n and E

[
θ · 1G −

(
lnn
n
1G · I(θ)−11G

)1/2]
is bounded by n−1/2 times a constant. This ensures that, for i ∈ {SB, bd},

E
[
(1G · I(θ)−11G)1/2

]
≥ lim sup

n→∞
(RFB−R̂bd

n )

(
lnn

n

)−1/2

≥ lim sup
n→∞

(RFB−Ri
n)

(
lnn

n

)−1/2

.

Analogously, denote by R̂sep
n the expected revenue from the separate sales mech-
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anism that prices each good g at pxn(g) at each xn. Then, by the same arguments,

∑
g∈G

E
[
(1g · I(θ)−11g)1/2

]
≥ lim sup

n→∞
(RFB − R̂sep

n )

(
lnn

n

)−1/2

≥ lim sup
n→∞

(RFB −Rsep
n )

(
lnn

n

)−1/2

.
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Online Appendix to “Multidimensional Screening
with Rich Consumer Data”

Mira Frick, Ryota Iijima, and Yuhta Ishii

B Proof of Proposition 3

B.1 Preliminaries

For each x ∈ [β, β], define

H(x) := max
q∈∆(B)

α(0) · q such that β · q = x,

H(x) := argmax
q∈∆(B)

α(0) · q such that β · q = x.

Note that the constraint set {q ∈ ∆(B) : β · q = x} is nonempty for all x ∈ [β, β].
Furthermore, 0 ∈ [β, β] because βℓ̄ = 0. Henceforth, we fix some arbitrary b0 ∈ H(0),
and we order the allocations such that β = β1 ≤ . . . ≤ βm = β.

Each mechanism (q, t) induces the agent indirect utility function given by V (τ) =
α(τ)·q(τ)−t(τ) for each τ . For any convex function V : T → R, the set of subgradients
at τ is

∂V (τ) := {λ ∈ R : V (τ ′) ≥ V (τ) + λ(τ ′ − τ) ∀τ ′} .

It is well-known that (i) ∂V (τ) ̸= ∅; (ii) ∂V is a monotone correspondence, i.e., for all
τ ′ > τ , inf ∂V (τ ′) ≥ sup ∂V (τ); and (iii) ∂V (τ) is a singleton for almost all τ ∈ T . The
last property implies that for any two functions h1 and h2 with h1(τ), h2(τ) ∈ ∂V (τ)
for all τ and any measurable function φ, we have E [φ(h1(τ))] = E [φ(h2(τ))] . Thus,
we write E [φ(∂V (τ))] for this expectation.

Let V denote the set of all convex functions defined on T such that V (τ) ≥ 0 and
∂V (τ) ⊆ [β, β] for all τ . By standard arguments, any IC-IR mechanism (q, t) induces
an indirect utility function V ∈ V . In particular, its subgradient takes the form

β · q(τ) ∈ ∂V (τ) (18)

for all τ . However, in contrast to the single-good monopoly problem, in our setting
there are typically many mechanisms that induce the same indirect utility function
but may lead to different payoffs for the designer. Let M(V ) be the set of all IC-IR
mechanisms (q, t) ∈ M that induce the indirect utility function V , and let Ms(V )
be the subset of such mechanisms that are in Ms.

The following four preliminary lemmas are proved in Appendix B.3. First, we
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derive the designer’s optimal payoff among all mechanisms that induce the same
indirect utility function. Moreover, we explicitly construct an optimal mechanism
that induces the indirect utility function V :

Lemma B.1. Consider any V ∈ V. Then M(V ) ̸= ∅ and

max
(q,t)∈M(V )

E [t(τ)] = E [H(∂V (τ)) + τ∂V (τ)− V (τ)] .

Moreover, for any mechanism (q, t) such that for all τ ,

1. q(τ) ∈ H(∂V (τ)) :=
⋃

x∈∂V (τ) H(x),

2. t(τ) = α(τ) · q(τ)− V (τ),

we have (q, t) ∈ argmax(q′,t′)∈M(V ) E [t′(τ)].

Lemma B.1 immediately yields the following reformulation of the designer’s prob-
lem, in terms of optimization with respect to V :

Corollary B.1. We have

sup
(q,t)∈M

E [t(τ)] = sup
V ∈V

E [H(∂V (τ)) + τ∂V (τ)− V (τ)] .

The next lemma establishes a structural property of H that is useful for simplifying
the optimization problem with respect to V :

Lemma B.2. There exists a subsequence (βℓi)
k+1
i=1 of (βℓ)

m
ℓ=1 with βℓ1 = β and βℓk+1

=

β such that

1. H is linear on [βℓi , βℓi+1
] for every i = 1, . . . , k,

2. H(βℓi) ∩ (D ∪ {b0}) ̸= ∅ for every i = 1, . . . , k + 1,

3. βℓi = 0 for some i = 1, . . . , k + 1.

For the remainder of this section, we fix the sequence (βℓi)i=1,...,k+1 derived in
Lemma B.2. Let Vs be the set of all V ∈ V such that ∂V (τ) ∈ {βℓ1 , . . . , βℓk+1

} for
almost all τ . The following lemma shows that the designer can restrict attention to
indirect utility functions in Vs (as long as the type space is compact):

Lemma B.3. Assume T is compact. For every V ∈ V, there exists Ṽ ∈ Vs such that

E
[(

H(∂Ṽ (τ)) + τ∂Ṽ (τ)− Ṽ (τ)
)]

≥ E [H(∂V (τ)) + τ∂V (τ)− V (τ)] .

The final lemma guarantees that any indirect utility function in Vs can be induced
by some mechanism in Ms:

Lemma B.4. For every Ṽ ∈ Vs, there exists (q, t) ∈ Ms(Ṽ ) such that

E [t(τ)] = E
[
H(∂Ṽ (τ)) + τ∂Ṽ (τ)− Ṽ (τ)

]
.
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B.2 Completing the Proof of Proposition 3

First, assume that T is compact. Take any (q, t) ∈ M and let V denote the corre-
sponding indirect utility. By Lemma B.3, there exists Ṽ ∈ Vs such that

E
[
H(∂Ṽ (τ)) + τ∂Ṽ (τ)− Ṽ (τ)

]
≥ E [(H(∂V (τ)) + τ∂V (τ)− V (τ))] ≥ E[t(τ)]

where the second inequality uses Lemma B.1. By Lemma B.4, there exists some
(q̃, t̃) ∈ Ms with E[t̃(τ)] = E

[
H(∂Ṽ (τ)) + τ∂Ṽ (τ)− Ṽ (τ)

]
that delivers a weakly

higher payoff than (q, t). This proves the result when T is compact.
To prove the result for a general interval T ⊆ R, we want to show that, for

any (q, t) ∈ M and ε > 0, there is (q∗, t∗) ∈ Ms such that E[t(τ)] ≤ E[t∗(τ)] + ε.
To this end, note that for any ε > 0, there is a compact interval T̃ ⊆ R of types
with E[1τ∈T̃ maxℓ αℓ(τ)] ≤ ε/2 because τ is L1. For any (q, t) ∈ M, IR implies
t(τ) ≤ maxℓ αℓ(τ) for every τ , and hence E[t(τ)] ≤ sup(q̃,t̃)∈M E[1τ∈T̃ t̃(τ)] + ε/2. By
the result for the compact case, there is (q∗, t∗) ∈ Ms such that E[1τ∈T̃ t

∗(τ)] + ε/2 ≥
sup(q̃,t̃)∈M E[1τ∈T̃ t̃(τ)], where t∗(·) ≥ 0. Thus,

E[t(τ)] ≤ E[1τ∈T̃ t
∗(τ)] + ε ≤ E[t∗(τ)] + ε.

B.3 Proofs of Lemmas B.1–B.4

Proof of Lemma B.1. We first show that

sup
(q,t)∈M(V )

E [t(τ)] ≤ E [H(∂V (τ)) + τ∂V (τ)− V (τ)] .

To see this, consider any (q, t) ∈ M(V ). By (18), β · q(τ) ∈ ∂V (τ) for all τ . Thus,

E [t(τ)] = E [α(0) · q(τ) + (β · q(τ))τ − V (τ)] ≤ E [H(β · q(τ)) + (β · q(τ))τ − V (τ)]

= E [H(∂V (τ)) + τ∂V (τ)− V (τ)] .

Now, consider any mechanism (q, t) such that for all τ ,

1. q(τ) ∈ H(∂V (τ)),

2. t(τ) = α(τ) · q(τ)− V (τ).
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To see that (q, t) is IC, note that type τ ’s utility from misreporting to be type τ̂ is

α(τ) · q(τ̂)− t(τ̂) = (τ − τ̂)(β · q(τ̂)) + V (τ̂) ≤ V (τ) = α(τ) · q(τ)− t(τ),

where the inequality uses β · q(τ̂) = ∂V (τ̂), which follows from q(τ̂) ∈ H(∂V (τ̂)).
Thus, (q, t) is IC. Moreover, by construction it induces V ≥ 0 as the indirect utility
function. As a result, (q, t) ∈ M(V ).

Finally, because again q(τ) ∈ H(∂V (τ)) for all τ ,

E [t(τ)] = E [α(0) · q(τ) + p(β · q(τ))− V (τ)] = E [H(∂V (τ)) + τ∂V (τ)− V (τ)] ,

as claimed.

Proof of Lemma B.2. The following lemma implies Lemma B.2. This is because
one can add 0 to the sequence (βℓi)

k+1
i=1 constructed in Lemma B.5, since we have

[β, β] ∋ 0 and H(0) ∋ b0 by construction.

Lemma B.5. There exists a subsequence (βℓi)
k+1
i=1 of (βℓ)

m
ℓ=1 with βℓ1 = β and βℓk+1

=

β such that

1. H is linear on [βℓi , βℓi+1
] for every i = 1, . . . , k; and

2. H(βℓi) ∩ D ≠ ∅ for every i = 1, . . . , k + 1.

Proof of Lemma B.5. Consider the linear program associated with the value H(x):

H(x) = max
y∈∆(B)

α(0) · y such that β · y = x.

By strong duality, the above is equal to the value of the dual program:

H(x) = min
(z1,z2)∈R2

z1x+ z2 such that z1β + z21 ≥ α(0)

= min
z∈R

zx+
(
max

ℓ
αℓ(0)− zβℓ

)
= min

z∈R
zx+G(z),

where G(z) := maxℓ αℓ(0)− zβℓ.
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Note that G(z) is a piecewise linear function. That is, there exist z1 > . . . > zk

and S = {ℓ1, . . . , ℓk+1} ⊆ {1, 2, . . . ,m} with 1 = ℓ1 < ℓ2 < · · · < ℓk+1 = m such that

G(z) =


αℓ1(0)− zβℓ1 if z ∈ [z1,+∞),

αℓi(0)− zβℓi if z ∈ [zi, zi−1] for i = 2, . . . , k,

αℓk+1
(0)− zβℓk+1

if z ∈ (−∞, zk].

(19)

Observe that ∂G(zi) = [−βℓi+1
,−βℓi ] for all i. Thus, whenever −x ∈ ∂G(zi), which

occurs when x ∈ [βℓi , βℓi+1
], we have

H(x) = zix+G(zi). (20)

This proves the first part of the lemma.
To prove the second part, suppose that i = 1, . . . , k. Then by (19) and (20),

H(βℓi) = ziβℓi +G(zi) = αℓi(0).

Thus, δℓi ∈ H(βℓi), whence D ∩H(βℓi) ̸= ∅. If instead i = k + 1, then by (19)–(20),

H(βℓk+1
) = zkβℓk+1

+G(zk) = αℓk+1
(0).

Again, δℓk+1
∈ H(βℓk+1

), and hence D ∩H(βℓk+1
) ̸= ∅.

Proof of Lemma B.3. Write T = [τ , τ ], and let (I1, . . . , Ik) be any interval parti-
tion of T .38 Let M(I1, . . . , Ik) be the set of non-decreasing functions h : T → [β, β] for
which h(Ii) ⊆ [βℓi , βℓi+1

] for each i = 1, . . . , k. We endow M(I1, . . . , Ik) with the L1

norm, making it a metric space. Let S(I1, . . . , Ik) ⊆ M(I1, . . . , Ik) denote the set of
all functions in M(I1, . . . , Ik) that are step functions taking values in {β1, . . . , βk+1}.

Claim 1. The set M(I1, . . . , Ik) is compact and convex, with ext(M(I1, . . . , Ik)) =

S(I1, . . . , Ik).

Proof of Claim 1. Clearly, M(I1, . . . , Ik) is convex. To prove compactness, it suffices to
show that M(I1, . . . , Ik) is sequentially compact, since M(I1, . . . , Ik) is a metric space.
To this end, consider a sequence hn ∈ M(I1, . . . , Ik). By Helly’s selection theorem,
there exist a subsequence (nk) and a function h such that limj→∞ hnj

(τ) = h(τ) for

38We allow Ij = ∅ for some j.
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all τ . Hence, we also have h ∈ M(I1, . . . , Ik). Moreover, by the Lebesgue dominated
convergence theorem,

∫ τ

τ
|hnj

(τ) − h(τ)|dτ = 0. Thus, M(I1, . . . , Ik) is sequentially
compact. The proof that ext(M(I1, . . . , Ik)) = S(I1, . . . , Ik) follows from standard
arguments (cf. Lemma 2.7 in Börgers, 2015).

To complete the proof of Lemma B.3, consider any function V ∈ V . Let p∗ =

min (argminτ∈T V (τ)). Consider any monotone function φ : T → R such that φ(τ) ∈
∂V (τ) for all τ ∈ T . Define the interval partition I1, I2, . . . , Ik by

I1 = φ−1([βℓ1 , βℓ2)), . . . , Ik = φ−1([βℓk , βℓk+1
]).

Note the following two properties of I1, . . . , Ik:

1. φ ∈ M(I1, . . . , Ik),

2. for all h ∈ M(I1, . . . , Ik), h(τ)(τ − p∗) ≥ 0 for all τ .

To see that the second property holds, note that βi = 0 for some i. Thus, p∗ is the
lower bound of interval Ii. Then any h ∈ M(I1, . . . , Ik) is decreasing at τ < p∗ and
weakly increasing at τ ≥ p∗.

Next, define the functional T : M(I1, . . . , Ik) → R by

T (h) = E

H(h(τ)) + τh(τ)−
τ∫

p∗

h(τ ′)dτ ′

 .

By the dominated convergence theorem, T is continuous. Moreover, T is linear, since
H is linear on [βi, βi+1] for every i = 1, . . . , k by Proposition B.2. Thus,

E
[
1{τ∈I} (H(∂V (τ)) + τ∂V (τ)− V (τ))

]
= E

[
1{τ∈I} (H(φ(τ)) + τφ(τ)− V (τ))

]
= T (φ)− V (p∗) ≤ sup

h∈M(I1,...,Ik)

T (h)− V (p∗) = max
h∈S(I1,...,Ik)

T (h)− V (p∗),

where the last equality follows from Claim 1 and Bauer’s maximum principle.
Thus, there exists some h̃ ∈ S(I1, . . . , Ik) for which

T (h̃)− V (p∗) ≥ E [(H(∂V (τ)) + τ∂V (τ)− V (τ))] .

Define Ṽ by Ṽ (τ) =
∫ τ

p∗
h̃(τ ′)dτ ′. Since h ∈ S(I1, . . . , Ik), ∂Ṽ (τ) ∈ {βℓ1 , . . . , βℓk+1

}
for almost all τ ∈ T . Moreover, because h̃ ∈ M(I1, . . . , Ik), we have h̃(τ)(τ − p∗) ≥ 0
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for all τ ∈ T . Thus,
min
τ∈T

Ṽ (τ) = Ṽ (p∗) = 0.

Together, this implies Ṽ ∈ Vs. Hence,

E
[
(H(∂Ṽ (τ)) + τ∂Ṽ (τ)− Ṽ (τ))

]
= E

(H(h̃(τ)) + τ h̃(τ)−
τ∫

p∗

h̃(τ ′)dτ ′)


≥ T (h̃)− V (p∗) ≥ E [(H(∂V (τ)) + τ∂V (τ)− V (τ))] ,

as claimed.

Proof of Lemma B.4. Let q be an allocation rule with q(τ) ∈ H(∂Ṽ (τ)) for all τ .
Since by Lemma B.2 ∂Ṽ (τ)∩{βℓ1 , . . . , βℓk+1

} ≠ ∅ for all τ , we can choose q such that
q(τ) ∈ {b0} ∪D for all τ . Define transfers t(τ) := α(τ) · q(τ)− Ṽ (τ). By Lemma B.1,
(q, t) ∈ argmax(q′,t′)∈M(Ṽ ) E [t′(τ)] and E [t(τ)] = E

[
H(∂Ṽ (τ)) + τ∂Ṽ (τ)− Ṽ (τ)

]
.

Moreover, by construction, q(τ) ⊆ D ∪ {b0}. Hence, (q, t) ∈ Ms(Ṽ ).

C Details for Section 6

C.1 Production Costs and Negative Types

In our main model, the first-best RFB = E[1G ·θ] involves supplying the grand bundle
to all buyer types. This can fail if the seller faces a production cost or some types
have negative valuations for some goods. We now extend the analysis to allow for
both possibilities: First, to produce each bundle B, the seller incurs a cost c(B), so
that RFB = E

[
1Bθ · θ − c(Bθ)

]
involves supplying a possibly different bundle Bθ ∈

argmaxB⊆G

(
1B · θ − c(B)

)
to each type θ. Second, we drop the assumption that

Θ ⊆ R|G|
++ and instead assume 1Bθ · θ− c(Bθ) > 0 for all θ ∈ Θ, which ensures positive

gains from trade.
In this setting, a simple generalization of pure bundling—single-bundle mech-

anisms—achieves the optimal convergence rate to the first-best: For each signal
sequence xn, let R1bd

xn denote the expected revenue when, conditional on xn, the seller
optimally chooses a single bundle B (possibly a strict subset of G) and price p(B) at
which to offer this bundle. Let R1bd

n := E[R1bd
xn ].
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Theorem C.1. Under the second-best mechanism and optimal single-bundle mecha-
nism, the revenue gap to the first-best vanishes equally fast: Letting λ := E[λB(θ)(θ)],

RFB −RSB
n ∼ RFB −R1bd

n ∼ λ

√
lnn

n
.

C.1.1 Proof of Theorem C.1

The proof proceeds analogously to Theorem 1. Denote by Θ∗ the set of types θ ∈ intΘ

such that argmaxB⊆G θ ·1B − c(B) is a singleton. Types are in Θ∗ with probability 1.
The analysis of the one-dimensional environment in Appendix B extends unchanged;
that is, optimal mechanisms only use deterministic bundles and one specific random
bundle.

We extend the analysis of the Gaussian environment in Appendix A.1. Denote
by Ri

(
θ∗, 1

n
J
)

(i ∈ {SB, 1bd}) the seller’s (second-best and single-bundling) payoffs
under the belief N (θ∗, 1

n
J). An analogous argument as in Proposition A.2 yields a

K > 0 such that for all θ∗ ∈ Θ∗, J ∈ J , n ∈ N, and i ∈ {SB, 1bd},∣∣∣∣∣Ri

(
θ∗,

1

n
J

)
− θ∗ · 1B(θ∗) + c(B(θ∗)) +

(
lnn

n
1B(θ∗) · J1B(θ∗)

)1/2
∣∣∣∣∣ ≤ Kn−1/2.

Combined with the Gaussian approximation in Appendix A.2.1, we obtain the
following extension of Proposition A.3 that characterizes the convergence rate of the
seller’s payoff conditional on each type: For each θ ∈ Θ∗ and i ∈ {SB, 1bd},

∑
g∈B(θ)

θg − c(B(θ))− Eθ[R
i(λxn)] =

(
lnn

n

)1/2

λB(θ)(θ) + o

((
lnn

n

)1/2
)
.

This approximation, together with Fatou’s Lemma, implies that both RFB−RSB
n and

RFB −R1bd
n vanish at least as slow as λ

√
lnn
n

.

To show that RFB − RSB
n and RFB − R1bd

n vanish at least as fast as λ
√

lnn
n

, we

extend the argument in Appendix A.2.3. Denote by R̂1bd
n the expected revenue when,

following each realization xn, the seller uses a single-bundle mechanism that offers
the bundle Bxn at price pxn(Bxn), where

Bxn ∈ argmax
B⊆G

pxn(B)− c(B)
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and pxn(B) for each B ⊆ G is as defined in Appendix A.2.3. Clearly, R1bd
n ≥ R̂1bd

n .
By the same argument as in Lemma A.11, there exists M ′ > 0 such that for all

n ≥ n, θ ∈ Θ, and B ⊆ G,∣∣∣∣∣Eθ[(pxn(B)− c(B))1{pxn (B)≤θ·1B}]− θ · 1B + c(B) +

(
lnn

n
1B · I(θ)−11B

)1/2
∣∣∣∣∣ ≤ M ′n−1/2.

For every n ≥ n and θ ∈ Θ, we have

Eθ[(pxn(Bxn)− c(Bxn))1{pxn (Bxn )≤θ·1Bxn }] ≥ Eθ[pxn(Bxn)− c(Bxn)]−M ′′n−1/2

≥ max
B⊆G

Eθ[pxn(B)− c(B)]−M ′′n−1/2

≥ max
B⊆G

Eθ[(pxn(B)− c(B))1{pxn (B)≤θ·1B}]−M ′′′n−1/2

≥ max
B⊆G

θ · 1B − c(B)−
(
lnn

n
1B · I(θ)−11B

)1/2

− (M ′ +M ′′′)n−1/2

for some M ′′,M ′′′>0 that are chosen uniformly in θ, where the first and third inequal-
ities use Lemma A.10, the second uses the definition of Bxn , and the fourth uses the
above extension of Lemma A.11.

Since R̂1bd
n = E[(pxn(Bxn)− c(Bxn))1{pxn (Bxn )≤θ·1Bxn }], we can lower-bound R̂1bd

n −
E
[
θ · 1B(θ) − c(B(θ))−

(
lnn
n
1B(θ) · I(θ)−11B(θ)

)1/2] by n−1/2 times a constant. Then,
as claimed, we have that for i ∈ {SB, 1bd},

E
[
(1B(θ) · I(θ)−11B(θ))1/2

]
≥ lim sup

n→∞
(RFB − R̂1bd

n )

(
lnn

n

)−1/2

≥ lim sup
n→∞

(RFB −Ri
n)

(
lnn

n

)−1/2

.

C.2 Non-Additive Utilities

We extend the main result to a setting where the buyer’s payoffs are not additive
across goods. Let B = 2G be the space of all bundles with m = |B|. The buyer’s type
is represented by a vector ω ∈ RB, where entry ωB represents his valuation of bundle
B. His utility from receiving bundle B ∈ B and paying transfer t is ωB − t. Type ω is
drawn from a density g whose support is some compact set Ω ⊆ RB with non-empty
interior. We assume that ωG > max{ωB, 0} for all B ⊊ G and ω ∈ Ω. Thus, every
buyer type finds the grand bundle G most attractive.
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As in our main model, conditional on buyer type ω, the seller observes a sequence
of n signals, xn = (x1, . . . , xn), that are drawn i.i.d. from a distribution Pω ∈ ∆(X)

with density f(·, ω). The seller then chooses a direct mechanism, described by map-
pings q : Ω → ∆(2G) and t : Ω → R. Conditional on xn, the second-best revenue is
RSB

xn := supq,t E[t(ω)|xn] subject to∑
B∈B

q(B;ω)ωB − t(ω) ≥
∑
B∈B

q(B;ω′)ωB − t(ω′), ∀ω, ω′ ∈ Ω, (IC)

∑
B∈B

q(B;ω)ωB − t(ω) ≥ 0, ∀ω ∈ Ω. (IR)

Let RSB
n := E[RSB

xn ] and RFB := E [ωG]. Let Rbd
xn denote the seller’s optimal expected

revenue at xn when she is restricted to using (pure) bundling. Let Rbd
n := E[Rbd

xn ].39

We impose an analog of Assumption 1. As before, we extend the signal distribution
Pω and density f(·, ω) to all types in some compact neighborhood Ω̂ ⊇ Ω. Here, we
pick Ω̂ sufficiently close to Ω so that ωG > max{ωB, 0} holds for all ω ∈ Ω̂ and B ⊊ G.

Assumption C.1.

1. The prior density g is strictly positive and locally Lipschitz continuous for all
ω ∈ Ω.

2. For all x ∈ X, the signal densities f(x, ω) are strictly positive and C2 in ω ∈
int Ω̂, and there is L > 0 such that, for all B,B′ ∈ B, ω, ω′ ∈ intΩ̂, and x ∈ X,∣∣∣∂2 ln f(x,ω)

∂ωB∂ωB′

∣∣∣ ≤ L and
∣∣∣∂2 ln f(x,ω)

∂ωB∂ωB′
− ∂2 ln f(x,ω′)

∂ωB∂ωB′

∣∣∣ ≤ L∥ω′ − ω∥.

3. The signal distributions Pω are continuous in ω ∈ Ω̂ with respect to the total
variation distance.

4. We have supω∈Ω
∫
(supω′∈Ω ln f(x, ω′))2 dPω(x) < ∞.

5. The Fisher information matrix I(ω) ∈ RB×B, given by

I(ω) :=

(∫
− ∂2

∂ωBωB′
ln f(x, ω)dPω(x)

)
B,B′∈B

,

is well-defined and positive definite for each ω ∈ ω̂.
39We do not analyze separate sales, which in the current setting no longer reduces to single-good

monopoly, as the optimal price of each good g may depend on the prices of other goods. However,
Theorem 1 already shows that it cannot in general achieve the optimal rate of convergence.
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The following result extends Theorem 1. Analogously to Section 3.1, conditional
on each buyer type ω∗, the seller’s posterior standard deviation about ωG is approxi-
mated by λω∗√

n
at large n, where λω∗ :=

√
1G · I(ω∗)−11G. Let λ := E[λ(ω)].

Theorem C.2. Under the second-best mechanism and optimal bundling mechanism,
the revenue gap to the first-best revenue vanishes equally fast:

RFB −RSB
n ∼ RFB −Rbd

n ∼ λ

√
lnn

n
.

We omit the proof, which is analogous to that of Theorem 1. In particular, as in
Appendix A.2, the seller’s posterior at large n can be approximated by a Gaussian
distribution whose mean is ω̂xn ∈ argmaxω∈Ω̂

∑n
i=1 ln f(xi, ω) and whose covariance

matrix is the inverse of

Ixn(ω) :=

(
− 1

n

n∑
i=1

∂2

∂ωB∂ωB′
ln f(xi, ω)

)
B,B′∈B

evaluated at ω = ω̂xn . To upper-bound RSB
n , we make use of a one-dimensional relaxed

problem as in Appendix A.1, which did not assume additive values.

C.3 Deterministic Setting with Non-Gaussian Beliefs

Extending the deterministic Gaussian environment studied in the main text, we con-
sider a setting where the seller has a general deterministic sequence of beliefs indexed
by n that converge to a point-mass on the true type θ∗. Such beliefs can be inter-
preted as the outcome of the seller observing increasingly precise information that
need not take the form of n (i.i.d. or correlated) signal draws.

Formally, conditional on true type θ∗ ∈ R|G|
++, the seller’s belief at n is that the

buyer’s type is θ = θ∗+n−1/2z, where z ∈ R|G| is drawn from a cdf F that is continu-
ously differentiable and positive. For each B ⊆ G, let FB denote the induced cdf of 1B·
z. We impose the following tail conditions: There exist α+(B), α−(B), β+(B), β−(B) >

0 such that, as z → ∞,

1− FB(z) = exp[−α+(B)zβ
+(B) + o(zβ

+(B))],

and FB(−z) = exp[−α−(B)(−z)β
−(B) + o(zβ

−(B))].
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These conditions rule out heavy-tailed distributions (i.e., whose moment-generating
function

∫
exp[tz]dFB(z) is infinite at all t). The Gaussian setting in the main text

corresponds to the case α+(B) = α−(B) = 1
2(λB(θ∗))2

and β+(B) = β−(B) = 2, based
on the Gaussian tail bound in (9).

We restrict attention to deterministic mechanisms. Denote by Rmix
n (θ∗) the seller’s

optimal expected revenue under IC-IR deterministic mechanisms (which can be rep-
resented as mixed bundling). Denote by Rbd

n (θ∗) the optimal revenue under (pure)
bundling. Denote by RFB(θ∗) :=

∑
g∈G θ∗g the first-best revenue.

Proposition C.1. Under the optimal deterministic mechanism and optimal bundling
mechanism, the revenue gap to the first-best vanishes equally fast:

RFB(θ∗)−Rmix
n (θ∗) ∼ RFB(θ∗)−Rbd

n (θ∗) ∼
(

lnn

2α−(G)

)1/β−(G)

n−1/2.

Thus, optimizing over pure bundling achieves the same convergence rate to the
first-best as optimizing over all possible deterministic mechanisms. This generalizes
our main insight that pure bundling is an effective mechanism under precise seller
beliefs, as using menus of bundles only allows for a negligible improvement relative to
pure bundling. The main qualification is that, unlike Theorem 1, Proposition C.1 does
not allow for stochastic mechanisms, whose analysis we leave as an open question.

Appendix C.3.1 first analyzes the single-good case. Appendix C.3.2 then proves
Proposition C.1.

C.3.1 Single-Good Case

We extend the intensive vs. extensive margin analysis from the Gaussian environment
in Section 4.2 to the current setting. Assume |G| = 1, so we can omit the dependence
of parameters α+, α−, β+, β− on B. Denote by R∗

n(θ) the optimal revenue, which
is achieved by a posted price p∗n. Let Fn denote the cdf of the seller’s belief, i.e.,
Fn(θ) = F ((θ − θ∗)

√
n).

Generalizing Proposition 2, the following result shows that at large n, the seller
optimally sets prices in such a way that revenue losses relative to the first-best are
driven by the intensive margin, while the extensive margin becomes negligible. Write
α = α−, β = β−.
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Proposition C.2. Any optimal price sequence p∗n satisfies

RFB(θ∗)−R∗
n ∼ θ∗ − p∗n ∼

(
lnn

2α

)1/β

n−1/2 and θ∗Fn(p
∗
n) = o

(
(lnn)1/βn−1/2

)
.

Moreover, under any price sequence pn with θ∗ − pn ∼ δ
(
lnn
2α

)1/β
n−1/2 for some

δ ∈ [0, 1), we have limn
θ∗Fn(pn)

(lnn)1/βn−1/2 = ∞.

Proof. Take any δ ≥ 0 and sequence of prices (pn) with θ∗ − pn ∼ δ
(
lnn
2α

)1/β
n−1/2.

Then by the tail conditions on F ,

Fn(pn) = exp

[
−δβ

2
lnn+ o (lnn)

]
= n− δβ

2
+o(1),

and thus

lim
n→∞

θ∗Fn(pn)

(lnn)1/βn−1/2
=

0 if δ > 1,

∞ if δ < 1.

Additionally, if θ∗ − pn =
(
lnn
2α

)1/β
n−1/2 for all n, then limn

θ∗Fn(pn)

(lnn)1/βn−1/2 = 0, and

hence RFB(θ∗)−Rn(pn) ∼
(
lnn
2α

)1/β
n−1/2, where Rn(pn) := pn(1− Fn(pn)).

Given these observations, the remainder of the proof is analogous to that of Propo-
sition 2.

C.3.2 Proof of Proposition C.1

Let (pn(B))B⊆G denote optimal mixed-bundling prices that yield Rmix
n (θ∗), where

pn(∅) = 0. Observe first that for any B ⊆ G with limn→∞ pn(B) > 1B · θ∗,

Prob[1B · θ − pn(B) ≥ 1B′ · θ − pn(B
′),∀B′ ⊆ G] ≤ Prob[1B · θ − pn(B) ≥ 0]

=1− FB(n1/2(pn(B)− 1B · θ∗))

= exp[−α+(B)n
β+(B)

2 + o(n
β+(B)

2 )] = o(n−1),

(21)

where the second equality uses the assumption on right-tail probabilities.
Write α = α−(G) and β = β−(G). To prove the proposition, note that RFB(θ∗)−

Rbd
n (θ∗) ∼

(
lnn
2α

)1/β
n−1/2 follows from Proposition C.2. Suppose toward a contra-

diction that RFB(θ∗) − Rmix
n (θ∗) ∼

(
lnn
2α

)1/β
n−1/2 fails. Since RFB(θ∗) − Rmix

n (θ∗) ≤

13



RFB(θ∗)−Rbd
n (θ∗) holds for each n by definition, we have

lim inf
n→∞

RFB(θ∗)−Rmix
n (θ∗)(

lnn
2α

)1/β
n−1/2

< 1. (22)

Observe by definition of Rmix
n (θ∗) that

RFB(θ∗)−Rmix
n (θ∗) =

∑
B⊆G

Prob[1B·θ−pn(B) ≥ 1B′·θ−pn(B
′),∀B′ ⊆ G]

(
1G · θ∗ − pn(B)

)
.

(23)
Consider the case lim infn→∞

1G·θ∗−pn(G)

( lnn
2α )

1/β
n−1/2

≥ 1. Given (22)-(23), there exists B ⊊

G such that lim infn→∞ Prob[1B · θ − pn(B) ≥ 1B′ · θ − pn(B
′),∀B′ ⊆ G] > 0 and

lim infn→∞
1G·θ∗−pn(B)

( lnn
2α )

1/β
n−1/2

< 1. This contradicts (21).

Consider the case lim infn→∞
1G·θ∗−pn(G)

( lnn
2α )

1/β
n−1/2

< 1. Then

lim inf
n→∞

∑
B⊊G Prob[1B · θ − pn(B) ≥ 1B′ · θ − pn(B

′),∀B′ ⊆ G](
lnn
2α

)1/β
n−1/2

≥ lim inf
n→∞

Prob[1G · θ − pn(G) < 0](
lnn
2α

)1/β
n−1/2

= ∞,

where the equality uses the second part of Proposition C.2. But given (22)-(23),
there exists B ⊊ G such that lim infn→∞

Prob[1B ·θ−pn(B)≥1B′ ·θ−pn(B′),∀B′⊆G]

( lnn
2α )

1/β
n−1/2

> 0 and

lim infn→∞
1G·θ∗−pn(B)

( lnn
2α )

1/β
n−1/2

< 1. This contradicts (21).
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